
LECTURES ON STATISTICS AND DATA ANALYSIS

Columbia University, June 10-19, 2009

Andreas Buja (Statistics Dept, The Wharton School, UPenn)

This series of eight lectures will cover a loose collection of topics

in statistics, machine learning, data exploration, and applications.

Some background for each topic will be provided, and while the

technical level varies there will be take-home messages from each

lecture for Ph.D. students in statistics and related fields.

* "Trees that speak": classification and regression trees for

interpretation (as opposed to prediction)

* "Bagging", its bias-variance properties and a correspondence

between subsampling and bootstrap sampling

* "Boosting" for classification and class probability estimation

* "It’s the metric, stupid": a principle for multivariate analysis

methods that use eigen- or singular value decompositions

* "Flattening warps and cobwebs": non-linear dimension reduction

and graph drawing

* "On a scale from 1 to 3...": an exercise in survey data analysis

* "Tuna fishing -- the movie": dynamic graphics for space-time data

* "Seeing is believing": statistical inference for exploratory data analysis

(Additional topics: k-means clustering, calibration for simultaneity)
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Some Bio

• PhD 1980 from ETH (Zurich, Switzerland) in Statistics/Math

• -1981 Children’s Hospital (Zurich) & ETH

• -1982 Visiting Asst Prof Stanford U & SLAC

• -1985 Asst Prof, U of Wash, Seattle

• 1986 Visiting Bellcore (J. Kettenring, R. Gnanadesikan)

• 1987 Salomon Brothers (4 months)

• -1994 Bellcore

• -1995 AT&T Bell Labs (D. Pregibon, D. Lambert)

• -2001 AT&T Labs

• -present: The Wharton School, UPenn, Philadelphia
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FIRST TOPIC: EXPLORING THE UNIVERSE OF LOSS FUNCTIONS

FOR CLASS PROBABILITY ESTIMATION

JoinL Work with

Werner Stuetzle (Statistics Dept, University of Washington)

Yi Shen (then at Wharton)

(Part of the work done while AB and WS were with AT&T Labs)
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Example

• Data: AT&T Labs’ store of call detail records

• Problem: Find residences with home businesses

• Idea: Look for phone numbers with calling patterns that resemble those of

small businesses

• Training data: Several months of calls of 50K small businesses and 50K

residences

• Feature extraction: >100 counts such as

#{calls: weekdays, 9am<begin<11am, 1min<dur<10min}

• Techniques: Boosting vs. logistic ridge regression

• Use: Scoring of >50,000,000 residences

score = P̂(small business)

4



<1m

1m-10m

>10m

6-9
9-12

12-13
13-17

17-20
20-23

23-6

T
er

m
=

R
es

.

Weekdays

<1m

1m-10m

>10m

6-9
9-12

12-13
13-17

17-20
20-23

23-6 T
erm

=
R

es.

Weekends

<1m

1m-10m

>10m

6-9
9-12

12-13
13-17

17-20
20-23

23-6

T
er

m
=

B
iz

.

<1m

1m-10m

>10m

6-9
9-12

12-13
13-17

17-20
20-23

23-6 T
erm

=
B

iz.

<1m

1m-10m

>10m

6-9
9-12

12-13
13-17

17-20
20-23

23-6

T
er

m
. =

 U
nk

no
w

n

<1m

1m-10m

>10m

6-9
9-12

12-13
13-17

17-20
20-23

23-6

T
erm

. =
 U

nknow
n

Coefficients of Logistic Ridge Regression
Red => business-likeness, Blue => residence-likeness

5



Conclusions from the Example:

• Classification is sometimes not sufficient.

• Real interest: Class Probability Estimation

• “Labeled data” can be available if looked at the right way

• Rich bag of tools: Discriminant analysis, logistic regression, boosting, SVMs,

CART, random forests, ...

• ... but class probability estimation takes a back seat to classification.

6



Basics 1: Learning/Classification

• Supervised vs unsupervised classification

• Binary vs multi-class classification

• Training data:

(xn, yn) , n = 1...N

• xn ∈ IRK : features, predictors

• yn ∈ {0, 1} : class labels, responses
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Basics 2: Stochastics

• Assumption intuitively: sampling

• Assumption, technically: (xn, yn) i.i.d. realizations of (X, Y )

– Marginal distribution of predictors:

f(x) = P [dx]/dx

– Conditional distribution of labels:

η(x) = P [Y = 1|X = x] = E[Y |X = x]

Together they describe the joint distribution of X and Y :

P [Y = 1, dx] = P [Y = 1|X = x]P [dx] = η(x)f(x)dx
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Basics 3: Classification vs Class Prob Estimation

• Classifier cl(x):

cl(x) = cl(x; (xn, yn)n=1...N ) ∈ {0, 1}

• Class probability estimator p(x):

p(x) = p(x; (xn, yn)n=1...N ) ∈ [0, 1]

• Class probability estimators define classifiers: p(x) 7→ cl(x)

cl(x) = 1[p(x)>t] (e.g. t = 0.5)

• Estimation: p(x) estimates η(x), cl(x) estimates 1η(x)>t .

• (Note on ML history:

Early ML assumed classes to be perfectly separable: η(x) = 1A(x).

⇒ No distinction between classification and class prob estimation.

⇒ Classification is a purely geometric problem of finding boundaries.)
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Basics 4: Differences in Conventions between ML and Stats

• Notation: Relabeling of classes {−1,+1} ↔ {0, 1}

• ±1 response vs 0-1 response: y∗ = 2 y − 1

• ±1 classifier vs 0-1 classifier: cl∗(x) = 2 cl(x)− 1

• (x, y) is correctly classified iff: y∗cl∗(x) = 1

Product cl∗(x) = +1 cl∗(x) = −1

y∗ = +1 +1 −1

y∗ = −1 −1 +1

• Misclassification rate := P [y 6= cl] = P [y∗cl∗ = −1]

What assumption was made in this definition? (Diabetics ...)
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Basics 5: Quantile Classification and Unequal Cost Classification

• Common in older AI/ML work: Equal misclassification cost for

y = 0, cl = 1 ⇒ false positive

y = 1, cl = 0 ⇒ false negative

• Assume cost c ∈ (0, 1) for misclassifying y = 0 as cl = 1 (false positive)

and cost 1− c for misclassifying y = 1 as cl = 0 (false negative)

L(y|cl) =

(
c when y = 0, cl = 1

1− c when y = 1, cl = 0

)
= y (1− c)1cl=0 + (1− y) c 1cl=1

• Local/pointwise Risk = E[L(Y |cl)] =: L(η|cl) when P [Y = 1] = η:

L(η|cl) =

(
(1− η) c when cl = 1

η (1− c) when cl = 0

)
= η (1− c)1cl=0 + (1− η) c 1cl=1
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Basics 5 (contd.): Quantile Classification and Unequal Cost Classification

• Bayes Risk = min cl∈{0,1} L(η|cl) = min( (1− η) c, η (1− c) )

• Minimizer: Classify cl = 1 when η > c

ηη

R
is

k

0 c 1
0

c

1

0

1−c

1

ηη →→ ((1 −− ηη))c
cl=1:

ηη →→ ηη(1−c)
cl=0:          

Bayes Risk(ηη)
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Basics 5 (contd.): Quantile Classification and Unequal Cost Classification

• Equivalence: - classification at quantile c and

- classification with costs c/(1− c) for false positives/negatives

In particular: Median classification = Equal-cost classification

• Population Bayes risk: If we knew η(X), the average Bayes risk would be

E[ min( (1− η(X)) c, η(X) (1− c) )]

= unavoidable average misclassification cost

• Baseline misclassification rate:

If η1 = P [Y = 1] = E[η(X)] is the marginal class 1 probability,

then the trivial classifier that ignores X is

cl = 1 if η1 > c and cl = 0 otherwise.

Any classifier that uses predictors X must beat the baseline classifier

with risk min( (1− η1) c, η1 (1− c) ).
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Basics 6: Statisticians’ True and Trusted Tools

• Logistic regression: a conditional model of Y given X

η(x) = ψ(x′β) , ψ(F ) = 1/(1 + exp(−F ))

Idea: Estimate a linear model and map the values to the range (0,1).

• Linear discriminant analysis (LDA): a conditional model of X given Y

f(X|Y = 1) ∼ N (µ1,Σ) , f(X|Y = 0) ∼ N (µ0,Σ)

Actually, this is equivalent to LS regression of the 0-1 response Y on X.

• Extensions to more than two classes exist:

multinomial logistic regression and multi-class discriminant analysis.

• Non-parametric extensions exist:

. logistic regression with polynomial or spline bases, ...

. LDA based on non-linear transformations of X: FDA (Hastie et al. 94)
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Basics 7: Recap of Logistic Regression

• Logistic link and linear model: η(x) = ψ(F (x)) , F (x) = x′β

Logit(η) = log(η/(1− η)) , ψ(F ) = 1/(1 + e−F ) , 1− ψ(F ) = ψ(−F )

• Loss from one observation when observing y ∈ {0, 1} and guessing η̂ = p:

L(y|p) = −log likelihood of a Bernoulli variable

= − log(py(1− p)1−y) = −y log(p)− (1− y) log(1− p)
=
(− log(p) when y=1
− log(1−p) when y=0

)
≥ 0

• Composed for one observation (x, y): F = x′β

L(y|ψ(F )) = − log(ψ(y∗F )) = log(1 + e−y
∗F )

• Composed for a sample (xn, yn), n = 1...N : Fn = x′nβ, pn = ψ(Fn)∑
n=1,...,N L(yn|ψ(x′nβ)) =

∑
n=1,...,N log(1 + e−y

∗
nFn)
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Basics 8: Properties of the Bernoulli Likelihood

• The −log likelihood of the Bernoulli model is also called log-loss :

L(y|p) = − y log(p)− (1− y) log(1− p)

• Risk = average loss: Assume η = P [Y = 1], and estimate η̂ = p. Then:

E[L(Y |p)] = − η log(p)− (1− η) log(1− p) =: L(η|p)

• Relation to entropy: measure of “dis-information”

L(η|η)] = − η log(η)− (1− η) log(1− η) = Entropy(η)

= unavoidable average loss/risk if η is true

• Fisher Consistency : At “N =∞”, log-loss should estimate correctly.

argminp L(η|p) = η

Another term for the same: log-loss is a Proper Scoring Rule .
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Basics 8 (contd.): Log-Loss a Proper Scoring Rule
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L(0|p) = − log(1− p) L(1|p) = − log(p)

p 7→ L(η|p) = ηL(1|p) + (1− η) L(0|p)

(A more playful version of the above in the form of a “Rapplet” is in this R source file.)
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Basics 9: Scores and Margins — Comments on ML

• In ML classifiers are obtained by thresholding a score:

cl(x) = 1 iff F (x) > 0

Example of logistic regression: Score = Logit

F (x) = log( p(x)
1−p(x)

) = β′x, F (x) > 0 iff p(x) > 1/2

Comment: The habit of thresholding F at 0 (equivalent to thresholding p at 1/2)

locked the ML literature into equal-cost classification for a long time.

• Margin := y∗F (x) = “Degree of correct classification”

The greater y∗F (x), “the correcter” the classification.

Comment:

High margins ⇒ Low out-of-sample misclassification error. — Wrong!

Reason: Overfitting can create high margins in-sample.

Then again: Low hold-out misclassification rate can be achieved

with very strange “over-fitting” boundaries.
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Famous AdaBoost: Where does this come from?

Given a class C of “weak” classifiers cl(x) (e.g., stumps)

1. Initialize weights Wn = 1/N

2. Repeat for t = 1 to T :

(a) Fit classifier clt(x) to (xn, yn, Wn)n=1..N (clt(x) ∈ C)

(b) et =
∑

nWn 1[yn 6=clt(xn)] /
∑

nWn

(c) βt = 1
2

log 1−et

et
(> 0 if et < 1/2)

(d) Wn ←

 Wn · eβt [yn 6= clt(xn), up-weighting]

Wn · e−βt [yn = clt(xn), down-weighting]
(normalize)

3. Classifier: cl(x) = 1[
∑

t=1..T βt cl∗t (x)> 0 ] (“majority vote”)
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Discrete AdaBoost: Some Reverse Engineering

• Weights: W
(t+1)
n ∼ W

(t)
n · exp(−βt y∗n cl∗t )

W (1)
n ∼ 1

W (2)
n ∼ exp(− y∗n β1 cl∗1(xn) )

W (3)
n ∼ exp(− y∗n ( β1 cl∗1(xn) + β2 cl∗2(xn) ) )

W (4)
n ∼ exp(− y∗n ( β1 cl∗1(xn) + β2 cl∗2(xn) + β3 cl∗3(xn) ) )

...

Wn ∼ exp(− y∗n F (xn) )

• Coefficients βt:

1

2
log

1− et
et

= argminβ
∑
n

Wn exp (− β · y∗n cl∗t (xn) )
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AdaBoost as Minimizer of Exponential Loss

1. Initialize F (x) = 0

2. Repeat for t = 1 to T :

(βt, clt) ← argminβ∈IR, cl(x)∈C

∑
n

e− y
∗
n·(F (xn)+β cl∗(xn))

F (x) ← F (x) + βt cl∗t (x)

3. Classifier: cl(x) = 1[F (x)> 0 ]

Note exponential loss!
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Real AdaBoost with Exponential Loss, Barebones

Main difference between Discrete and Real AdaBoost:

. Discrete AdaBoost: base learner = classifier (±1=valued)

. Real AdaBoost: base learner = real function with arbitrary values

1. Let F = { f : IRK → IR |... }
2. Initialize F (x) = 0

3. Repeat for t = 1 to T :

ft ← argminf∈F
∑
n

e− y
∗
n·(F (xn)+f(xn))

F (x) ← F (x) + ft(x)

4. Classifier: cl(x) = 1[F (x)> 0 ]
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Exponential Loss for Linear Models Anyone?

• Could use exponential loss to fit linear models:

β̂ = argminβ

∑
n=1...N

e− y
∗
n x′nβ

• Logistic regression:

β̂ = argminβ

∑
n=1...N

log(1 + e− y
∗
n x′nβ)

• Comparison: e−F ≥ log(1 + e−F ) (∀F )

e−F ≈ log(1 + e−F ) (F →∞)

e−F � log(1 + e−F ) ≈ −F (F → −∞)

• Exponential loss penalizes negative scores more drastically than logistic loss.

23



Pointwise Examination of Exponential Loss

• Stylized, as in the examination of properties of log-loss:

– Assume for given x we have multiple observations.

– Assume Y ∼ Bernoulli(η) where η = η(x).
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• Exponential loss at that point:

E[ e−Y
∗F ] = η e−F + (1− η) eF

• The minimizing score is:

Fmin(η) = 1
2

log η
1−η

• Conclusion: Boosting tries to estimate half the logit at each x.

(Friedman, Hastie, Tibshirani 2000)
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Graph of Exponential Loss

• L(η|F ) := E[ e−Y
∗F ] = η e−F + (1− η) eF
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A Link Function for Boosting

• Natural link for boosting:

η = ψ(2F ) = 1/(1 + e−2F ) , F (η) =
1

2
log

η

1− η

• After estimating F (x) with boosting, one obtains class prob estimates by

p(x) = ψ(2F (x))

• Just kidding!!!! Such class prob estimates tend to look like this ...

Class Probabilities Estimated with Boosting
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⇒ Total overfit of the class probabilities, yet good classification ...
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Where is Boosting’s Beef?

(1) Not in the exponential loss function?

Logistic loss produces MLEs ⇒ Statistical efficiency

(Take that with a grain of salt: No model is correct.)

But: Exponential loss has interesting invariance properties (see below).

(2) In the stagewise fitting?

Stagewise fitting used to be a no-no in statistics:

”If you add a predictor, you must update the previous predictors!”

But: Stagewise fitting has a gradient descent interpretation.

(FHT, Breiman, ..., Bühlmann)
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Where is Boosting’s Beef? (Contd.)

(3) In the particular use of “base learners” such as stumps?

Total confusion here:

The “Weak Learner” paradigm asks for simple base learners, e.g., stumps.

⇒ Boosting is supposed to remove bias.

Yet some of the most successful applications used C4.5.

⇒ Boosting actually removes variance!

Can boosting remove both bias and variance?

⇒ Yes, but it may need some randomization.

(Friedman’s Stochastic Gradient Boosting)

(4) Why would overfitted class probs produce good classification?

Misclassification rate counts only being on the correct side of c:

p(x) > c or p(x) < c

⇒ p(x) can be high variance or biased for low misclassification rate.
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How to Avoid Over-Fitted Class Probability Estimates

• Performance of classification is measured with hold-out misclassification rate.

• This, however, produces over-fitted class probability estimates.

• If interested in class probability estimation, do the following:

Use log-loss or exponential loss or any other “surrogate loss”

for cross-validation.

• Example: “Regularize” boosting by stopping boosting iterations

when hold-out exponential loss starts to increase.

• Now the mapping of boosting scores F (x) to probability estimates with

p(x) = ψ(2F (x))

should produce more reasonable results.

• However, classifying by thresholding p(x) > 1/2 will not produce results as

good as boosting with overfitted class probs — a quandary.
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Classification versus Class Prob Estimation, Again

• Let’s focus now on good class prob estimation — it’s more difficult.

• Classification is idiosyncratic:

Use a smooth “surrogate” loss function (logistic, exponential),

but measure performance with crude misclassification loss.

• In class prob estimation, the surrogate loss is the primary loss.

• In what follows, we will examine the universe of prob loss functions.

• We will disentangle class prob loss functions and link functions.
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Analysis of Exponential Loss: A Proper Scoring Rule for Boosting

• Recall logistic regression: Compose

the log-loss L(y|p) = −y log(p)− (1− y) log(1− p) and

the link function p = ψ(F )

⇒ Logistic loss F 7→ L(y|p = ψ(F )) = log(1 + e−y
∗ F )

• For boosting:

We have the composition loss F 7→ L(y|p = ψ(F )) = e−y
∗ F ,

and we have the link p = ψ(2F ).

⇒ What is the loss on the prob scale p rather than F?

(Comment: Loss functions for class probability estimation are defined on p, not F .)
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A Proper Scoring Rule for Boosting (Contd.)

• The answer: Start from L(y|F ) = y e−F + (1− y) eF and

substitute the inverse link F = log(p/(1− p))/2.

L(y|p) = y
(

p
1−p

)−1/2

+ (1− y)
(

p
1−p

)1/2

(Comment: Note the similarity/dissimilarity to log-loss.)

• The associated risk/average loss when P [Y = 1] = η and η̂ = p:

L(η|p) = E[ L(Y |p) ] = η

(
p

1− p

)−1/2

+ (1− η)

(
p

1− p

)1/2

Another Proper Scoring Rule: argminp L(η|p) = η

• The associated entropy: the semi-circle function (modulo factor 2)

L(η|η) = 2 (η(1− η))1/2
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A Proper Scoring Rule for Boosting (Contd.)

argminp L(η|p) = η

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

p

L(
ηη|

p)

ηη=0 ηη=1

ηη=0.7
ηη=0.2

(Again, a more playful version in the form of a “Rapplet” is in this R source file; hit ’b’.)
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A Proper Scoring Rule from Squared Error Loss

• The general form of a class prob loss fct is:

L(y|p) 7→ L0(p) = L(0|p), L1(1− p) = L(1|p)

• Squared error loss:

L(y|p) = y(1− p)2 + (1− y)p2 [= (y − p)2]

• The associated risk/average loss when P [Y = 1] = η and η̂ = p:

L(η|p) = E[ L(Y |p) ] = η(1− p)2 + (1− η)p2 [ 6= (η − p)2]

Another Proper Scoring Rule: argminp L(η|p) = η

• The associated entropy: the Gini index

L(η|η) = η(1− η)
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A Proper Scoring Rule for Squared Error Loss (Contd.)

argminp L(η|p) = η

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

p

L(
ηη|

p)

ηη=0 ηη=1

ηη=0.7
ηη=0.2

(Once again, play the “Rapplet” in this R source file; hit ’s’.)
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Counter-Examples for Proper Scoring Rules

• Power losses are not proper scoring rules for r 6= 2 (> 1):

L0(p) = pr, L1(p) = (1− p)r

argminpL(η|p) =
η1/(r−1)

η1/(r−1) + (1− η)1/(r−1)
6= η

• Special case r = 1: L(η|p) = η(1− p) + (1− η)p = η + (1− 2η)p

This is minimized by p = 1 if 1− 2η < 0, i.e., η > 1/2,

and it is minimized by p = 0 if 1− 2η > 0, i.e., η < 1/2.

⇒ Minimization attempts classification, not class prob estimation.

Equivalent to the SVM hockey stick loss function.

• Why is (η − p)2 not a proper scoring rule?

It is a loss function in the sense of Wald’s decision theory.
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Class Probability Loss Functions in General

• General form of observed loss:

L(y|p) = yL1(1− p) + (1− y)L0(p)

=

 L1(1− p) when y = 1

L0(p) when y = 0

where: L1(t), L0(t) ↑ on (0, 1)

• The associated risk/average loss when P [Y = 1] = η and η̂ = p:

L(η|p) = E[ L(Y |p) ]

= η L1(1− p) + (1− η)L0(p)

• Associated entropy/unavoidable minimum average loss:

L(η|η) = η L1(1− η) + (1− η)L0(η)
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Class Probability Loss Functions in General (Contd.)

• Interpretation: L0(p) = loss for distance of p from 0

L1(1− p) = loss for distance of p from 1

• Irrelevance of additive constants:

L0(t) + k0, L1(t) + k1 are equivalent to L0(t), L1(t).

• Irrelevance of shared factors:

k L0(t), k L1(t) are equivalent to L0(t), L1(t)).

k0 L0(t), k1 L1(t), however, are not equivalent.

• On the probability scale, the notion of “margin” is no longer natural,

or else it has to be translated using “distance from 1/2”.

• So far we have only considered symmetric cases: L1(t) = L0(t).

Later we will want unequal losses.
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Which Loss Fcts are Proper Scoring Rules?

• When do L1(t), L0(t) combine to satisfy argminp L(η|p) = η ?

(Recall: “Proper scoring rule” = “Fisher consistency”)

• Answer: Assuming L1(t), L0(t) differentiable, stationarity at p = η yields

d

dp
|p=η L(η|p) = 0 = − ηL′1(1− η) + (1− η)L′0(η)

→ L′1(1− η)

1− η
=

L′0(η)

η
=: ω(η) > 0

• The weight function ω(.) essentially determines L(η|p):

L′1(1− p) = (1− p) ω(p) , L′0(p) = p ω(p)

(This goes back to theories of subjective probability:

Shuford, Albert, Massengill (1966), Savage (1971), Schervish (1989))
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Concocting Prob Loss Fcts that are Proper Scoring Rules

• Recipe: Make up any non-negative weight function ω(p) on [0, 1].

(No need to normalize to a density; can allow
∫
ω(p)dp =∞ near 0, 1.)

• Define L0(p) to be any indefinite integral of p ω(p).

• Define L1(1− p) to be any indefinite integral of (1− p)ω(p).

(Note that p 7→ L1(1− p) is descending.)

• One could also prescribe L0(p), say, derive ω(p) from it,

then determine the L1(1− p) to go with it, and vice versa.

In general, if one of the three functions is given, the others are determined.
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What Does the Weight Function ω(p) Mean?

• It describes the emphasis with which the loss function penalizes

getting specific ranges of p wrong.

• Example: If ω(p) has asymptotes near 0 and 1, it really wants you to to get

extreme probabilities right.

• Example: If ω(p) puts a lot of mass near 0.3, it really wants you to be right

about guessing whether η > 0.3 or η < 0.3.

(Below we will see a technical result that makes the above very precise.)
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Constructing a Family of Proper Scoring Rules with Beta Weights

• Introduce a large family of weight functions:

ω(p) = pα−1 (1− p)β−1

α, β unrestricted

• All common loss functions are in this family:

(1) α = β = −1/2: boosting loss, ω(p) = p−3/2(1− p)−3/2

(2) α = β = 0: log-loss, ω(p) = p−1(1− p)−1

(3) α = β = 1: squared error loss, ω(p) = 1

(4) α = β →∞: misclassification loss, ω(p) = δ1/2(p)

• For α, β > 0 these are densities with

µ =
α

α + β
σ2 =

µ(1− µ)

α + β + 1
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Graphs of Some Beta Weights and their Loss Fcts ω(q)
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All examples are symmetric: α = β = −1/2, 0, 1, 2, 20, 100,∞
(The first three correspond to boosting loss, log-loss, squared error loss, resp.)
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Cost-Weighted Misclassification as a Limiting Case

• What do L0(p) and L1(1− p) look like if ω(p)→ δc? Step functions!

L0(p) = c 1[p≥c] , L1(1− p) = (1− c) 1[p<c]

• The observed loss for an observation y and an estimate p is:

L(y|p) = y (1− c) 1[p<c] + (1− y)c 1[p≥c]

• The associated risk/average loss when P [Y = 1] = η and η̂ = p:

L(η|p) = η (1− c) 1[p<c] + (1− η)c 1[p≥c]

• The associated entropy: cost-weighted Bayes risk! (Cost = c)

L(η|η) = η (1− c) 1[η<c] + (1− η) c 1[η≥c] = min( η (1− c), (1− η) c )
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A Theorem Relating Classification Losses and Class Prob Losses

• Parametrize cost-weighted classification losses with the cost c:

Lc(y|p) = y (1− c) 1[p<c] + (1− y)c 1[p≥c]

• If ω(p) is the weight fct of a proper scoring rule L(η|p), then:

L(y|p) =
∫

Lc(y|p)ω(c) dc

• The same “loss mixing” over cost weights c holds ...

... for risks : L(η|p) =
∫

Lc(η|p)ω(c) dc

... for entropies : L(η|η) =
∫

Lc(η|η)ω(c) dc

• This result explains in what sense ω(p) emphasizes certain p-ranges:

Where ω(p) is large, L(y|p) attempts good quantile classification.

In particular: log-loss and boosting try to get extreme probs classified correctly.
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Making Use of New-Found Freedom: Tailoring Losses

• Playing with α and β gives new ideas...
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⇒ Weights (left) and Losses (right) that emphasize p ≈ 0.3.
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Reasons for Wanting to Tailor Losses

• Hand and Vinciotti (2003) suggest the following example:

• Problem: Each boundary can be described by a linear model,

but no single linear model can describe all boundaries.
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Estimating the Hand-Vinciotti Example with Tailored Losses

• By emphasizing probabilities near 0.3 with ω(q), one can adapt the linear

model to the 0.3 level:
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A Real Example of the Hand-Vinciotti Scenario

• Pima Indians diabetes data (UCI ML-DB):

Predictors ’PLASMA’ and ’BODY’
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Independent Verification of the Hand-Vinciotti Scenario

• Estimate class probabilities non-parametrically with 20-nearest neighbors, then

slice the probability surface at p = 0.1, 0.2, 0.9:

50



The Hand-Vinciotti Scenario with Boosting

• Tailored boosting to p = 0.3 shows considerable improvement over standard

boosting when using stumps:
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Estimation of Linear Models with Proper Scoring Rules

• Data: (xn, yn), n = 1...N

• Linear model scores: Fn = x′nβ

• Inverse Link: ψ(F ) (arbitrary smooth cdf)

• Estimated class probs: pn = ψ(Fn), p′n = ψ′(Fn)

(e.g., ψ′(F ) = ψ(F )(1− ψ(F )) when ψ() = logistic)

• Weight fct: ω(p)

• Proper scoring rule: L(y|p) = y L1(1− p) + (1− y)L0(p)

• Sample loss: L(β) =
∑

n=1,...,N L(yn|ψ(x′nβ))

• Coefficient estimate: β̂ = argminb L(b)
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Fisher Scoring: A Reweighting Scheme

• Minimization: Newton iterations → Fisher Scoring (using E[Hessian])

• Fisher scoring as ‘Iteratively Reweighted Least Squares’ (IRLS):

– Iteratively perform LS regression of the “working response,”

zn = (yn − pn)/p′n ,

– on predictors xn

– with weights Wnn = p′n
2 ω(pn) and

– class prob estimates pn = ψ(x′nb) , p′n = ψ′(x′nb).

• The weight function ω(p) drives the IRLS weights.

• Curiosity: By boosting logic, misclassified cases would have to be up-weighted.

Instead, IRLS weights only depend on the current pn and p′n.

⇒ Difference between AdaBoost and LogitBoost
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Messages for Classification and Class Prob Estimation

• In practice, first decide: class prob estimation or classification?

– Class prob estimation allows delaying decisions about cost weights/quantiles.

– Classification requires up front decisions about cost weights/quantiles.

– Cost of false positives/negatives requires thought.

• Class prob estimation is more difficult, requires global model p(x|β) for η(x).

(Perform cross-validation on the “surrogate loss”, e.g., logistic loss or exp loss.)

• Classification at cost/quantile c only requires a model p(x|β) that can match

η(x) > c well with p(x|β) > c for some β.

(Perform cross-validation on cost-weighted classification loss.)

• For good classification the model p(x|β) can totally overfit η(x).

(However, such over-fitted models are generally uninterpretable.)

• (Finally, use of predictors must beat the baseline obtained w/o predictors!)
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PS: More Basics — Differing Baseline Probs

• Problem: In the initial real example we trained on a sample of 50K small

businesses and 50K residences to estimate class probs p(x).

Q: In reality, the true marginal probs might be more like 1 small business in 20

phone numbers. How should the estimates p(x) be interpreted?

• A: Reweight p(x) from baseline 50:50 to baseline 1:19.

– Marginal class prob: π = P [Y = 1]

– Class-conditionals: f1(x) = P (dx|Y = 1)/dx , f0(x) = P (dx|Y = 0)/dx

– Predictor-conditionals: η(x) = f1(x)π
f0(x)(1−π)+f1(x)π (Bayes theorem)

– In terms of odds: η(x)
1−η(x) = f1(x)

f0(x)
π

1−π

⇒ Reweight class odds estimates from training π to actual π∗:

p∗(x)

1− p∗(x)
=

p(x)

1− p(x)
· 1− π

π
· π∗

1− π∗

(This only matters for numeric interpretation of p(x), not ranking.)
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PPS: Application to Tree-Based Classification

• Construction of classification trees:

– Search all predictor variables and split locations on them

– for the best split as judged by a measure of “impurity”.

• Measure of “impurity” in a bucket “B”:

Estimated ave loss of the fitted prob η̂ =
∑

i∈B yi/|B|

1

|B|
min
p

∑
i∈B

L(yi|p) = min
p

L(η̂|p) = L(η̂|η̂) = Entropy(η̂)

• Note that any measure of entropy can be used:

– CART uses the Gini index (squared error entropy)

– S (’tree’ package), C4.5 use log-loss entropy

– We will use tailored entropies.
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