
Visual Comparison of Datasets Using Mixture
Decompositions

Alan GOUS and Andreas BUJA

This article describes how a mixture of two densities, f0 and f1, may be decomposed
into a different mixture consisting of three densities. These new densities, f+, f−, and f=,
summarize differences between f0 and f1: f+ is high in areas of excess of f1 compared to f0;
f− represents deficiency of f1 compared to f0 in the same way; f= represents commonality
between f1 and f0. The supports of f+ and f− are disjoint. This decomposition of the
mixture of f0 and f1 is similar to the set-theoretic decomposition of the union of two sets
A and B into the disjoint sets A\B, B\A, and A ∩ B. Sample points from f0 and f1

can be assigned to one of these three densities, allowing the differences between f0 and
f1 to be visualized in a single plot, a visual hypothesis test of whether f0 is equal to f1.
We describe two similar such decompositions and contrast their behavior under the null
hypothesis f0 = f1, giving some insight into how such plots may be interpreted.

We present two examples of uses of these methods: visualization of departures from
independence, and of a two-class classification problem. Other potential applications are
discussed.

Key Words: Classification; Data visualization; Density estimation; Exploratory data anal-
ysis; Mixture decomposition.

1. INTRODUCTION

Figure 1 is a plot of n = 329 metropolitan areas in the United States. A score mea-
suring housing cost in the area is plotted on the y-axis, and a score for the quality of the
transportation infrastructure is plotted on the x-axis.

Are these two scores independent of one another? A standard test of, say, a zero cor-
relation, confirms that they are not. This is also clear purely from visual evidence, if we
compare this plot to Figure 2. The latter plot is of the same data, but with the x-values of
all the points randomly permuted, while keeping the y-values fixed. This then is a sam-
ple of size n from the permutation distribution defined by the data, the product distribution
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Figure 1. Housing and transportation ratings of 329 places to live in the U.S.

Figure 2. Places ratings data, with data on one axis randomly permuted.
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Figure 3. Combined data of Figures 1 and 2, with points colored according to allocation in the L1 mixture model.

of the data margins, for which the x- and y-values are independent. There seems to be
visual evidence that the two datasets creating the two plots are from different distributions,
particularly when comparing the lower center and lower right-hand sides of the plots.

Figure 3 plots both sets of data on the same axes, and colors the points according to
a scheme which provides immediate visual information about the differences between the
two distributions. The combined data are regarded as having been drawn from a mixture
of three distributions, and are colored accordingly. The distribution from which the green
points are drawn has been defined so that it has high density where the original density is
high compared to the permutation density. The red points, on the other hand, are drawn from
a distribution defined so that it has high density where the original density is low compared
to the (draw from the) permutation density. Areas of red or green points in the plot then
provide evidence for differences between the two distributions. Points classified as being
drawn from the third density in this mixture are colored blue. This density is defined to be
high where the two distributions are similar, and so reflects a sort of consensus between the
two.

With this interpretation, Figure 3 shows clearly the dependence between the x and y

variables: The green points are funneled from the lower left to the upper right between two
groups of red points in the the upper left and lower right. Keeping in mind that green/red
points indicate preponderance/deficiency, of actual compared to permuted data, the plot lets
us perceive the nature of the dependence in more detail than the plot of the raw data in
Figure 1.

While interpreting the data, we must bear in mind the sampling variation that has been
introduced into Figure 3 by the single draw from the permutation distribution used in its
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creation. The patterns described above do, however, persist through multiple draws. Sec-
tion 5 presents a second application of this visualization scheme in which such permutation
sampling variation does not appear. The reader should keep in mind that the comparison of
real and permuted data is just an illustration, albeit a useful one we think, of the proposed
method for decomposing and visually comparing two distributions.

There exists a second source of sampling variation, given the original data, which is
always present in these visualizations, and which will be described with the algorithm itself
in Section 3.

A remark on plotting: Graphs such as Figure 3 are prone to overplotting. The order
in which points are drawn is therefore important. It is recommended that points be drawn
in reverse order of importance, such that more important points are drawn later to allow
them to overplot the previously drawn less important points. In the present situation this
means plotting green and red points after the blue ones because agreement between two
distributions is less informative than their disagreement, represented here by the green and
red points.

This article describes schemes such as that of Figure 3 for visualizing, in a single plot,
the differences between two datasets. Besides the simple example above, which will be used
for illustration throughout much of the article, there are a number of situations in which
such plots may be useful:

1. Any testing situation where a unique null distribution can be simulated. The above
example, in which the null is the permutation distribution, is a special case.

2. Two-class classification problems. An example is presented in Section 5.
3. Process data: visualizing differences between today’s data and yesterday’s data to

monitor changes in the behavior of a process.
4. Model diagnostics: comparing actual data to data predicted by a given model, or to

parametric bootstrap samples from a model fitted to the data.
Section 2 defines two schemes for using mixture decompositions to define differences

between the two constituent densities. Section 3 describes how points may be drawn from
the densities in the mixture. Section 4 describes some important theoretical differences
between the schemes. An application of these methods to classification is presented in
Section 5.

2. TWO CANONICAL MIXTURE DECOMPOSITIONS

Two univariate densities are depicted in Figure 4(a). One, which we will call f1, is a
mixture of two Gaussians of equal variance, with equal mixing probabilities. The other,
f0, is a single Gaussian which has been “fit” to f1, matching its mean and variance. As a
model of f1, f0 puts excess mass in the center of the density and in the tails. This excess
is counterbalanced by deficiency of mass in the two regions between the center and the
tails. Parts (b), (c), and (d) of Figure 4 are three different representations of these regions
of excess and deficient mass.
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Figure 4. A simple mixture decomposition: (a) the original two densities. (b) The L1 decomposition. The density
shaded by green lines is f+, that shaded by red lines is f−. The unshaded density is f=. (c) The L2 decomposition
with the same labeling as (b). (d) The functions F+ and F− are defined in (2.18).

2.1 THE CANONICAL L1 MIXTURE DECOMPOSITION

Treating f1 and f0 simply as positive functions on R, (or R
d, d ≥ 1 in general), we can

write their sum as

f0 + f1 = (f1 − f0)+ + (f0 − f1)+ + 2 min{f0, f1}, (2.1)

where min is the pointwise minimum, and for any function g, g+ denotes max{g, 0}. The
three terms on the right-hand side of (2.1) are all positive functions, dominated by f0 + f1.
Let

ω =
∫

(f1 − f0)+ dµ =
∫

(f0 − f1)+ dµ, (2.2)

where µ is Lebesgue measure on R
d. If f1 /= f0, so ω > 0, then the following are densities

on R
d:

f+ =
1
ω

(f1 − f0)+, (2.3)
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f− =
1
ω

(f0 − f1)+, (2.4)

f= =
1

1 − ω
min{f0, f1}. (2.5)

The mixture density of f1 and f0, each with equal probability, may be written as

1
2
(f1 + f0) =

ω

2
f+ +

ω

2
f− + (1 − ω)f= , (2.6)

that is, decomposed into a mixture of the three densities (2.3)–(2.5) with weights which are
functions of ω.

These three densities, for the case of f1 and f0 in Figure 4(a), are shown in Figure 4(b).
Note that f+ is high where f1 has excess mass compared to f0, and f− is high where f1 is
deficient in mass compared to f0. The density f=, proportional to the pointwise minimum
of f0 and f1, is a measure of consensus between the two densities.

Because

2ω = ‖f1 − f0‖1 , (2.7)

the relative weights of the mixture densities on the right-hand side of (2.6) are determined
by the L1 distance between f0 and f1. We will call (2.6) the L1 mixture decomposition of
the densities f1 and f0.

The more these two densities differ from one another, the higher the combined weights
of f+ and f− in the mixture will be. Note also that

1 − ω =
∫

f0≥f1

f1 dµ +
∫

f1>f0

f0 dµ , (2.8)

which is the Bayes misclassification rate for the classification of a sample point drawn from
f1 or f0 with equal prior probabilities.

Any sample value drawn from the mixture on the left-hand side of (2.6) can be inter-
preted as having been drawn from one of the three densities on the right-hand side of (2.6).
Each point in Figure 3 has been colored according to such an allocation, as will be described
in Section 3.

2.2 THE CANONICAL L2 MIXTURE DECOMPOSITION

Another decomposition of f1 and f0, similar to (2.6), can be derived by replacing (2.1)
with the decomposition

f0 + f1 = (
√

f1 −
√

f0)2
+ + (

√
f0 −

√
f1)2

+ + 2
√

f0f1 . (2.9)

For functions g we write g2
+ as shorthand for (g+)2. When expanding the squares on the

right hand side, the two cross-product terms have disjoint nonzero regions, so the terms add
up to 2

√
f0f1.
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Again, if f1 /= f0, the three terms on the right-hand side can be normalized into
densities, this time by defining

ω+ =
∫

(
√

f1 −
√

f0)2
+ dµ, ω− =

∫
(
√

f0 −
√

f1)2
+ dµ . (2.10)

Note ω+ /= ω− in general. Define

f+ =
1
ω+

(
√

f1 −
√

f0)2
+, (2.11)

f− =
1
ω−

(
√

f0 −
√

f1)2
+, (2.12)

f= =
2

2 − (ω+ + ω−)

√
f0f1 . (2.13)

Then we can write

1
2
(f1 + f0) =

ω+

2
f+ +

ω−
2

f− +
(

1 − ω+ + ω−
2

)
f= , (2.14)

again decomposing the mixture of f1 and f0 into a mixture of three new densities repre-
senting excess and deficiency of f1 with respect to f0, and a measure of consensus between
the two. The consensus density, f=, is in this case proportional to the geometric mean of f0

and f1. For the f1 and f0 in Figure 4(a), these three densities are shown in Figure 4(c).
Note that

ω+ + ω− = ‖
√

f1 −
√

f0‖2
2 , (2.15)

the Hellinger distance between f1 and f0. For this reason we will call (2.14) the L2 mixture
decomposition of f1 and f0.

For simplicity we have used the same notation for the densities in this decomposition
as for those defined in (2.3)–(2.5). The ambiguity is useful because the results in the next
section may be applied to either case. It will also be useful, in the L1 case, to define ω+ and
ω− both to be equal to ω in (2.2).

Note: The L1 and L2 decompositions are invariant under changes in the underlying
measure in the following sense. Let ν be a measure on R

d and let g0, g1 be densities with
respect to ν so that

f0 dµ = g0 dν, f1 dµ = g1 dν. (2.16)

Let g+, g− and g= be defined with respect to g0 and g1 using either (2.3)–(2.5) or (2.11)–
(2.13). Then clearly

f+ dµ = g+ dν, f− dµ = g− dν, f= dµ = g= dν. (2.17)

The probability distributions of these densities remain the same under this transformation,
as, therefore, will samples drawn from the densities.
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2.3 COMPARISON WITH THE TWO-CLASS CLASSIFICATION PROBLEM

There are other, more conventional functions of f0 and f1 besides f+, f− and f= which
measure excess or deficiency of one over the other. For example, the two functions

F+ =
f1

f0 + f1
, F− =

f0

f0 + f1
, (2.18)

have been suggested in a very similar context by Friedman and Fisher (1999). Figure 4(d)
illustrates these functions for the f0 and f1 of Figure 4(a). F+(x) and F−(x) are the prob-
abilities that a sample X drawn from the mixture 1

2 (f0 + f1) is from f1 or f0 respectively,
given that X = x.

There are a number of advantages of the L1 and L2 decompositions over F+ and F−,
however. First, F+ and F− are not densities with respect to Lebesgue measure µ, so one
cannot visualize them by plotting sample points as we do for f+, f−, and f=, using the
method explained in the next section. Second, these functions provide a “multiplicative”
comparison of f0 and f1, as opposed to the “additive” comparison provided by f+ and f−.
As can be seen from Figure 4(d) this multiplicative comparison emphasizes differences in
the very low density regions of f0 and f1, which are perhaps not as important as those in
the high density regions, and are certainly more difficult to estimate. Last, the L1 and L2

decompositions define a third function, f=, which describes the common variation in the
heights of the densities f0 and f1, leaving f+ and f− to describe just the differences between
the densities. The rôle of f= will be described further in Section 4.

3. SAMPLING FROM THE MIXTURE COMPONENTS

In the example of Section 1, we do not know either f1, the joint distribution of the
two variables, or f0, the permutation distribution on these variables. Instead we have two
samples from which they may be estimated. In general, let

X1, . . . , Xm
iid∼ f1, Y1, . . . , Yn

iid∼ f0 (3.1)

be defined for densities f1 and f0 on R
d. In the example in Section 1 we have d = 2 and

m = n = 329.
Simple estimates of f1 and f0 are the kernel density estimates

f̂1(x) =
1

mhd

m∑
i=1

K

(
Xi − x

h

)
, (3.2)

f̂0(y) =
1

nhd

n∑
i=1

K

(
Yi − y

h

)
. (3.3)

Here K is some kernel (a Gaussian in R
d, for example) and h is some bandwidth. In the

examples in this article we choseh using “Scott’s rule” (Scott 1992) on the combined sample
size: we set

h = (n + m)−1/(d+4) , (3.4)
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after first normalizing this combined sample to have unit variance in each coordinate. This
rule is optimal in a certain sense if the underlying distribution is multivariate normal, and
seemed to work adequately here.

Decompositions equivalent to (2.6) and (2.14) for f1 and f0 can be defined for f̂1 and
f̂0, resulting in estimated densities f̂+, f̂−, and f̂=, and estimated constants ω̂+ and ω̂−.
(The latter turn out to be irrelevant for our procedure; see below.) The estimated densities
f̂+ and f̂− may be used to characterize differences between the densities f1 and f0. These
differences can be visualized using samples from f̂+ and f̂−. The following algorithm will
sample from each of f̂+, f̂−, and f̂=, in the proportions of the mixture decomposition, with
a total sample size N :

Repeat for i from 1 to N :
1. Draw Zi = zi from 1

2 (f̂1 + f̂0).
2. With probability

P+/−(zi) =
ω+f̂+(zi) + ω−f̂−(zi)

f̂1(zi) + f̂0(zi)
(3.5)

assign zi to

{
the f̂+ sample, if f̂1(zi) > f̂0(zi)
the f̂− sample, if f̂0(zi) > f̂1(zi)

Otherwise, assign zi to the f̂= sample.
This algorithm can be applied using either the L1 or L2 mixture decompositions defi-

nitions. Note that we do not need to calculate ω+ or ω− since their values cancel with the
definitions of f̂+ and f̂− in the numerator of (3.5):

P+/− =
(f̂1 − f̂0)+ + (f̂0 − f̂1)+

f̂1 + f̂0
and

(f̂ 1/2
1 − f̂

1/2
0 )2

+ + (f̂ 1/2
0 − f̂

1/2
1 )2

+

f̂1 + f̂0

in the L1 and L2 case, respectively. Also, the numerator evaluates to zero if f̂0 = f̂1, in
which case every zi is allocated to f̂=.

The starting point of our procedure is of course data consisting of two samples, one
each from f1 and f0. Although we state in Step 1 that samples are drawn from the estimate
1
2 (f̂1 + f̂0), we prefer to avoid bias incurred in estimation by using the original data to form
samples from 1

2 (f1 + f0) and thus limiting the effects of estimation to the color scheme. If
the sample sizes are equal, m = n, as in our example, or if they are approximately equal,
then instead of sampling from the mixture in Step 1 we can simply set N = n + m and let
Z1, . . . , ZN be the combined sample of the Xi and Yi. If m and n are widely different but
the smaller (m, say) is large enough to be informative when displayed as a scatterplot, one
could use subsamples of size m out of n from the larger sample.

If m ≈ n and the pooled data samples are used, the modified algorithm amounts to
an assignment of each point in the original sample (3.1) to either f̂+, f̂−, or f̂=. Figure 3
is such an assignment. Points selected as samples from f̂+ have been colored green, those
from f̂− red, and those from f̂= blue.

Note that since the algorithm samples randomly, different colorings are possible. It
is certainly recommended that the algorithm be applied more than once to the data, and
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Figure 5. Combined data of Figures 1 and 2, with points colored according to the L2 mixture model.

the resulting visualizations compared, to assess the impact of this sampling variation on
interpretations of the data.

Figure 5 plots the same data as Figure 3, but colored according to a sampling from an
L2 mixture decomposition. Both plots characterize the positive dependence between the
two variables. The L2 method samples fewer red or green points, and so while the same
pattern is there it is less distinct. The L2 mixture decomposition has an important advantage
over the L1 decomposition, though, which will be explained in the next section.

Remarks:
1. One could raise the question of why we visualize samples when the results of

our technique are really three density functions. One could argue that one should
display these functions with function visualization, as opposed to samples with data
visualization. This is a sensible proposal, but there are two arguments in favor of
visualizing samples: (1) Comparing samples in more than two dimensions is more
easily done than comparing functions of more than two variables. We use simple
scatterplots of two variables only for didactic purposes; comparison of samples with
more than two variables can be achieved with multivariate data visualizations such
as scatterplot matrices and grand tours (Swayne, Cook, and Buja). (2) As already
mentioned, when m ≈ n and Step 1 is replaced with using the pooled data samples,
one prefers to see the original data and relegate the estimated densities to auxiliary
devices.

2. We emphasize again that the general goal of this article is to develop the idea,
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and illustrate the use of, decomposing two densities into a mixture of three com-
ponents, each with a well-defined interpretation. The comparison of real and null
data based on data permutations is just one of several possible applications. There
exist many other techniques for detecting dependence, most in the form of tests. If
visual testing of independence were our primary goal, we should refine our method
by replacing the kernel density of the permuted data with the product of densities
estimated from the two marginal distributions. That is, if the permuted data are the
samples Yi = (Y (1)

i , Y
(2)
i ), put f̂0(y(1), y(2)) = f̂ (1)(y(1)) · f̂ (2)(y(2)). Note that

this estimate is independent of the specific draw (Yi)i=1...n from the permutation
distribution because the marginal values are the same as those of the original data
(Xi)i=1...n. For display, we would still use the same single draw (Yi)i=1...n from
the permutation distribution, but the coloring would be derived from a density esti-
mate f̂0 that mimics the independence assumption exactly. (We thank an anonymous
referee for suggesting this point.)

4. BEHAVIOR UNDER THE NULL HYPOTHESIS

Plots such as Figures 3 and 5 provide visual information about differences in the two
densities f1 and f0. To be able to interpret this information we need to know what we would
expect to see in such plots if the two densities were the same.

Even if f1 = f0, we have f̂1 /= f̂0 in general so points will be sampled from f̂+ and
f̂−, not just f̂=, in the algorithm presented in the last section. Figures 6 and 7 illustrate
such a situation. The figures plot the same data as Figure 3, except that in these cases the x-
values of both samples have been randomly permuted, independently of one another, so that
the two datasets in each of the two plots are drawn from the same underlying permutation
distribution. In Figure 6 the colors are allocated according to the L1 mixture decomposition,
and in Figure 7 according to the L2 mixture decomposition. There are obviously far fewer
red and green points in the L2 plot than in the L1 plot. But there is another important, more
subtle difference between the two.

The red and green points in both plots appear to be scattered approximately uniformly
over the range of the data; far more uniformly, in fact, than the scattering of the original data.
This is an interesting and useful property. If one were presented only with the red and green
points, and they were distributed with the same variation in density as the original data, one
might be misled into thinking that areas of high density in the original data were areas in
which the two underlying densities differed the most. In fact, of course, these densities are
identical everywhere.

The intuitive reason for the approximate uniformity, which we will formalize below,
is the following. In regions of higher density in the original data f̂0 and f̂1 are estimated
better, and therefore, since f0 = f1, are closer to one another. The densities f̂+ and f̂− will
then be low in these areas, with a corresponding lower proportion of red and green points
compared to blue points sampled from these distributions. In regions of lower density in
the original data on the other hand, f̂0 and f̂1 are estimated relatively badly, and so are farther
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Figure 6. Combined data from two independent random permutations such as that of Figure 2, colored according
to the L1 mixture model.

Figure 7. Combined data from two independent random permutations such as that of Figure 2, colored according
to the L2 mixture model.
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apart from one another. So f̂+ and f̂− are higher in these areas, resulting in higher proportions
of red and green points sampled compared to the blue ones. Because fewer points overall
are sampled in regions of lower density these differences in proportions balance out to a
certain extent, resulting in the approximate uniformity.

The proportions of the reds and greens sampled in different areas of the densities depend
on P+/−, the sampling proportion defined in (3.5). The following theorem gives a precise
asymptotic statement about the behavior of P+/−. We will interpret the theorem below, and
then in the next section investigate how these results compare to the small sample behavior
of P+/−.

Theorem 1. Let f0 and f1 be two densities on R
d, d ≥ 1. Let f0(x) = f1(x) > 0

for x ∈ R
d. Let K satisfy the usual conditions of a density estimation kernel (see e.g.,

Silverman 1986, chap. 4), so that using definitions (3.1)–(3.3),

nhd(f̂i(x) − λ) → N(0, λR), i = 0, 1, (4.1)

in distribution as nhd → ∞ and h → 0. Here λ = f0(x) and R =
∫

Rd K2(x)dx. Let P+/−
be defined as in (3.5) with f̂+ and f̂− defined from f̂0 and f̂1 using either the L1 definitions
(2.3), (2.4) or the L2 definitions (2.11), (2.12).

Then as nhd → ∞ and h → 0,
1. In the L1 case:

(nhdλ)
1
2 P+/−(x) →

(
R

2

) 1
2

|Z|. (4.2)

2. In the L2 case:

(nhdλ)P+/−(x) →
(
R

4

)
χ2

1. (4.3)

Here Z is a standard Gaussian, and χ2
1 is a chi-squared random variable with one degree

of freedom.
A proof is given in the appendix. Because E|Z| =

√
2/π and Eχ2

1 = 1, the following
corollary follows immediately:

Corollary 1. Under the conditions of Theorem 1, as nhd → ∞ and h → 0,

1. In the L1 case:

nλE[P+/−(x)] �
(
Rnλ

πhd

) 1
2

. (4.4)

2. In the L2 case:

nλE[P+/−(x)] � R

4hd
. (4.5)

We use the notation a � b here to mean a/b → 1.
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In a small neighborhood dx around a point x in R
d with λ = f0(x) = f1(x), we expect

nλdx points to be sampled in total, and

nλE[P+/−(x)]dx (4.6)

points sampled from f̂+ or f̂−, and so colored green or red. The corollary gives asymp-
totic estimates of this quantity in both the L1 and L2 cases, showing how it depends on λ.
For n large enough and h small enough, the first part of the corollary shows that (4.6) is
proportional to

√
nλdx: the number of points in this neighborhood colored red or green is

approximately proportional to the square root of the total number of points in the neigh-
borhood. One would expect then, as is observed in Figure 6, that the distribution of reds
and greens over the range of the data is more uniform than the distribution of all the data
together.

The second part of the corollary shows, however, that in the L2 case the number of
red and green points in such a neighborhood is asymptotically constant with respect to λ.
Using a Gaussian kernel for example, we have

R =
(

1
2
√
π

)d

, (4.7)

and with h = 1 the right-hand side of (4.5) is 0.070, 0.020, and 0.0056 for d = 1, 2, and
3. These numbers are the approximate expected number of red and green points per unit
kernel volume hd for large n. The uniformity approximation appears then to be even better
in the L2 case than in the L1 case.

To examine how large n has to be for this asymptotic approximation to be reasonable,
we performed the following simulation, approximating the distribution f0 = f1 around a
neighborhood of x by a uniform density of height λ. We used a standard Gaussian kernel,
and set h = 1 throughout so that the results are scaled by kernel bandwidth:

1. Generate X1, . . . , XM and Y1, . . . , YM , iid from a uniform distribution on [−r, r]d.
Here M = 2rnλ, and r is chosen large enough so that K(r) ≈ 0. The quantity nλ

is chosen so that M is an integer.
2. Calculate f̂0(0) and f̂1(0) from (3.2) and (3.3).
3. Calculate P+/−(0) from (3.5).
4. Repeat 1–3 a large number (1,000) of times, estimatingE[P+/−(0)] from the sample

mean.
The results of the simulation, performed for d = 1, 2 and 3, for both the L1 and L2

case, and over a range of nλ, are shown in Figure 8. The x-axis of the figure plots nλ on a
log scale, and the y-axis plots the simulation estimate of nλE[P+/−(x)]. For small values
of nλ all the graphs are approximately zero: no red or green points appear outside the range
of the data. The graphs converge for high nλ in the L2 case, and rise at a rate

√
nλ in the

L1 case, as predicted.
What is interesting, though, is how rapidly the L2 graphs approach their asymptote.

When d = 2, for example, convergence has occurred already at nλ = 0.25, a density of
approximately only one data point per four kernel areas.
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Figure 8. Results of the simulation to determine the numbers of red and green points compared to the total number
of points, for a range of heights of densities λ and sample sizes n. Results for the L1 decomposition are in blue,
for the L2 decomposition in brown. Dimensions d = 1, 2, 3 are represented by solid, dotted, and dashed lines,
respectively.

The importance of the consensus density f= becomes apparent here. In both the L1

and L2 cases, and particularly in the L2 case, the red and green points, sampled from f+

and f−, are distributed more uniformly than the original data. We have argued that this is a
desirable property, but is only possible in a mixture decomposition of the original densities
if a third density f= is included which has as much variation in height (slightly more, in
fact) as the original densities.

We now turn to a different example of the use of these mixture decompositions, illus-
trating some further uses of the methods.

5. VISUALIZATION OF CLASSIFICATION

The example analysis we have used until now compares a real dataset to artificial data
generated under a null hypothesis (in our case that of independence) on the original data.
The mixture decomposition we have described can also be useful in visualizing differences
between two classes of real data, for which there is no designated null dataset.

Figure 9 plots data from a study on diabetes in Pima Native American women, from
Blake and Merz (1998). The plot is a two-dimensional projection of three-dimensional
data obtained using the XGobi software (Swayne, Cook, and Buja). The three axes measure
a body mass index, a plasma glucose concentration, and a diabetes pedigree function for each
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Figure 9. The Pima Native American diabetes data. Red points signify diabetics, green points nondiabetics. See
text for details of axes.

Figure 10. The data in Figure 9, with points colored using an L2 mixture decomposition.
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Figure 11. The data in Figure 9, with the pedigree variable removed.

of 488 Pima women. This is the subset of the original data for which all three measurements
were available. The data are colored red in the case of a diabetic and green otherwise.

From the plot we could infer an approximate discrimination plane between the two
groups, perpendicular to the glucose axis. There is a lot of overlap between the two groups,
however, and the actual shape of the classification boundary is not clear. It is also not
apparent, from this projection alone, whether the point clouds of the two classes merge
completely in the center, or whether one is above or below the other and they just appear to
merge because they are being projected on top of one another. In the latter case the plane
described above would certainly not be an appropriate discrimination rule.

Figure 10 plots the same data, with the same projection, after computing an L2 mixture
decomposition. We have let f1 be the density of the nondiabetics and f0 be that of the
diabetics, and colored the points using the same convention as before: green denotes samples
from f̂+, red from f̂−, blue from f̂=. It is clear from this figure that the two point clouds
must merge in the center. If one were being projected on top of the other, and there was in
fact separation between the clouds when viewed from another angle, then the center of the
plot would contain red and green points, indicating separate regions of high class purity.
Instead there are only blue points. It is of course preferable, whichever coloring scheme is
used, to rotate the data in 3-space and view many different projections. This is possible in
XGobi, but not in an article.

The pedigree function is one of the less important predictor variables. Figure 11 plots
the same data with this variable removed. Figure 12 is a decomposition of these points, this
time using an L1 scheme. As was noticed in the example in Section 1, the L1 scheme colors
proportionately more points red or green than the L2 scheme. In Figure 12 enough points
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Figure 12. The data in Figure 11, with points colored using an L1 mixture decomposition.

are colored red or green for an estimated classification boundary to become apparent. The
boundary does not appear linear. There appears to be a central “peninsula” of high diabetic
concentration projecting towards the nondiabetics. Whether such a pattern is real or appeared
just by chance in the sampling can be checked by viewing plots from repeated samplings.
This rather interesting boundary does seem to be reproduced in repeated sampling, and does
therefore seem to be real.

A. APPENDIX: PROOF OF THEOREM 1

From (4.1),

nhdλ(f̂i(x)/λ − 1) → N(0, R), i = 0, 1. (A.1)

Let vn,h = nhdλ. Write (4.2) as [vn,hp1(f̂0(x)/λ, f̂1(x)/λ)]
1
2 , where

p1(a, b) =
(a − b)2

(a + b)2
, a, b ∈ R, (A.2)

and write (4.3) as [vn,hp2(f̂0(x)/λ, f̂1(x)/λ)], where

p2(a, b) =
(
√
a − √

b)2

(a + b)2
, a, b ∈ R. (A.3)
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From a Taylor expansion of either pi around E[(f̂0(x)/λ, f̂1(x)/λ)] = (1, 1), since
∇pj (1, 1) = (0, 0), j = 1, 2,

vn,hpj(f̂0(x), f̂1(x)) → 1
2
RZT

2 ∇2pj(1, 1)Z2, (A.4)

where Z2 ∼ N2(0, I). For j = 1 this is (
R

2

)
χ2

1, (A.5)

and the result follows on taking square roots. For j = 2 this is(
R

4

)
χ2

1, (A.6)

which is the required result.
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