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A call center is a service network in which agents provide telephone-based services. Customers who seek these services are delayed in
tele-queues. This article summarizes an analysis of a unique record of call center operations. The data comprise a complete operational
history of a small banking call center, call by call, over a full year. Taking the perspective of queueing theory, we decompose the service
process into three fundamental components: arrivals, customer patience, and service durations. Each component involves different basic
mathematical structures and requires a different style of statistical analysis. Some of the key empirical results are sketched, along with
descriptions of the varied techniques required. Several statistical techniques are developed for analysis of the basic components. One of
these techniques is a test that a point process is a Poisson process. Another involves estimation of the mean function in a nonparametric
regression with lognormal errors. A new graphical technique is introduced for nonparametric hazard rate estimation with censored data.
Models are developed and implemented for forecasting of Poisson arrival rates. Finally, the article surveys how the characteristics deduced
from the statistical analyses form the building blocks for theoretically interesting and practically useful mathematical models for call center
operations.
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1. INTRODUCTION

Telephone call centers are technology-intensive operations.
Nevertheless, often 70% or more of their operating costs are
devoted to human resources. Well-run call centers adhere to
a sharply defined balance between agent efficiency and service
quality; to do so, they use queueing-theoretic models. Inputs
to these mathematical models are statistics concerning system
primitives, such as the number of agents working, the rate at
which calls arrive, the time required for a customer to be served,
and the length of time customers are willing to wait on hold
before they hang up the phone and abandon the queue. Out-
puts are performance measures, such as the distribution of time
that customers wait “on hold” and the fraction of customers that
abandon the queue before being served. In practice, the number
of agents working becomes a control parameter, which can be
increased or decreased to attain the desired efficiency–quality
trade-off.

Estimates of these primitives are needed to calibrate queue-
ing models, and in many cases the models make distribu-
tional assumptions concerning the primitives. In theory, the
data required to validate and properly tune these models should
be readily available, because computers track and control the
minutest details of every call’s progress through the system. It is
thus surprising that operational data, collected at an appropriate
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level of detail, have been scarce. The data that are typically col-
lected and used in the call center industry are simple averages
calculated for the calls that arrive within fixed intervals of time,
often 30 minutes. There is a lack of documented, comprehen-
sive, empirical research on call center performance that uses
more detailed data.

The immediate goal of our study is to fill this gap. In this arti-
cle, we summarize a comprehensive analysis of operational data
from a bank call center. The data span all 12 months of 1999
and are collected at the level of individual calls. Our data source
consists of more than 1,200,000 calls that arrived at the center
over the year. Of these, about 750,000 calls terminated in an
interactive voice response unit (IVR or VRU), a type of an-
swering machine that allows customers to serve themselves.
The remaining 450,000 callers asked to be served by an agent;
we have a record of the event-history of each of these calls.

This article is an important part of a larger effort to use
both theoretical and empirical tools to better characterize call
center operations and performance. It is an abridged version
of the work of Brown et al. (2002a), which provided a more
complete treatment of the results reported here. Mandelbaum,
Sakov, and Zeltyn (2000) presented a comprehensive descrip-
tion of our call-by-call database. Gans, Koole, and Mandelbaum
(2003) reviewed queueing and related models of call centers,
and Mandelbaum (2001) provided an extensive bibliography.

1.1 Queueing Models of Call Centers

The simplest and most widely used queueing model in call
centers is the so-called M/M/N system, sometimes referred to
as Erlang-C (Erlang 1911, 1917). The M/M/N model is quite
restrictive. It assumes, among other things, a steady-state en-
vironment in which arrivals conform to a Poisson process, ser-
vice durations are exponentially distributed, and customers and
servers are statistically identical and act independently of each
other. It does not acknowledge, among other things, customer
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impatience and abandonment behavior, time-dependent para-
meters, customers’ heterogeneity, or servers’ skill levels. An
essential task of contemporary queueing theorists is to develop
models that account for these effects.

Queueing science seeks to determine which of these ef-
fects is most important for modeling real-life situations. For
example, Garnett, Mandelbaum, and Reiman (2002) devel-
oped both exact and approximate expressions for M/M/N + M
(also called Erlang-A) systems, which explicitly model cus-
tomer patience (time to abandonment) as being exponentially
distributed. Empirical analysis can help us judge how well
the Erlang-C and Erlang-A models predict customer delays,
whether or not their underlying assumptions are met.

1.2 Structure of the Article

The article is structured as follows. Section 2 describes the
call center under study and its database. Each of Sections 3–5
is dedicated to the statistical analysis of one of the stochastic
primitives of the queueing system: Section 3 addresses call ar-
rivals; Section 4, service durations; and Section 5, tele-queueing
and customer patience. Section 5 also analyzes customer wait-
ing times, a performance measure deeply intertwined with the
abandonment primitive.

A synthesis of the primitive building blocks is typically
needed for operational understanding. Toward this end, Sec-
tion 6 discusses prediction of the arriving “workload,” which is
essential in practice for setting suitable service staffing levels.

Once each of the primitives has been analyzed, one can
also attempt to use existing queueing theory, or modifications
thereof, to describe certain features of the holistic behavior of
the system. Section 7 concludes with analyses of this type.
We validate some classical theoretical results from queueing
theory and refute others.

Finally, we note that many statistical tests are considered
throughout the article, which raises the problem of multiplicity
(Benjamini and Hochberg 1995). When data from call centers
are analyzed in support of operational decisions, the multiplic-
ity problem must be addressed.

2. THE CALL CENTER OF BANK ANONYMOUS

The source of our data (Call Center Data 2002) is a small
call center for one of Israel’s banks. This center provides sev-
eral types of basic services, as well as others, including stock
trading and technical support, for users of the bank’s Internet
site. On weekdays (Sunday–Thursday in Israel) the center is
open from 7 AM to midnight. During working hours, at most
13 regular agents, 5 Internet agents, and 1 shift supervisor may
be working.

A simplified description of the path that each call follows
through the center is as follows. A customer calls one of sev-
eral telephone numbers associated with the call center, with the
number depending on the type of service sought. Except for
rare busy signals, the customer is then connected to a VRU and
identifies herself. While using the VRU, the customer receives
recorded information, both general and customized (e.g., an ac-
count balance). It is also possible for the customer to perform
some self-service transactions here, and 65% of the bank’s cus-
tomers actually complete their service via the VRU. The other
35% indicate the need to speak with an agent. If an agent is free

who is capable of performing the desired service, then the cus-
tomer and the agent are matched to start service immediately.
Otherwise, the customer joins the tele-queue.

Customers in the tele-queue are nominally served on a first-
come, first-served (FCFS) basis, and customers’ positions in
queue are distinguished by the times when they arrive. In prac-
tice, the call center operates a system with two priorities—
high and low—and moves high-priority customers up in queue
by subtracting 1.5 minutes from their actual arrival times.
Mandelbaum et al. (2000) compared the behavior of the two
priority groups of customers.

While waiting, each customer periodically receives informa-
tion on his or her progress in the queue. More specifically, he
or she is told the amount of time that the first person in queue
has been waiting, as well as his or her approximate location in
the queue. The announcement is replayed every 60 seconds or
so, with music, news, or commercials intertwined.

In each of the 12 months of 1999, roughly 100,000–120,000
calls arrived to the system, with 65,000–85,000 of these ter-
minating in the VRU. The remaining 30,000–40,000 calls per
month involved callers who exited the VRU indicating a desire
to speak to an agent. These calls are the focus of our study.
About 80% of those requesting service were in fact served, and
about 20% were abandoned before being served.

Each call that proceeds past the VRU can be thought of as
passing through up to three stages, each of which generates dis-
tinct data. The first of these is the arrival stage, which is trig-
gered by the call’s exit from the VRU and generates a record
of an arrival time. If no appropriate server is available, then the
call enters the queueing stage. Three pieces of data are recorded
for each call that queues: the time it entered the queue, the time
it exited the queue, and the manner in which it exited the queue,
by being served or abandoning. In the last stage, service, the
data recorded are the starting and ending times of the service.
Note that calls that are served immediately skip the queueing
stage, and calls that are abandoned never enter the service stage.

In addition to these time stamps, each call record in our data-
base includes a categorical description of the type of service
requested. The main call types are regular (PS in the data-
base), stock transaction (NE), new/potential customer (NW),
and Internet assistance (IN). Mandelbaum et al. (2000) de-
scribed the process of collecting and cleaning the data and pro-
vided additional descriptive analysis of the data.

Over the year, two important operational changes occurred.
First, in January–July, all calls were served by the same group
of agents, but beginning in August, Internet (IN) customers
were served by a separate pool of agents. Thus, in August–
December, the center can be considered to be two separate ser-
vice systems, one for IN customers and another for all other
types. Second, as we discuss in Section 5, one aspect of the
service time data changed at the end of October. In several
instances, this article’s analyses are based on only the No-
vember and December data. In other instances we have used
data from August–December. Given the changes noted earlier,
this ensures consistency throughout the manuscript. November
and December were also convenient, because they contained
no Israeli holidays. In these analyses, we also restrict the data
to include only regular weekdays—Sunday–Thursday, 7 AM–
midnight—because these are the hours of full operation of the
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center. We have performed similar analyses for other parts of
the data, and in most respects the November–December results
do not differ noticeably from those based on data from other
months of the year.

3. THE ARRIVAL PROCESS

Figure 1 shows, as a function of time of day, the average
rate per hour at which calls come out of the VRU. These are
composite plots for weekday calls in November and Decem-
ber. The plots show calls according to the major call types.
The volume of regular (PS) calls is much greater than that of
the other three types; hence those calls are shown on a sepa-
rate plot. [These plots were fit using the root–unroot method
described by Brown, Zhang, and Zhao (2001), along with the
adaptive free knot spline methodology of Mao and Zhao (2003).
For a more precise study of these arrival rates, including confi-
dence and prediction intervals, see our Sec. 6 and also Brown
et al. 2001, 2002a,b.]

Note the bimodal pattern of PS call-arrival times in Figure 1.
It is especially interesting that IN calls do not show a similar
bimodal pattern and in fact have a peak volume after 10 PM.
(This peak can be partially explained by the fact that Internet
customers are sensitive to telephone rates, which significantly
decrease in Israel after 10 PM, and that they also tend to be
people who stay late.)

3.1 Arrivals Are Inhomogeneous Poisson

Common call center models and practice assume that the
arrival process is Poisson with a rate that remains constant
for blocks of time (e.g., half-hours), with a separate queueing
model fitted for each block of time. A more natural model for
capturing changes in the arrival rate is a time-inhomogeneous
Poisson process. Following common practice, we assume that
the arrival rate function can be well approximated as being
piecewise constant.

We now construct a test of the null hypothesis that arrivals of
given types of calls form an inhomogeneous Poisson process
with piecewise constant rates. The first step in constructing
our test involves breaking up the duration of a day into rela-
tively short blocks of time, short enough so that the arrival rate

does not change significantly within a block. For convenience,
we used blocks of equal time length, L, although this equal-
ity assumption could be relaxed. One can then consider the
arrivals within a subset of blocks—for example, blocks at the
same time on various days or successive blocks on a given day.
The former case would, for example, test whether the process is
homogeneous within blocks for calls arriving within the given
time span.

Let Tij denote the jth ordered arrival time in the ith block,
i = 1, . . . , I. Thus Ti1 ≤ · · · ≤ TiJ(i), where J(i) denotes the total
number of arrivals in the ith block. Then define Ti0 = 0 and

Rij = (J(i) + 1 − j)

(
− log

(
L − Tij

L − Ti,j−1

))
, j = 1, . . . , J(i).

Under the formal null hypothesis that the arrival rate is constant
within each given time interval, the {Rij} will be independent
standard exponential variables, as we now discuss.

Let Uij denote the jth (unordered) arrival time in the ith block.
Then the assumed constant Poisson arrival rate within this
block implies that, conditionally on J(i), the unordered ar-
rival times are independent and uniformly distributed, that is,

Uij
iid∼ U(0,L). Note that Tij = Ui( j). It follows that L−Tij

L−Ti,j−1

are independent beta(J(i) + 1 − j,1) variables [see, e.g., prob-
lem 6.14.33(iii) in Lehmann 1986]. A standard change of
variables then yields the conditional exponentiality of the Rij

given the value of J(i). [One may alternatively base the test
on the variables R∗

ij = j(− log Tij
Ti,j+1

), where j = 1, . . . , J(i) and
Ti,J(i)+1 = L. Under the null hypothesis, these will also be in-
dependent standard exponential variables.]

The null hypothesis does not involve an assumption that
the arrival rates of different intervals are equal or have any
other prespecified relationship. Any customary test for the ex-
ponential distribution can be applied to test the null hypothe-
sis. For convenience, we use the familiar Kolmogorov–Smirnov
test, even though this may not have the greatest possible power
against the alternatives of most interest. In addition, exponen-
tial Q–Q plots can be very useful in ascertaining goodness of fit
to the exponential distribution.

(a) (b)

Figure 1. Arrivals in Calls/Hour by Time of Day, Weekdays in November–December. (a) PS calls; (b) IN, NW, and NE calls.
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Brown et al. (2002a) presented quantile plots for a few appli-
cations of this test. For the PS data, we found it convenient to
use L = 6 minutes. For the other types, we use L = 60 minutes,
because these calls involved much lower arrival rates.

We omit the plots here to save space and because they
demonstrate only minor deviations from the ideal straight-line
pattern. One example involves arrival times of the PS calls ar-
riving between 11:12 AM and 11:18 AM on all weekdays in No-
vember and December. A second example involves arrival of
IN calls on Monday, November 23, from 7 AM to midnight.
This was a typical midweek day in our dataset.

For both of the examples, the null hypothesis is not rejected,
and we conclude that their data are consistent with the assump-
tion of an inhomogeneous Poisson process for the arrival of
calls. The respective Kolmogorov–Smirnov statistics have val-
ues K = .0316 ( p value ≈ .8 with n = 420) and K = .0423
( p value ≈ .9 with n = 172). These results are typical of those
that we obtained from various selections of blocks of the var-
ious types of calls involving comparable sample sizes. Thus
overall, from tests of this nature, there is no evidence in this
dataset to reject a null hypothesis that the arrival of calls from
the VRU is an inhomogeneous Poisson process.

As an attempt to further validate the inhomogeneous Pois-
son character, we applied this method to the 48,193 PS calls in
November and December in 6-minute blocks. With this large
amount of data, one could expect to detect more than statis-
tically negligible departures from the null hypothesis because
of rounding of times in the data (to the nearest second) and
because arrival rates are not exactly constant within 6-minute
time spans. To compensate for the rounding, we “unrounded”
the data before applying the test by adding independent uni-
form (0,1) noise to each observation. (This unrounding did
noticeably improve the fit to the ideal pattern.) After the
unrounding, the resulting Kolmogorov–Smirnov statistic was
K = .009. This is a very small deviation from the ideal; never-
theless, the p value for this statistic with such a large n = 48,963
is p ≈ .00007. [To provide an additional benchmark for evalu-
ating the (lack of ) importance of this value, we note that this
same statistic with n ≈ 22,000 would have had p value ≈ .05,
which is just acceptable.]

4. SERVICE TIME

The goal of a visit to the call center is the service itself. Ta-
ble 1 summarizes the mean, standard deviation (SD), and me-
dian service times for the four types of service of main interest.
The very few calls with service times >1 hour were not consid-
ered (i.e., we treat them as outliers). IN calls has little effect on
the numbers. IN calls have the longest service times, with stock
trading (NE) service calls next. Potential customers (NW) have
the shortest service time (which is consistent with the nature of
these calls). An important implication is that the workload that

Internet consultation imposes on the system is greater than its
share in terms of percent of calls. In earlier work (Brown et al.
2002a) we also verified that the full cumulative distributions of
the service times are stochastically ordered in the same fashion
as the means in Table 1.

4.1 Very Short Service Times

Figure 2 shows histograms of the combined service times for
all types of service for January–October and for November–
December. These plots resemble those for PS calls alone,
because the clear majority of calls are for PS. We see that in
the first 10 months of the year, the percentage of calls with ser-
vice <10 seconds was larger than the percentage at the end of
the year (7% vs. 2%).

Service times <10 seconds are questionable. And indeed, the
manager of the call center discovered that short service times
were primarily caused by agents who simply hung up on cus-
tomers to obtain extra rest time. (The phenomenon of agents
“abandoning” customers is not uncommon; it is often due to
distorted incentive schemes, especially those that overempha-
size short average talk-time or, equivalently, the total number
of calls handled by an agent.) The problem was identified, and
steps were taken to correct it in October 1999. For this reason,
in the later analysis of service times, we focus on data from No-
vember and December. Suitable analyses can be constructed for
the entire year by using a mixture model or, in a somewhat less
sophisticated manner, by deleting from the service time analy-
sis all calls with service times <10 seconds.

4.2 On Service Times and Queueing Theory

Most applications of queueing theory to call centers as-
sume exponentially distributed service times as their default.
The main reason for this is the lack of empirical evidence to
the contrary, which leads one to favor convenience. Indeed,
models with exponential service times are amenable to analy-
sis, especially when combined with the assumption that arrival
processes are homogeneous Poisson processes. This is the rea-
son that M/M/N is the prevalent model used in call center
practice.

In more general queueing formulas, the service time often
affects performance measures through its squared coefficient
of variation, C2

s = σ 2
s /E2(S), E(S) is the average service time

and σs is its standard deviation. For example, a common use-
ful approximation for the average waiting time in an M/G/N
model (Markovian arrivals, generally distributed service times,
n servers), is given by

E[Wait for M/G/N] ≈ E[Wait for M/M/N] × (1 + C2
s )

2
(1)

(see Sze 1984; Whitt 1993). Note that for large call centers, this
formula must be used with care, as discussed by Mandelbaum

Table 1. Service Time by Type of Service, Truncated at 1 Hour, November–December

Regular service Potential customers Internet consulting Stock trading
Overall (PS) (NW) (IN) (NE)

Mean 201 179 115 401 270
SD 248 189 146 473 303
Median 124 121 73 221 175
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(a) (b)

Figure 2. Distribution of Service Time. (a) January–October (mean, 185; SD, 238); (b) November–December (mean, 200; SD, 249).

and Schwartz (2002). Thus average wait with general service
times is multiplied by a factor of (1 + C2

s )/2 relative to the wait
under exponential service times. For example, if service times
are in fact exponential, then the factor is 1. Deterministic ser-
vice times halve the average wait of exponential. In our data,
the observed factor is (1 + C2

s )/2 = 1.26.

4.3 Service Times Are Lognormal

Looking at Figure 2, we see that the distribution of service
times is clearly not exponential, as is assumed by standard
queueing theory. In fact, after separating the calls with very
short service times, our analysis reveals a remarkable fit to the
lognormal distribution.

Figure 3(a) shows the histogram of log(service time) for No-
vember and December, in which the short service phenomenon
was absent or minimal. Superimposed is the best fitted normal

density as provided by Brown and Hwang (1993). Figure 3(b)
shows the lognormal Q–Q plot of service time. This does an
amazingly good imitation of a straight line. Nevertheless, the
Kolmogorov–Smirnovtest decisively rejects the null hypothesis
of exact lognormality. (The Kolmogorov–Smirnov statistic here
is K = .020. This is quite small, but still much larger than the
value of K = .009 that was attained for a similarly large sam-
ple size in the inhomogeneous Poisson test of Sec. 4.) We only
provide the graphs to qualitatively support our claim of lognor-
mality. Thus the true distribution is very close to lognormal, but
is not exactly lognormal. (The most evident deviation is in the
left tail of the histogram, where both a small excess of observa-
tions is evident and the effect of rounding to the nearest second
further interferes with a perfect fit.) This is a situation where
a very large sample size yields a statistically significant result,
even though there is no “practical significance.”

(a) (b)

Figure 3. Histogram (a) and Q–Q Plot (b) of log(service time), November–December.
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After excluding short service times, the strong resemblance
to a lognormal distribution also holds for all other months.
It also holds for various types of callers, even though the para-
meters depend on the type of call. This means that in this case,
a mixture of lognormals is empirically lognormal, even though
mathematically this cannot exactly hold. (See Mandelbaum
et al. 2000, where the phenomenon is discussed in the context
of the exponential distribution.) Brown and Shen (2002) gave
a more detailed analysis of service times.

Lognormality of processing times has been occasionally
recognized by researchers in telecommunications and psychol-
ogy. Bolotin (1994) gave empirical results suggesting that
the distribution of the logarithm of call duration is normal
for individual telephone customers and a mixture of normals
for “subscriber-line” groups. Ulrich and Miller (1993) and
Breukelen (1995) provided theoretical arguments for the log-
normality of reaction times using models from mathematical
psychology. Mandelbaum and Schwartz (2000) used simula-
tions to study the effect of lognormally distributed service times
on queueing delays.

4.4 Regression of log(service times) on Time of Day

The important implication of the excellent fit to a lognormal
distribution is that we can apply standard techniques to regress
log(service time) on various covariates, such as time of day. For
example, to model the mean service time across time of day,
we can first model the mean and variance of the log(service
time) across time of day, then transform the result back to the
service time scale. [Shen (2002) gave a detailed analysis of ser-
vice times against other covariates, such as the identities of indi-
vidual agents (servers), as well as references to other literature
involving lognormal variates.]

Let S be a lognormally distributed random variable with
mean ν and variance τ 2. Then Y = log(S) will be a normal
random variable with some mean µ and variance σ 2. It is
well known that ν = eµ+σ 2/2. This parameter (rather than µ or
µ + σ 2/2) is the primitive quantity that appears in calculations
of offered load, as in Section 7. To provide a confidence interval
for ν, we need to derive confidence intervals for µ and σ 2 or,
more precisely, for µ + σ 2/2.

For our call center data, let S be the service time of a call
and let T be the corresponding time of day at which the call be-
gins service. Let {Si,Ti}n

i=1 be a random sample of size n from
the joint distribution of {S,T} and sorted according to Ti. Then
Yi = log(Si) will be the log(service time) of the calls, which are
(approximately) normally distributed, conditional on Ti. We can
fit a regression model of Yi on Ti as Yi = µ(Ti)+σ(Ti)εi, where
εi|Ti are iid N(0,1).

4.4.1 Estimation of µ(·) and σ 2(·). If we assume that
µ(·) has a continuous third derivative, then we can use lo-
cal quadratic regression to derive an estimate for µ(·) (see
Loader 1999). Suppose that µ̂(t0) is a local quadratic estimate
for µ(t0). Then an approximate 100(1 − α)% confidence in-
terval for µ(t0) is µ̂(t0) ± zα/2seµ(t0), where seµ(t0) is the
standard error of the estimate of the mean at t0 from the local
quadratic fit.

Our estimation of the variance function σ 2(·) is a two-
step procedure. In the first step, we regroup the observa-
tions {Ti,Yi}n

i=1 into consecutive nonoverlapping pairs {T2i−1,

Y2i−1; T2i,Y2i}�n/2�
i=1 . The variance at T2i, σ 2(T2i), is estimated

by a squared pseudoresidual, D2i, of the form (Y2i−1 − Y2i)
2/2,

a so-called “difference-based” estimate. The difference-based
estimator that we use here is a simple one that suffices for our
purposes. In particular, our method yields suitable confidence
intervals for estimation of σ 2. More efficient estimators might
improve our results slightly. There are many other difference-
based estimators in the literature (see Müller and Stadtmüller
1987; Hall, Kay, and Titterington 1990; Dette, Munk, and
Wagner 1998; Levins 2002).

In the second step, we treat {T2i,D2i}�n/2�
i=1 as our ob-

served data points and apply local quadratic regression to ob-
tain σ̂ 2(t0). Part of our justification is that under our model,
the {D2i}’s are (conditionally) independent given the {T2i}’s.
A 100(1 −α)% confidence interval for σ 2(t0) is approximately
σ̂ 2(t0) ± zα/2seσ 2(t0).

Note that we use zα/2, rather than a quantile from a chi-
squared distribution, as the cutoff value when deriving the fore-
going confidence interval. Given our large dataset, the degrees
of freedom are large, and a chi-squared distribution can be well
approximated by a normal distribution.

4.4.2 Estimation of ν(·). We now use µ̂(t0) and σ̂ 2(t0)
to estimate ν(t0), as eµ̂(t0)+σ̂ 2(t0)/2. Given that the estimation
methods used for µ(t0) and σ 2(t0), µ̂(t0) and σ̂ 2(t0), are as-
ymptotically independent, we have

se
(
µ̂(t0) + σ̂ 2(t0)/2

) ≈
√

seµ(t0)2 + seσ 2(t0)2/4.

When the sample size is large, we can assume that µ̂(·) +
σ̂ 2(·)/2 has an approximately normal distribution. Then the
corresponding 100(1 − α)% confidence interval for ν(t0) is

exp
((

µ̂(t0) + σ̂ 2(t0)/2
) ± zα/2

√
seµ(t0)2 + seσ 2(t0)2/4

)
.

4.4.3 Application and Model Diagnostics. In the analysis
that follows, we apply the foregoing procedure to the weekday
calls in November and December. The results for two interest-
ing service types are shown in Figure 4. There are 42,613 PS
calls and 5,066 IN calls. To produce the figures, we use the
tricube function as the kernel and nearest-neighbor type band-
widths. The bandwidths are automatically chosen via cross-
validation.

Figure 4(a) shows the mean service time for PS calls as
a function of time of day, with 95% confidence bands. Note
the prominent bimodal pattern of mean service time across the
day for PS calls. The accompanying confidence band shows that
this bimodal pattern is highly significant. The pattern resembles
that for arrival rates of PS calls (see Fig. 1). This issue was dis-
cussed further by Brown et al. (2002a).

Figure 4(b) plots an analogous confidence band for IN calls.
One interesting observation is that IN calls do not show a sim-
ilar bimodal pattern. We do see some fluctuations during the
day, but these are only mildly significant, given the wide con-
fidence band. Also notice that the entire confidence band for
IN calls lies above that of PS calls. This reflects the stochastic
dominance referred to in the discussion of Table 1.

Standard diagnostics on the residuals reveal a qualitatively
very satisfactory fit to lognormality, comparable with that in
Figure 3.
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(a) (b)

Figure 4. Mean Service Time (PS) (a) versus Time of Day [95% confidence interval (CI)], (b) Mean Service Time (IN) versus Time of Day
(95% CI).

5. WAITING FOR SERVICE OR ABANDONING

In Sections 3 and 4 we characterized two primitives of queue-
ing models, the arrival process and service times. In each case
we were able to directly observe and analyze the primitive un-
der investigation. We next address the last system primitive,
customer patience and abandonment behavior, and the related
output of waiting time. Abandonment behavior and waiting
times are deeply intertwined.

There is a distinction between the time that a customer needs
to wait before reaching an agent and the time that a customer
is willing to wait before abandoning the system. The former
is referred to as virtual waiting time, because it amounts to
the time that a (virtual) customer, equipped with infinite pa-
tience, would have waited until being served. We refer to the
latter as patience. Both measures are obviously of great impor-
tance, but neither is directly observable, and hence both must
be estimated.

A well-known queueing-theoretic result is that in heavily
loaded systems (in which essentially all customers wait and no
one abandons), waiting time should be exponentially distrib-
uted. (See Kingman 1962 for an early result and Whitt 2002 for
a recent text.) Although our system is not very heavily loaded,
and in our system customers do abandon, we find that the ob-
served distribution of time spent in the queue conforms very
well to this theoretical prediction (see Brown et al. 2002a for
further details).

5.1 Survival Curves for Virtual Waiting Time
and Patience

Both times to abandonment and times to service are cen-
sored data. Let R denote the “patience” or “time willing to
wait” and let V denote the “virtual waiting time,” and equip
both with steady-state distributions. One actually samples
W = min{R,V}, as well as the indicator 1{R<V}, for observ-
ing R or V . One considers all calls that reached an agent as
censored observations for estimating the distribution of R, and
vice versa for estimating the distribution of V . We make the
assumption that (as random variables) R and V are indepen-
dent given the covariates relevant to the individual customer.
Under this assumption, the distributions of R and V (given the

covariates) can be estimated using the standard Kaplan–Meier
product-limit estimator.

One may plot the Kaplan–Meier estimates of the survival
functions of R (time willing to wait), V (virtual waiting time),
and W = min{V,R} (see Brown et al. 2002a). There is a clear
stochastic ordering between V and R in which customers are
willing to wait (R) more than they need to wait (V). This
suggests that our customer population consists of patient cus-
tomers. Here we have implicitly, and only intuitively, defined
the notion of a patient customer. (To the best of our knowledge,
systematic research on this subject is lacking.)

We also consider the survival functions of R for different
types of service. Again, a clear stochastic ordering emerges.
For example, customers performing stock trading (type NE) are
willing to wait more than customers calling for regular services
(type PS). A possible empirical explanation for this ordering
is that type NE needs the service more urgently. This suggests
a practical distinction between tolerance for waiting and loy-
alty/persistency.

5.2 Hazard Rates

Palm (1953) was the first to describe impatience in terms of
a hazard rate. He postulated that the hazard rate of the time
willing to wait is proportional to a customer’s irritation due to
waiting. Aalen and Gjessing (2001) advocated dynamic inter-
pretation of the hazard rate, but warned against the possibil-
ity that the population hazard rate may not represent individual
hazard rates.

We have found it useful to construct nonparametric estimates
of the hazard rate. It is feasible to do so because of the large
sample size of our data (about 48,000). Figure 5 shows such
plots for R and V .

The nonparametric procedure that we use to calculate and
plot the figures is as follows. For each interval of length δ, the
estimate of the hazard rate is calculated as

[number of events during (t, t + δ]]
[number at risk at t] × δ

.

For smaller time values, t, the numbers at risk and event rates
are large, and we let δ = 1 second. For larger times, when fewer
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(a) (b)

Figure 5. Hazard Rates for (a) the Time Willing to Wait for PS Calls and (b) Virtual Waiting Time, November–December.

are at risk, we use larger δ’s. Specifically, the larger intervals are
constructed to have an estimated expected number of events per
interval of at least four. Finally, the hazard rate for each interval
is plotted at the interval’s midpoint.

The curves superimposed on the plotted points are fitted us-
ing nonparametric regression. In practice we used LOCFIT
(Loader 1999), although other techniques, such as kernel proce-
dures or smoothing splines, would yield similar fits. We choose
the smoothing bandwidth by generalized cross-validation.
(We also smoothly transformed the x-axis, so that the obser-
vations would be more nearly uniformly placed along that axis,
before producing a fitted curve. We then inversely transformed
the x-axis to its original form.) We experimented with fitting
techniques that varied the bandwidth to take into account the
increased variance and decreased density of the estimates with
increasing time. However, with our data, these techniques had
little effect, and thus we do not use here.

Figure 5(a) plots the hazard rates of the time willing to wait
for PS calls. Note that it shows two main peaks. The first peak
occurs after only a few seconds. When customers enter the
queue, a “please wait” message, as described in Section 2, is
played for the first time. At this point, some customers who do
not wish to wait probably realize they are in a queue and hang
up. The second peak occurs at about t = 60, about the time that
the system plays the message again. Apparently, the message
increases customers’ likelihood of hanging up for a brief time
thereafter, an effect that may be contrary to the message’s in-
tended purpose (or maybe not).

In Figure 5(b), the hazard rate for the virtual waiting times is
estimated for all calls. (The picture for PS alone is very simi-
lar.) The overall plot reveals rather constant behavior and indi-
cates a moderate fit to an exponential distribution. (The gradual
general decrease in this hazard rate, from about .008 to .005,
suggests an issue that may merit further investigation.)

5.3 Patience Index

Customer patience on the telephone is important, yet it has
not been extensively studied. In the search for a better under-
standing of patience, we have found a relative definition to be
of use. Let the means of V and R be mV and mR. One can define
the patience index as the ratio mR/mV , the ratio of the mean

time a customer is willing to wait to the mean time he or she
needs to wait. The justification for calling this a “patience in-
dex” is that for experienced customers, the time that one needs
to wait is in fact that time that one expects to wait. Although this
patience index makes sense intuitively, its calculation requires
the application of survival analysis techniques to call-by-call
data. Such data may not be available in certain circumstances.
Therefore, we wish to find an empirical index that will work as
an auxiliary measure for the patience index.

For the sake of discussion, we assume that V and R are in-
dependent and exponentially distributed. As a consequence of
these assumptions, we can demonstrate that

Patience index
�= mR

mV
= P(V < R)

P(R < V)
.

Furthermore, P(V < R)/P(R < V) can be estimated by (number
served)/(number abandoned), and we define

Empirical index
�= number served

number abandoned
.

The numbers of both served and abandoned calls are very easy
to obtain from either call-by-call data or more aggregated call
center management reports. We have thus derived an easy-to-
calculate empirical measure from a probabilistic perspective.
The same measure can also be derived using the maximum like-
lihood estimators for the mean of the (right-censored) exponen-
tial distribution, applied separately to R and to V .

We can use our data to validate the empirical index as an es-
timate of the theoretical patience index. Recall, however, that
the Kaplan–Meier estimate of the mean is biased when the last
observation is censored or when heavy censoring is present.
Nevertheless, a well-known property of exponential distribu-
tions is that their quantiles are just the mean multiplied by
certain constants, and we use quantiles when calculating the pa-
tience index. In fact, because of heavy censoring, we sometimes
do not obtain an estimate for the median or higher quantiles.
Therefore, we used first quartiles when calculating the theoret-
ical patience index.

The empirical index turns out to be a very good estimate of
the theoretical patience index. For each of 68 quarter hours be-
tween 7 AM and midnight, we calculated the first quartiles of
V and R from the survival curve estimates. We then compared
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the ratio of the first quartiles to that of (number of served)
to (number of abandoned). The resulting 68 sample pairs had
an R2 of .94 (see Brown et al. 2002a for a plot). This result
suggests that we can use the empirical measure as an index for
human patience.

With this in mind, we obtain the following empirical indices
for regular weekdays in November and December: PS = 5.34,
NE = 8.71, NW = 1.61, and IN = 3.74. We thus find that
the NE customers are the most patient, perhaps because their
business is the most important to them. On the other hand, by
this measure the IN customers are less patient than the PS cus-
tomers. In this context, we emphasize that the patience index
measures time willing to wait normalized by time needed to
wait. In our case (as previously noted), the IN customers are
in a separate queue from that of the PS customers. The IN cus-
tomers on average are willing to wait slightly longer than the PS
customers (see Brown et al. 2002a). However, they also need to
wait longer, and overall their patience index is less than that of
the PS customers.

Recall that the linear relationship between the two indices
is established under the assumption that R and V are expo-
nentially distributed and independent. As Figure 5(a) shows,
however, the distribution for R is clearly not exponential. Sim-
ilarly, Figure 5(b) shows that V also displays some deviation
from exponentiality. Furthermore, sequential samples of V are
not independent of each other. Thus we find that the linear rela-
tion is surprisingly strong.

Finally, we note another peculiar observation: The line does
not have an intercept at 0 or a slope of 1, as suggested by the
foregoing theory. Rather, the estimated intercept and slope are
−1.82 and 1.35, which are statistically different from 0 and 1.
We are working on providing a theoretical explanation that ac-
counts for these peculiar facts, as well as an explanation for
the fact that the linear relationship holds so well, even though
the assumption of exponentiality does not hold for our data.
(The assumption of independence of R and V may also be
questionable.)

6. PREDICTION OF THE LOAD

This section reflects the view of the operations manager of
a call center who plans and controls daily and hourly staffing
levels. Prediction of the system “load” is a key ingredient in
this planning. Statistically, this prediction is based on a combi-
nation of the observed arrival times to the system (as analyzed
in Sec. 3) and service times during previous, comparable peri-
ods (as analyzed in Sec. 4).

In the discussion that follows we describe a convenient model
and a corresponding method of analysis that can be used to gen-
erate prediction confidence bounds for the load of the system.
More specifically, in Section 6.4 we present a model for pre-
dicting the arrival rate, and in Section 6.6 we present a model
for predicting mean service time. In Section 6.7 we combine the
two predictions to obtain a prediction (with confidence bounds)
for the load according to the method discussed in Section 6.3.

6.1 Definition of Load

In Section 3 we showed that arrivals follow an inhomoge-
neous Poisson process. We let �j(t) denote the true arrival rate
of this process at time t on a day indexed by the subscript j.

Figure 1 presents a summary estimate of �̄·(t), the average
of �j(t) over weekdays in November and December.

For simplicity of presentation, here we treat together all
calls except the IN calls, because these were served in a sep-
arate system in August–December. The arrival patterns for the
other types of calls appear to be reasonably stable in August–
December. Therefore, in this section we use the August–
December data to fit the arrival parameters. To avoid having
to adjust for the short service time phenomenon noted in
Section 4.1, we use only November and December data to fit
parameters for service times. Also, here we consider only reg-
ular weekdays (Sunday–Thursday) that were not full or partial
holidays.

Together, an arbitrary arrival rate �(t) and mean service
time ν(t) at t define the “load” at that time, L(t) = �(t)ν(t).
This is the expected time units of work arriving per unit of time,
a primitive quantity in building classical queueing models, such
as those discussed in Section 7.

Briefly, suppose that one adopts the simplest M/M/N queue-
ing model. Then, if the load is a constant, L, over a sufficiently
long period, the call center must be staffed, according to the
model, with at least L agents; otherwise, the model predicts
that the backlog of calls waiting to be served will explode in an
ever-increasing queue. Typically, a manager will need to staff
the center at a staffing level that is some function of L—for
example, L + c

√
L for some constant c—to maintain satisfac-

tory performance (see Borst, Mandelbaum, and Reiman 2004;
Garnett et al. 2002).

6.2 Independence of �(t) and ν(t)

In Section 5.4.4 we noted a qualitative similarity in the bi-
modal pattern of arrival rates and mean service times. To try
to explain this similarity, we tested several potential explana-
tions, including a causal dependence between arrival rate and
service times. We were led to the conclusion that such a causal
dependence is not a statistically plausible explanation. Rather,
we concluded that the periods of heavier volume involve a dif-
ferent mix of customers, a mix that includes a higher population
of customers who require lengthier service. The statistical evi-
dence for this conclusion is indirect and was reported by Brown
et al. (2002a). Thus we proceed under the assumption that ar-
rival rates and mean service times are conditionally independent
given the time of day.

6.3 Coefficient of Variation for the Prediction of L(t)

Here we discuss the derivation of approximate confidence
intervals for �(t) and ν(t) based on observations of quarter-
hour groupings of the data. The load, L(t), is a product of these
two quantities. Hence exact confidence bounds are not read-
ily available from individual bounds for each of �(t) and ν(t).
As an additional complication, the distributions of the individ-
ual estimates of these quantities are not normally distributed.
Nevertheless, one can derive reasonable approximate confi-
dence bounds from the coefficient of variation (CV) for the es-
timate of L.

For any nonnegative random variable W with finite posi-
tive mean and variance, define the CV (as usual) by CV(W) =
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SD(W)/E(W). If U and V are two independent variables and
W = UV , then an elementary calculation yields

CV(W) =
√

CV2(U) + CV2(V) + CV2(U) · CV2(V).

In our case, U and V correspond to � and ν. Predictions
for � and ν are discussed in Sections 7.4 and 7.6. As noted
earlier, these predictions can be assumed to be statistically
independent. Also, their CVs are quite small (<.1). Note
that L̂(t) = �̂(t)ν̂(t), and, using standard asymptotic nor-
mal theory, we can approximate CV(L̂)(t) as CV(L̂)(t) ≈√

CV2(�̂)(t) + CV2(ν̂)(t).
This leads to approximate 95% CIs of the form L̂(t) ±

2L̂(t)CV(L̂)(t). The constant 2 is based on a standard asymp-
totic normal approximation of roughly 1.96.

6.4 Prediction of �(t)

Brown and Zhao (2001) investigated the possibility of mod-
eling the parameter � as a deterministic function of time of day,
day of week, and type of customer, and rejected such a model.
Here we construct a random-effects model that can be used to
predict � and to construct confidence bands for that prediction.
The model that we construct includes an autoregressive feature
that incorporates the previous day’s volume into the prediction
of today’s rate.

In the model, which we elaborate on later, we predict the
arrival on a future day using arrival data for all days up to that
day. Such predictions should be valid for future weekdays on
which the arrival behavior follows the same pattern as those for
that period of data.

Our method of accounting for dependence on time and day is
more conveniently implemented with balanced data, although
it can also be used with unbalanced data. For convenience,
we have thus used arrival data from only regular (nonholi-
day) weekdays in August–December on which there were no
quarter-hour periods missing and no obvious gross outliers in
observed quarter-hourly arrival rates. This leaves 101 days. For
each day (indexed by j = 1, . . . ,101), the number of arrivals in
each quarter hour from 7 AM–midnight was recorded as Njk,
k = 1, . . . ,68. As noted in Section 3, these are assumed to be
Poisson with parameter � = �jk.

One could build a fundamental model for the values of �

according to a model of the form

Njk = Poisson(�jk), �jk = Rjτk + ε′
jk, (2)

where the τk’s are fixed deterministic quarter-hourly effects, the
Rj’s are random daily effects with a suitable stochastic charac-
ter, and the ε′

jk’s are random errors. Note that this multiplicative
structure is natural, in that the τk’s play the role of the expected
proportion of the day’s calls that fall in the kth interval. This is
assumed to not depend on the Rj’s, the expected overall number
of calls per day. (We accordingly impose the side condition that∑

τk = 1.)
We instead proceed in a slightly different fashion that is

nearly equivalent to (2), but is computationally more convenient
and leads to a conceptually more familiar structure. The ba-
sis for our method is a version of the usual variance-stabilizing

transformation. If X is a Poisson(λ) variable, then V =
√

X + 1
4

has approximately mean θ = √
λ and variance σ 2 = 1

4 . This is

nearly precise even for rather small values of λ. [One instead
could use the simpler form

√
X or the version of Anscombe

(1948) that has
√

X + 3
8 in place of

√
X + 1

4 ; only numerically
small changes would result. Our choice is based on considera-
tions of Brown et al. (2001).] Additionally, V is asymptotically
normal (as λ → ∞), and it makes sense to treat it as such in the

models that follow. We thus let Vjk =
√

Njk + 1
4 , and assume the

model

Vjk = θjk + ε∗
jk with ε∗

jk
iid∼ N

(
0, 1

4

)
,

θjk = αjβk + εjk, (3)

αj = µ + γ Vj−1,+ + Aj,

where Aj ∼ N(0, σ 2
A), εjk ∼ N(0, σ 2

ε ), Vj,+ = ∑
k Vjk, and

Aj and εjk are independent of each other and of values of Vj′,k
for j′ < j. Note that αj is a random effect in this model. Further-
more, the model supposes a type of first-order autoregressive
structure on the random daily effects. The correspondence be-
tween (2) and (3) implies that this structure is consistent with
an approximate assumption that

Rj =
(

γ
∑

k

√
Nj−1,k + 1

4
+ Aj

)2

.

The model is thus not quite a natural one in terms of Rj, but it
appears more natural in terms of the Vjk in (3) and is computa-
tionally convenient.

The parameters γ and βk need to be estimated, as do µ, σ 2
A ,

and σ 2
ε . We impose the side condition

∑
β2

k = 1, which cor-
responds to the condition

∑
τk = 1. The goal is then to de-

rive confidence bounds for θjk = √
�jk in (3), and squaring the

bounds yields corresponding bounds for �jk.
The parameters in the model (3) can easily be estimated by

a combination of least squares and method of moments. Begin
by treating the {αj}’s as if they were fixed effects and using least
squares to fit the model

Vjk = αjβk + (εjk + ε∗
jk).

This is an easily solved nonlinear least squares problem.
It yields estimates α̂j, β̂k, and σ̂ 2, where the latter estimate is
the mean squared error from this fit. Then σ 2

ε can be estimated
by method of moments as

σ̂ 2
ε = σ̂ 2 − 1

4
.

Then use the estimates {α̂j} to construct the least squares esti-
mates of these parameters that would be appropriate for a linear
model of the form

α̂j = µ + γ Vj−1,+ + Aj. (4)

This yields least squares estimates, µ̂ and γ̂ , and the standard
mean squared error estimator, σ̂ 2

A , for the variance of Aj.
The estimates calculated from our data for the quantities re-

lated to the random effects are

µ̂ = 97.88, γ̂ = .6784

(with corresponding R2 = .501),

σ̂ 2
A = 408.3, σ̂ 2

ε = .1078 (because σ̂ 2 = .3578).

(5)



46 Journal of the American Statistical Association, March 2005

The value of R2 reported here is derived from the estimation
of γ in (3), and it measures the reduction in sum of squared er-
ror due to fitting the {α̂j} by this model, which captures the pre-
vious day’s call volumes, Vj−1,+. The large value of R2 makes
it clear that the introduction of the autoregressive model notice-
ably reduces the prediction error (by about 50%) relative to that
obtainable from a model with no such component, that is, one
in which a model of the form (3) holds with γ = 0.

For a prediction,


�k , of tomorrow’s value of �k at a partic-
ular quarter hour (indexed by k), one would use the foregoing
estimates along with today’s value of V+. From (3), it follows
that tomorrow’s prediction is



θ k = β̂k(γ̂ V+ + µ̂) (6)

as an estimate of

θk = βk(γ V+ + µ + A) + ε, (7)

where A ∼ N(0, σ 2
A) and ε ∼ N(0, σ 2

ε ) are independent. The
variance of the term in parentheses in (7) is the prediction
variance of the regression in (6). Denote this by pred var(V+).
The coefficient of variation of β̂k turns out to be numerically
negligible compared with other coefficients of variation in-
volved in (6) and (7). Hence,

var(


θ k) ≈ β̂2
k × pred var(V+) + σ̂ 2

ε . (8)

These variances can be used to yield confidence intervals for
the predictions of θk. The bounds of these confidence intervals
can then be squared to yield confidence bounds for the predic-
tion of �k. Alternatively, one may use the convenient formula
CV(



θ 2
k) ≈ 2 × CV(



θ k), and produce the corresponding confi-
dence intervals (see Brown et al. 2002a for such a plot).

We note that the values of CV(


θ 2
k) here are in the range of .25

(for early morning and late evening) down to .16 (for mid-
day). Note also that both parts of (8) are important in determin-
ing variability; the values of var(



θ k) range from .14 (for early
morning and late evening) up to .27 (for midday). The fixed part
of this is σ̂ 2

ε = .11, and the remainder results from the first part
of (8), which reflects the variability in the estimate of the daily
volume figure, A, in (3).

Correspondingly, better estimates of daily volume (perhaps
based on covariates outside our dataset) would considerably
decrease the CVs during midday but would not have much ef-
fect on those for early morning and late evening. [Incidentally,
we tried including day of the week an additional covariate in
the model (3), but with the present data this did not noticeably
improve the resulting CVs.]

A natural suggestion would be to use a nonparametric model
for the curve �(t) in place of the binned model in (2) and (3).
This suggestion is appealing, and we plan to investigate it.
However, we have not so far succeeded in producing a nonpara-
metric regression analysis that incorporates all of the features of
the foregoing model and also provides theoretically unbiased
prediction intervals.

The preceding model includes several assumptions of nor-
mality. These can be empirically checked in the usual way by
examining residual plots and Q–Q plots of residuals. All of the
relevant diagnostic checks showed good fit to the model. For ex-
ample, the Q–Q plots related to A and ε support the normality

assumptions in the model. According to the model, the residuals
corresponding to εjk also should be normally distributed. The
Q–Q plot for these residuals has slightly heavier-than-normal
tails, but only 5 (out of 6,868) values seem to be heavily ex-
treme. These heavy extremes correspond to quarter-hour peri-
ods on different days that are noticeably extreme in terms of
their total number of arrivals.

6.5 Prediction of ν(t)

In this section we also model the service time according to
quarter-hour intervals. This allows us to combine (in Sec. 6.6)
the estimates of ν(t) derived here with the estimates of �(t)
derived in Section 6.4, and to obtain rigorously justifiable,
bias-free prediction confidence intervals. In other respects, the
model developed in this section resembles the nonparametric
model of Section 4.4.

We use weekday data from only November and December.
The lognormality discussed in Section 4.3 allows us to model
log(service times), rather than service times. Let Yjkl denote the
log(service time) of the lth call served by an agent on day j,
j = 1, . . . ,44, in quarter-hour intervals k, k = 1, . . . ,68. In total,
there are n = 57,152 such calls. (We deleted the few call records
showing service times of 0 or > 3,600 seconds.) For purposes
of prediction, we will ultimately adopt a model similar to that
of Section 4.4, namely

Yjkl = µ + κk + εjkl, εjkl ∼ N(0, σ 2
k ) (indep.). (9)

Before adopting such a model, we investigated whether there
are day-to-day inhomogeneities that might improve the predic-
tion model. We did this by adding a random-day effect to the
model in (9). The larger model had a partial R2 = .005. This is
statistically significant ( p value < .0001) due to the large sam-
ple size, but it has very little numerical importance. We also
investigated a model that used the day as an additional factor,
but found no useful information in doing so. Hence in what fol-
lows, we use model (9).

The goal is to produce a set of confidence intervals (or corre-
sponding CVs) for the parameter

νk = exp

(
µ + κk + σ 2

k

2

)
. (10)

The basis for this is contained in Section 4.4, except that here
we use estimates from within each quarter-hour time period,
rather than kernel-smoothed estimates. This enables us to ob-
tain rigorously justifiable, bias-free prediction confidence inter-
vals. The most noticeable difference is that the standard error
of σ 2

k is now estimated by

seσ 2
k

≈
√

2

nk − 1
S2

k, (11)

where nk denotes the number of observations within the quarter
hour, indexed by k, and S2

k denotes the corresponding sam-
ple variance from the data within this quarter hour. This es-
timate is motivated by the fact that if X ∼ N(µ,σ 2), then
var((X −µ)2) = 2σ 4 (see Brown et al. 2002a for a plot of these
prediction intervals).

CVs for these estimates can be calculated from the approxi-

mate (Taylor series) formula CV∗(ν̂k) ≈ CV(µ̂+ κ̂k + σ̂ 2
k
2 ). (The
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Figure 6. 95% Prediction Intervals for the Load, L, Following a Day
With V+ = 340.

intervals ν̂k ± 1.96 × ν̂k × CV∗ agree with the foregoing to
within 1 part in 200 or better.) The values of CV here range
from .03 to .08. These are much smaller than the corresponding
values of CVs for estimating �(t). Consequently, in producing
confidence intervals for the load, L(t), the dominant uncertainty
is that involving estimation of �(t).

6.6 Confidence Intervals for L(t)

The confidence intervals can be combined as described in
Section 6.3 to obtain confidence intervals for L in each quarter-
hour period. Care must be taken to first convert the estimates of
� and ν to suitable, matching units. Figure 6 shows the result-
ing plot of predicted load on a day following one in which the
arrival volume had V+ = 340.

The intervals in Figure 6 are still quite wide. This reflects the
difficulty in predicting the load at a relatively small center such
as ours. We might expect predictions from a large call center to
have much smaller CVs, and we are currently examining data
from such a large center to see whether this is in fact the case.
Of course, inclusion (in the data and corresponding analysis) of
additional informative covariates for the arrivals might improve
the CVs in a plot such as Figure 6.

7. SOME APPLICATIONS OF QUEUEING SCIENCE

Queueing theory concerns the development of formal math-
ematical models of congestion in stochastic systems, such as
telephone and computer networks. It is a highly developed dis-
cipline that has roots in the work of A. K. Erlang (Erlang
1911, 1917) at the beginning of the twentieth century. Queueing
science, as we view it, is the theory’s empirical complement;
it seeks to validate and calibrate queueing-theoretic models via
data-based scientific analysis. In contrast to queueing theory,
however, queueing science is only starting to be developed.
Although there exist scattered applications in which the as-
sumptions of underlying queueing models have been checked,
we are not aware of previous systematic effort to validate
queueing-theoretic results.

One area in which extensive work has been done—and has
motivated the development of new theory—involves the arrival
processes of Internet messages (or message packets) (see, e.g.,
Willinger, Taqqu, Leland, and Wilson 1995; Cappe, Moulines,

Pesquet, Petropulu, and Yang 2002; and the references therein).
These arrivals have been found to involve heavy-tailed distrib-
utions and/or long-range dependencies (and thus differ qualita-
tively from the results reported in our Sec. 3).

In this section we use our call center data to produce two ex-
amples of queueing science. In Section 7.1 we validate (and
refute) some classical theoretical results. In Section 7.2 we
demonstrate the robustness (and usefulness) of a relatively
simple theoretical model, namely the M/M/N+M (Erlang-A)
model, for performance analysis of a complicated reality,
namely our call center.

7.1 Validating Classical Queueing Theory

We analyze two congestion laws: first, the relationship be-
tween patience and waiting, which is a byproduct of Little’s
law (Zohar, Mandelbaum, and Shimkin 2002; Mandelbaum and
Zeltyn 2003), and then the interdependence between service
quality and efficiency, as it is manifested through the classical
Khintchine–Pollaczek formula (see, e.g., eq. 5.68 in Hall 1991).

7.1.1 On Patience and Waiting. Here we consider the re-
lationship between average waiting time and the fraction of
customers that abandon the queue. To do so, we compute the
two performance measures for each of the 3,867 hourly in-
tervals that constitute the year. Regression then shows that a
strong linear relationship exists between the two, with a value
of R2 = .875.

Indeed, if W is the waiting time and R is the time a customer
is willing to wait (referred to as patience), then the law

% Abandonment = E(W)

E(R)
(12)

is provable for models with exponential patience, like those of
Baccelli and Hebuterne (1981) and Zohar et al. (2002). How-
ever, exponentiality is not the case here (see Fig. 5).

Thus the need arises for a theoretical explanation of why this
linear relationship holds in models with generally distributed
patience. Similarly, the identification and analysis of situations
in which nonlinear relationships arise remains an important re-
search question. [Motivated by the present study, Mandelbaum
and Zeltyn (2003) pursued both directions.]

Under the hypothesis of exponentiality, we use (12) to es-
timate the average time that a customer is willing to wait in
a queue, an absolute measure of customer patience. (Compare
this with the relative index defined in Sec. 5.3.) From the inverse
of the regression-line slope, we find that the average patience is
446 seconds in our case.

7.1.2 On Efficiency and Service Levels. As fewer agents
cope with a given workload, operational efficiency increases.
The latter is typically measured by the system (or agents’) “oc-
cupancy,” the average utilization of agents over time. Formally,
this is defined as

ρ = λeff

Nµ
, (13)

where λeff is the effective arrival rate (namely, the arrival rate
of customers who get served), µ is the service rate [E(S) = 1/µ

is the average service time], and N is number of active agents
either serving customers or available to do so. Thus the staffing
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Figure 7. Agents’ Occupancy versus Average Waiting Time.

level N is required to calculate agents’ occupancy. Neither oc-
cupancies nor staffing levels are explicit in our database, how-
ever, so we derive indirect measures of these from the available
data (see Brown et al. 2002a for details).

The three plots of Figure 7 depict the relationship between
average waiting time and agents’ occupancy. The first plot
shows the result for each of the 3,867 hourly intervals over the
year. The second and third plots emphasize the patterns by ag-
gregating the data. (The hourly intervals were ordered accord-
ing to their occupancy, and adjacent groups of 45 were then
averaged together.)

The classical Khintchine–Pollaczek formula suggests the ap-
proximation

E(W) ≈ 1

N

ρ

1 − ρ

1 + C2
s

2
E(S), (14)

which is a further approximation of (1) (see, e.g., Whitt 1993).
Here Cs denotes the coefficient of variation of the service time,
and ρ denotes the agents’ occupancy.

The third plot of Figure 7 tests the applicability of the
Khintchine–Pollaczek formula in our setting by plotting
N · E(W)/E(S) versus ρ/(1 − ρ). To check whether the two
plots exhibit the linear pattern implied by (14), we display an
aggregated version of the data as a scatterplot on a logarithmic
scale. This graph pattern is not linear. This can be explained by
the fact that classical versions of Khintchine–Pollaczek formula
are not appropriate for queueing systems with abandonment.

Note that queueing systems with abandonment usually give
rise to dependence between successive interarrival times of
served customers, as well as between interarrival times of
served customers and service times. For example, long ser-
vice times could engender massive abandonment and, there-
fore, long interarrival times of served customers. A version of
the Khintchine–Pollaczek formula that can potentially accom-
modate such dependence was derived by Fendick, Saksena, and
Whitt (1989). Theoretical research is needed to support the fit
of these latter results to our setting with abandonment, however.

7.2 Fitting the M/M/N+M Model (Erlang-A)

The M/M/N model (Erlang-C), by far the most common
theoretical tool used in the practice of call centers, does not al-
low for customer abandonment. The M/M/N+M model (Palm
1943) is the simplest abandonment-sensitive refinement of the
M/M/N system. Exponentially distributed, or Markovian, cus-
tomer patience (time to abandonment) is added to the model,
hence the “+M” notation. This requires an estimate of the av-
erage duration of customer patience, 1/θ , or, equivalently, an
individual abandonment rate, θ . Because it captures abandon-
ment behavior, we call M/M/N + M the “Erlang-A” model
(see Garnett et al. 2002 for further details). The 4CallCenters
software (4CallCenters 2002) provides a valuable tool for im-
plementing Erlang-A calculations.

The analysis in Sections 4 and 5 shows that in our call cen-
ter, both service times and patience are not exponentially dis-
tributed. Nevertheless, simple models have often been found to
be reasonably robust in describing complex systems. We there-
fore check whether the M/M/N + M model provides a useful
description of our data.

7.3 Using the Erlang-A Model

We now validate the Erlang-A model against the overall
hourly data used in Section 7.1. We consider three performance
measures: probability of abandonment, average waiting time,
and probability of waiting (at all). We calculate their values for
our 3,867 hourly intervals using exact Erlang-A formulas, then
aggregate the results using the same method used in Figure 7.
The resulting 86 points are compared against the line y = x.

As before, the parameters λ and µ are easily computed for
every hourly interval. For the overall assessment, we calculate
each hour’s average number of agents, N. Because the result-
ing N’s need not be integral, we apply a continuous extrap-
olation of the Erlang-A formulas, obtained from relationships
developed by Palm (1943).

For θ , we use formula (12), valid for exponential patience, to
compute 17 hourly estimates of 1/θ = E(R), one for each of the
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Figure 8. Erlang-A Formulas versus Data Averages.

17 1-hour intervals 7–8 AM, 8–9 AM, . . . , 11–12 PM. The val-
ues for E(R) ranged from 5.1 minutes (8–9 AM) to 8.6 minutes
(11–12 PM). We judged this to be better than estimating θ in-
dividually for each of the 3,867 hours (which would be very
unreliable) or, at the other extreme, using a single value for all
intervals (which would ignore possible variations in customers’
patience over the time of day; see Zohar et al. 2002).

The results are displayed in Figure 8. The first two graphs
show a relatively small yet consistent overestimation with re-
spect to empirical values, for moderately and highly loaded
hours. (We plan to explore the reasons for this overestimation
in future research.) The rightmost graph shows a very good
fit everywhere except for very lightly and very heavily loaded
hours. The underestimation for small values of P{Wait} can
probably be attributed to violations of work conservation (idle
agents do not always answer a call immediately). Summarizing,
it seems that these Erlang-A estimates can be used as useful up-
per bounds for the main performance characteristics of our call
center.

7.4 Approximations

Garnett et al. (2002) developed approximations of various
performance measures for the Erlang-A (M/M/N + M) model.
Such approximations require significantly less computational
effort than exact Erlang-A formulas. The theoretical validity of
the approximation was established by Garnett et al. (2002) for
large Erlang-A systems. Although this is not exactly our case,
the plots that we have created nevertheless demonstrate a good
fit between the data averages and the approximations.

In fact, the fits for the probability of abandonment and av-
erage waiting time are somewhat superior to those in Figure 8
(i.e., the approximations provide somewhat larger values than
the exact formulas). This phenomenon suggests two interrelated
research questions of interest: how to explain the overestima-
tion in Figure 8, and how to better understand the relationship
between Erlang-A formulas and their approximations.

The empirical fits of the simple Erlang-A model and its ap-
proximation turn out to be very (perhaps surprisingly) accurate.

Thus for our call center—and those like it—using Erlang-A for
capacity-planning purposes could and should improve opera-
tional performance. Indeed, the model is already beyond typical
current practice (which is Erlang-C dominated), and one aim of
this article is to help change this state of affairs.

[Received November 2002. Revised February 2004.]
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