STAT 510
Solutions to Midterm 1

1. (a) \(A \cap B \cap C \) is the event that a U.S. birth results in identical twins.
\[
P(A \cap B \cap C) = \frac{1}{90} \times \frac{1}{3} \times \frac{1}{2}
= \frac{1}{540}
\]
(5 marks)

(b) \(P(\text{No two of the pairs celebrate birthday in the same month}) = \frac{12!}{12^{12}} \)
(5 marks)

2. (a) \(P(\text{Get a pair, when picked without replacement}) = \frac{\binom{3}{1}}{\binom{6}{2}} = 0.2 \)
(5 marks)

(b) \(P(\text{Get a pair, when one right and one left shoe is picked}) = \frac{3}{3 \times 3} = \frac{1}{3} \)
(5 marks)

3. Let \(A \) be the event that the 1st ace is the 15th card to appear.
 (a) Let \(B \) be the event that the 16th card is ace of hearts.
\[
P(B|A) = \frac{\text{P(16th card is ace|A)}P(B|16th card is ace, A)}{P(A)}
= \frac{3 \times 1}{37 \times 4}
= \frac{3}{148}
\]
(5 marks)
(b) Let C be the event that the 16th card is the seven of diamonds and D be the event that the seven of diamonds appeared in the first 15 cards.

\[
P(C | A) = \frac{P(C | D^c, A)P(D^c | A)}{P(D^c | A)} = \frac{\frac{1}{37}(1 - \frac{14}{48})}{\frac{17}{888}}\]

(5 marks)

4. (a) \[
P(\text{at least one out of 3 approves}) = 1 - 0.4^3\]

(2 marks)

\[
P(\text{resolution will pass}) = 0.6 \times (1 - 0.4^3) + 0.4 \times 0.6^3\]

(3 marks)

(b) Let A be the event that the CEO approves and B be the event that the resolution is passed.

\[
P(\text{CEO approves | resolution pass}) = \frac{P(B \cap A)}{P(B \cap A) + P(B \cap A^c)P(A^c)} = \frac{0.6 \times (1 - 0.4)^3}{0.6 \times (1 - 0.4)^3 + 0.4 \times 0.6^3}\]

(3 marks)

5. (a) \[
P(X = 7) = 0.5 \left(\frac{10}{7}\right)0.4^70.6^3 + 0.5 \left(\frac{10}{7}\right)0.7^70.3^3\]

(5 marks)

(b) \[
P(\text{coin 1 is chosen | exactly 7 of 10 flips}) = \frac{P(\text{coin 1 is chosen \cap exactly 7 of 10 flips})}{P(\text{exactly 7 of 10 flips})} = \frac{0.5 \left(\frac{10}{7}\right)0.4^70.6^3}{0.5 \left(\frac{10}{7}\right)0.4^70.6^3 + 0.5 \left(\frac{10}{7}\right)0.7^70.3^3}\]

(2 + 3 = 5 marks)

6. (a) \[
P(\text{royal straight flush}) = \frac{4}{\binom{52}{5}}\]

(5 marks)

(b) When p is small and n is large, we can use the Poisson distribution to approximate the Binomial.

\[
n = 100 \times 52 \times 20 = 104000\]
\[
np = 104000 \times 1.6 \times 10^{-6} = 0.1664\]

\[
P(\text{never see a royal straight flush}) = P(X = 0) = e^{-0.1664}\]
\[
P(\text{see exactly 2 royal straight flushes}) = P(X = 2) = e^{-0.1664}(0.1664)^2\]

(5 marks)
7. (a)

\[
E[X^2] = \lambda E[(X + 1)] = \lambda^2 + \lambda \\
E[X^3] = \lambda E[(X + 1)^2] = \lambda^3 + 3\lambda^2 + \lambda
\]

\((2 + 3 = 5 \text{ marks})\)

(b)

\[
E[X^n] = \sum_{x=0}^{\infty} x^n \frac{e^{-\lambda} \lambda^x}{x!} \\
= \sum_{x=1}^{\infty} x^n \frac{e^{-\lambda} \lambda^x}{x!} \\
= \sum_{u=0}^{\infty} (u + 1)^n \frac{e^{-\lambda} \lambda^{u+1}}{(u + 1)!} \quad \text{substituting } x = u + 1 \\
= \lambda \sum_{u=0}^{\infty} (u + 1)^{n-1} \frac{e^{-\lambda} \lambda^u}{u!} \\
= \lambda E[(X + 1)^{n-1}]
\]

\((5 \text{ marks})\)