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Abstract

We develop an empirical Bayesian thresholding rule for the normal mean problem that

adapts well to the sparsity of the signal. An key element is the use of a mixture loss function

that combines both the Lp loss and the 0 − 1 loss function. The Bayes procedures under this

loss are explicitly given as thresholding rules and are easy to compute. The prior on each mean

is a mixture of an atom of probability at zero, and a Laplace or normal density for the nonzero

part. The mixing probability as well as the spread of the non-zero part are hyperparameters

that are estimated by the empirical Bayes procedure. Our simulation experiments demonstrate

that the proposed method performs better than the other competing methods for a wide range

of scenarios. We also apply our proposed method for feature selection to four data sets.
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1 Introduction

We are given n scalar observations x1, x2, . . . , xn satisfying

xi = µi + εi, (1)

where each εi is independent and identically distributed as εi ∼ N (0, σ2), a normal distribution

with mean zero and a known variance σ2. Based on the observation x = (x1, x2, . . . , xn) we need a

desirable estimate µ̂ of the unknown parameter µ = (µ1, µ2, . . . , µn). This is generally referred to

as the multivariate normal mean problem.

Very often we encounter scenarios that involve sparsity ; a large number of µi’s are zero but we

do not know how many of them are zero. With no information on how sparse the vector µ is, an

estimator µ̂ that adapts to the degree of sparsity is desirable.

The normal mean problem occurs in a wide range of practical applications. Some examples

include model selection in machine learning/data mining (George and Foster (2000)), smoothing in

signal processing, de-noising in astronomical image processing (Johnstone and Silverman (2004)),

wavelet approaches to non-parametric regression (Johnstone and Silverman (2005)), and significance

testing in genomics and bio-informatics (Efron and Tibshirani (2007)). Situations involving Poisson

or binomial observations, such as baseball batting averages, can be transformed and efficiently

treated within the normal means context (Brown (2008)).

For sparse situations the desired and the natural estimator is an explicit thresholding rule of

the form

µ̂i =





0 if |xi| < t(x)

some estimate otherwise,
(2)

where t is some threshold that can depend on x. As a result of this the estimate has some values

exactly zero. However it is crucial that the threshold t adapt to the degree of the sparsity in the

signal, which is unknown. We propose an explicit thresholding rule that adapts to the sparsity of

the signal automatically using an empirical Bayesian approach. The proposed approach has the

following three components:

1. To incorporate the possibility of sparsity we use a mixture prior on each mean with an atom

of probability at zero and either a Laplace or normal density for the nonzero part. This

form of the mixture prior has been earlier used by Johnstone and Silverman (2004, 2005),

Abramovich, Sapatinas, and Silverman (1998), Clyde, Parmigiani, and Vidakovic (1998),

and Chipman, Kolaczyk, and McCulloch (1997) in the context of thresholding the wavlet

coefficients.
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2. The mixing probability as well as the spread of the non-zero part are hyperparameters which

are estimated by an empirical Bayes procedure.

3. The novel key element is the use of a mixture loss function combining Lp-loss (p = 1, 2) and

a 0− 1 loss function–more precisely we take

Lp,K(µi, µ̂i) = K1{µ̂i 6=µi} + |µ̂i − µi|p. (3)

Here the constant K controls the amount of penalty for incorrectly estimating the exact true

value of µi, and K = 0 corresponds to the usual Lp loss.

A nice property of our method is that the resulting Bayes procedures are explicitly given as

thresholding rules, i.e, a particular parameter estimate µ̂i is set to zero if it is less than some thresh-

old. The resulting estimator is adaptive to the amount of sparsity, and is computed automatically

based on the entire observation x. To be more precise, in our procedure the hyperparameters are

adaptively estimated based on the entire observation x.

Without the mixture loss, the Bayes procedure for the L2 loss is the posterior mean, which

has a shrinkage property but no thresholding property at all, i.e., all estimates are non-zero. The

posterior mean and median are just special cases of the proposed estimator (with K = 0). In our

simulation results (see Table 1), the proposed estimators are better than the posterior mean and

median in terms of the total squared error, in addition to the fact that they adapt to the sparsity

in the signal. We also study the effect of different choices of K, and empirically propose a universal

value that depends only on the adaptive estimate of the hyperparameters. Because of the mixture

loss, the proposed procedure turns out to be robust to mis-specification of the non-zero component

of the mixture prior.

Johnstone and Silverman (2004, 2005) propose an estimator that is closely related to ours and

study its theoretical properties. Their estimator is the posterior median based on the same prior

as we use. This happens to be a special case of our proposed estimator–it corresponds to our loss

function (3) with p = 1 and K = 0. Our results show that by using a non-zero K the mean

squared error can be much lower and the sparsity is captured much more accurately. Johnstone

and Silverman (2004) use the posterior median (L1-loss) for its thresholding property. By using a

non-zero K our proposed estimator is always a thresholding rule for both L1 and L2 loss.

There are related approaches. For example, the SURE approach of Donoho and Johnstone (1995)

is based on minimizing Stein’s unbiased risk estimate for the mean squared error of soft thresholding.

The FDR approach of Abramovich, Benjamini, Donoho, and Johnstone (2006) is derived from the
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principle of controlling the false discovery rate in simultaneous hypothesis testing. Brown and

Greenstein (2009) also propose a non-parametric empirical Bayes estimator; their estimator is not

a thresholding estimator, but does adapt and perform well in moderately sparse or non-sparse

settings.

The rest of the paper is organized as follows. In Section 2 we describe the mixture prior

used to promote sparsity. We subsequently describe an empirical Bayes procedure to estimate the

hyperparameters by maximizing the marginal likelihood; the estimated hyperparameters are then

plugged in to derive the posterior. The mixture loss function is introduced in Section 3, and the

corresponding Bayes rule is derived. Simulation results, along with the choice of K, are discussed

in Section 4. In Section 5 we use the proposed procedure to select relevant features for classification

on four data sets. The optimal number of features selected through our methods agrees with those

selected using cross-validation.

2 Adapting to unknown sparsity

Without loss of generality we assume that the xi are scaled such that σ2 = 1. If σ is unknown we

estimate it using a robust estimator. One good choice is the median absolute value of xi. Since we

assume that µ is sparse, the median absolute value is not strongly affected by the nonzero µi.

From (1), and assuming εi ∼ N (0, 1), we have p(xi|µi) = N (xi|µi, 1). Since the εi are indepen-

dent, the likelihood of the parameters µ given the observations x can be factored as

p(x|µ) =
n∏

i=1

p(xi|µi) =
n∏

i=1

N (xi|µi, 1). (4)

Note that the maximum-likelihood estimator µ̂ML = arg maxµ p(x|µ) is the observation x itself.

It is well known that this estimator can be considerably improved by such shrinkage estimators as

the James-Stein estimators (see Berger (1985)).

We impose a prior on µ and then find the Bayes solution under a suitable loss function. In

order to promote sparsity, we assume that each of the parameters µi comes from a mixture of a

delta function mass at zero and a fixed symmetric density,

p(µi|w, a) = wδ(µi) + (1− w)γa(µi), (5)

where w ∈ [0, 1] is the mixture parameter and the δ puts probability mass of 1 at 0, and zero

elsewhere. For the nonzero part of the prior γa we consider two possibilities.
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1. A zero mean normal with variance a2.

γa(µi) = N (µi|0, a2) = (2πa2)−1/2 exp (−µ2
i /2a2). (6)

2. A double exponential (Laplace) with scale parameter a.

γa(µi) = 0.5a exp (−a|µi|). (7)

The Laplace prior has a heavier tail than the normal. We consider w and a as hyper-parameters

and use an empirical Bayesian approach to estimate them by maximizing the marginal likelihood.

Given the hyper-parameters w and a, the posterior of µ given the data x can be written as

p(µ|x, w, a) =
∏n

i=1 p(xi|µi)p(µi|w, a)
m(x|w, a)

, where (8)

m(x|w, a) =
n∏

i=1

∫
p(xi|µi)p(µi|w, a)dµi (9)

is the marginal of the data given the hyper-parameters. For the likelihood (4) and the mixture

prior (5) we have
∫

p(xi|µi)p(µi|w, a)dµi = wN (xi|0, 1) + (1− w)ga(xi), (10)

where we define ga(xi) =
∫ N (µi|xi, 1)γa(µi)dµi. Hence the log-marginal likelihood can be written

as

log m(x|w, a) =
n∑

i=1

log [wN (xi|0, 1) + (1− w)ga(xi)] . (11)

We chose w and a to maximize the log-marginal likelihood numerically,

{ŵ, â} = arg max
w,a

log m(x|w, a). (12)

More specifically we used an alternate optimization technique, for a fixed w, find the a which

maximizes the log-marginal likelihood; given the best a, find the best w; repeat to convergence.

Estimated hyperparameters are then plugged into the posterior. For ease of later derivation we

factor the posterior as

p(µ|x, w, a) =
n∏

i=1

p(µi|xi, w, a), where (13)

p(µi|xi, w, a) =
wδ(µi)N (xi|µi, 1) + (1− w)γa(µi)N (xi|µi, 1)

wN (xi|0, 1) + (1− w)ga(xi)
. (14)

Define

p̃i =
wN (xi|0, 1)

wN (xi|0, 1) + (1− w)ga(xi)
. (15)
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Then

p(µi|xi, w, a) = p̃iδ(µi) + (1− p̃i)G(µi), where (16)

G(µi) =
N (µi|xi, 1)γa(µi)∫ N (µi|xi, 1)γa(µi)dµi

. (17)

3 Bayes thresholding rule via mixture loss function

From now on we drop the subscript i in (16) and write the posterior as

p(µ|x,w, a) = p̃δ(µ) + (1− p̃)G(µ). (18)

We can either use the mean or the median of the posterior as our estimate. These correspond to L2

and the L1 loss, respectively. It is known that the mean does not have the thresholding property

while the median does.

3.1 Mixture loss function

We propose the following loss function which combines the 0− 1-loss and the Lp-loss:

L(µ, µ̂) = K1{µ̂ 6=µ} + |µ̂− µ|p, (19)

where, 1{µ̂ 6=µ} = 1 if µ̂ 6= µ, and 0 otherwise. K controls the amount of penalty for wrongly

estimating the exact true value of µ. In our set up, we believe that a significant proportion of the

µi are zero, so we want the resulting estimate to have a significant chance to be exactly zero. The

resulting estimate is a thresholding rule.

We now derive the Bayes rule for this loss function. It minimizes the expected posterior loss

µ̂(x,w, a) = arg minµ̂

∫
L(µ, µ̂)p(µ|x,w, a)dµ. (20)

Although p in the loss function is simply non-negative number, we present the results only for p = 2

and p = 1.

3.2 Bayes rule when p = 2

Theorem 3.1 Under the loss (19) when p = 2, the Bayes’ rule µ̂ is the thresholding rule

µ̂ =





0 if (1− p̃)2E2
G[µ|x,w, a] < Kp̃

(1− p̃)EG[µ|x, w, a] otherwise,

where p̃ and G are given in (15) and (17), respectively. The region where µ̂ = 0 is an interval in x.
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Proof: The posterior is given by

p(µ|x,w, a) = p̃δ(µ) + (1− p̃)G(µ). (21)

Note that

p(µ = 0|x,w, a) = p̃ and p(µ|x,w, a, µ 6= 0) = G(µ). (22)

We separately consider the cases µ̂ = 0 and µ̂ 6= 0.

1. When µ̂ = 0 the loss function is

L(µ, µ̂) =





0 µ = 0

K + µ2 µ 6= 0.
(23)

The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ = 0] =
∫

L(µ, 0)p(µ|x,w, a)dµ = (1− p̃)
∫

(K + µ2)G(µ)dµ

= (1− p̃)(K + EG[µ2]). (24)

2. Similarly when µ̂ 6= 0,

L(µ, µ̂) =





K + µ̂2 µ = 0

K + (µ̂− µ)2 µ 6= 0.
(25)

The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ 6= 0] = (K + µ̂2)p̃ + (1− p̃)
∫

(K + (µ̂− µ)2)G(µ)dµ

= µ̂2 − 2(1− p̃)EG[µ]µ̂ + (K + (1− p̃)EG[µ2]). (26)

The minimum value of (26) is attained at

µ̂ = (1− p̃)EG[µ] (27)

and the minimum expected posterior loss is

K + (1− p̃)EG[µ2]− (1− p̃)2E2
G[µ]. (28)

When (24) < (28) the Bayes rule is µ̂ = 0. This is equivalent to

(1− p̃)(K + EG[µ2]) < K + (1− p̃)EG[µ2]− (1− p̃)2E2
G[µ]. (29)

The Bayes thresholding rule is

µ̂ = 0 if E2
G[µ] <

Kp̃

(1− p̃)2
, (30)
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otherwise

µ̂ = (1− p̃)EG[µ]. (31)

Finally, every Bayes procedure corresponding to a bowl-shaped loss is monotone (Brown and Cohen

(1976)), hence the region where µ̂ = 0 is an interval in x.

The resulting estimator is an explicit thresholding rule but when K = 0 the resulting (shrinkage)

estimator is the posterior mean that does not do explicit thresholding.

3.3 Bayes rule when p = 1

In this section we consider the loss function

L(µ, µ̂) = K1{µ̂ 6=µ} + |µ̂− µ|. (32)

Theorem 3.2 Under the loss (32) the Bayes’ rule µ̂ is a thresholding rule. Let γ0 =
∫ 0
−∞G(µ)dµ

where G is given in (17), and p̃ be the posterior probability of nonzero mean calculated in (15).

• If p̃ > 1/2 the Bayes rule is µ̂ = 0.

• When p̃ ≤ 1/2

1. if 1−2p̃
2(1−p̃) < γ0 < 1

2(1−p̃) then the Bayes rule is also µ̂ = 0.

2. if γ0 > 1
2(1−p̃) , µ̂min is the unique negative solution to

∫ µ̂min

−∞
G(µ)dµ =

1
2(1− p̃)

. (33)

3. if γ0 < 1−2p̃
2(1−p̃) , µ̂min is the unique positive solution to

∫ µ̂min

−∞
G(µ)dµ =

1− 2p̃

2(1− p̃)
. (34)

4. In either (2) or (3) the Bayes rule is µ̂ = 0 if (1 − p̃)(K + EG[|µ|]) < πmin, where

πmin = K + |µ̂min|p̃ + (1− p̃)
∫ |µ̂min − µ|G(µ)dµ. Otherwise the Bayes rule is µ̂ = µ̂min

defined in (33) or (34) respectively.

Proof: As before we separately consider the cases µ̂ = 0 and µ̂ 6= 0.

1. When µ̂ = 0 the loss function is

L(µ, µ̂) =





0 µ = 0

K + |µ| µ 6= 0
(35)

8



The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ = 0] =
∫

L(µ, 0)p(µ|x,w, a)dµ = (1− p̃)
∫

(K + |µ|)G(µ)dµ

= (1− p̃)(K + EG[|µ|]). (36)

2. Similarly when µ̂ 6= 0,

L(µ, µ̂) =





K + |µ̂| µ = 0

K + |µ̂− µ| µ 6= 0.
(37)

The expected posterior loss is

Eµ[L(µ, µ̂)|µ̂ 6= 0] = (K + |µ̂|)p̃ + (1− p̃)
∫

(K + |µ̂− µ|)G(µ)dµ

= K + |µ̂|p̃ + (1− p̃)
∫
|µ̂− µ|G(µ)dµ. (38)

This is minimized when the first derivative is zero. The derivative of the expected posterior

loss can be written as

E
′
µ[L(µ, µ̂)|µ̂ 6= 0] = sign(µ̂)p̃ + (1− p̃)

[
2

∫ µ̂

−∞
G(µ)dµ− 1

]
. (39)

Hence the expected posterior loss attains a minimum at µ̂min where
∫ µ̂min

−∞
G(µ)dµ =

1
2

[
1− p̃

1− p̃
sign(µ̂min)

]
, (40)

and the minimum value is

πmin = K + |µ̂min|p̃ + (1− p̃)
∫
|µ̂min − µ|G(µ)dµ. (41)

Since 0 ≤ ∫ µ̂min

−∞ G(µ)dµ ≤ 1, (40) has no solution when p̃ > 1/2. Let γ0 =
∫ 0
−∞G(µ)dµ. It is

also easy to see that there is no solution to (40) if 1−2p̃
2(1−p̃) < γ0 < 1

2(1−p̃) . In these situations, the

minimum is attained at the boundary {−∞, 0,∞}. The expected posterior loss is minimum when

µ̂min approaches zero, the minimum value being K + (1 − p̃)EG[|µ|], which is greater than the

posterior loss (36) when µ̂min = 0. This means that the Bayes rule is 0.

The solution in (40) exists when p̃ < 1/2 and either γ0 > 1
2(1−p̃) or γ0 < 1−2p̃

2(1−p̃) . By comparing

the posterior risks between (36) and (38), we conclude the Bayes rule in the theorem.

4 Simulation Studies

4.1 Experimental setup

To evaluate our proposed procedure and facilitate comparison, we followed the simulation setup

specified in Johnstone and Silverman (2004). A sequence µ of fixed length N = 1000 was generated
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with different degrees of sparsity and signal strengths. The sequence had µi = 0 except at R

randomly chosen positions, where it took a specified value V –representing the strength of the non-

zero component of the signal. The observations xi were generated by adding N (0, 1) noise for each

µi. The signal µ was estimated using the proposed procedure with different mixture loss functions

(0/1+L2 or 0/1+L1) and different non-zero component of the mixture prior (normal or Laplace).

To evaluate accuracy, the total squared error (TSE) between µ and the estimate µ̂ was computed

as
∑N

i=1(µ̂
2
i − µi)2. Results are reported for R = 5, 50, and 500, corresponding to very sparse,

sparse, and dense signals. The non-zero µ′is were set at V = 3, 4, 5, and 7, representing a range of

the strength of the signals. For each setting, results were averaged over 100 repetitions.

4.2 Illustrative examples

Figure 1 shows an example of a sequence with R = 5 and V = 7. Figure 2(a) shows our estimate

for the normal non-zero mixture prior with 0/1+L2 mixture loss and penalty K = 10. Note that

most of the values in the estimate are zero. Figure 2(b) shows the behavior of our estimator for

this signal as a function of the observation–it is indeed a thresholding rule in which all xi below a

certain level are set to zero. The threshold depends on the sparsity and the strength of the signal,

and is automatically determined. Figure 2(c) and (d) are the same but without the 0/1 loss; this

leads to shrinkage but no thresholding. Figure 3 show the same results with L1 loss. While K = 0

(posterior median) also results in thresholding, the TSE K = 10 is much smaller than with K = 0.

4.3 Dependence on K

The performance of the empirical Bayes procedure depends on K, the amount of penalization for

a wrong estimation. Figure 4, 5, and 6, show the TSE as a function of K for R = 5, 50, and 500

respectively. We compare the TSE for the four different cases over a range of values of K–using

two different mixture loss functions (0/1+L2 or 0/1+L1) and two different non-zero component of

the mixture prior (normal or Laplace). In each plot the dashed horizontal line corresponds to the

estimator with K = 0. For ease of presentation we show the plots only for V = 3 and V = 7. The

following observations can be made:

1. Note that K = 0 shows comparable performance only for very sparse small strength signals;

for the rest of the cases the proposed thresholding rule with K > 0 has a lower TSE.

2. Very sparse signal (R = 5) (see Figure 4). For a small strength signal (V = 3), L2 loss with

Laplace prior has lower average TSE over all values of K. For a large strength signal (V = 7),
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L1 loss with Laplace prior has lower average TSE over a range of values of K. However, L2

loss with laplace prior can still achieve a lower TSE for larger K.

3. Sparse signal (R = 50) (see Figure 5). For a small strength signal (V = 3), L2 loss with

normal prior has lower average TSE over all values of K. For a large strength signal (V = 7),

L1 loss with normal prior has lower average TSE over a range of values of K.

4. For both Very sparse signal (R = 5) and Sparse signal (R = 50), in terms of the minimum

TSE that can be achieved, there is no significant difference between all the four methods.

5. Dense signal (R = 500) (see Figure 6). For small strength signals (V = 3, 4), L2 loss with

normal prior has lower average TSE over all values of K. For a large strength signal (V = 7),

L1 loss with normal prior has lower average TSE over a range of values of K.

6. Note that in each plot, the dashed horizontal line for L1 loss with laplace prior and K = 0

corresponds to the method proposed by Johnstone and Silverman (2004).

4.4 Choice of K

In our simulations, the optimal performance (in terms of the total squared error) of our proposed

method depends on the choice of K. In practice, we need to use a suitable K in order to compare

fairly with the other methods.

If the Bayesian model is correct, i.e., the prior for the non-zero part is correctly specified, and

if the estimator is to be judged by TSE, then the optimal K is zero. However from the simulations

we saw that there was some optimal K > 0 which achieved a lower TSE. This happens because

in practice the prior is often mis-specified and our proposed mixture loss with K > 0 makes the

estimator more robust.

Empirically we have found that the optimal value of K that minimizes TSE depends only on

the estimated hyperparameters â and ŵ. We found that choosing K ∝ 10c/ŵ –where c = â for

the normal prior and c =
√

2/â for the Laplace prior–was very close to the optimal K. The

hyperparameter â determines the spread of the non-zero part of the prior and is directly related to

strength of the signal V . As c increases the optimal K increases. The hyperparameter ŵ determines

the amount of sparsity in the signal. If the signal is not very sparse we need a larger K in order to

achieve the minimum possible TSE.

Figures 7(a) and 8(a) show two sample plots comparing the optimal value of K (as obtained from

the simulation experiments) and the value automatically chosen by our procedure (K = C10c/ŵ,
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where C = 10−3 is a constant) as functions of the estimated hyperparameters â and ŵ. The results

are for N = 1000, 0/1 + L2 mixture loss, and normal non-zero prior. The plots were generated by

running the simulations for different values of R and V , and are averaged over 100 repetitions. It

can be seen that the proposed value of K is very close to the optimal one. This can also be seen

in Figures 7(b) and 8(b) that show that there is no significant difference between the minimum

TSE that can be achieved by the optimal K and that obtained by our procedure. It should be

noted that for model selection type applications, the optimal K can always be chosen by a suitable

cross-validation procedure.

4.5 Adapting to unknown sparsity

The hyperparameter w is directly related to the signal sparsity, i.e, the fraction of zeros in µ.

Figure 9(a) plots the estimated w as a function of 1 − R/N (the fraction of zeros in the signal)–

varying from 0.5 (moderately sparse setup) to 0.99 (very sparse). The results are averaged over 100

repetitions. For both the normal and the Laplace prior, as sparsity tends to one, the estimate of

w becomes more accurate. Between the normal and Laplace prior, the normal gives more accurate

estimates of w.

The estimator used here would converge to the true parameters w and a if the family of priors

used in the estimator contains the true prior. However, in reality (and also in the simulation setup

used here) this may not be true. Because of the mis-specification of the prior, the estimate of

w may not be that accurate (especially for moderately sparse signals, see Figure 9(a)). While

the estimated w roughly captures the amount of sparsity in the signal, for our estimator further

sparsity is obtained because of the penalty term in the mixture loss function. This can be seen in

Figure 9(b) which plots the actual fraction of zeros in the estimate for those methods that result

in thresholding. In each of these the penalty K was chosen using the proposed heuristic rule. Note

that all the proposed estimators with K > 0 penalty clearly adapt to the unknown sparsity in the

signal.

Figures 9(c) and (d) plot the corresponding false positive rate (the fraction of zeros incorrectly

labeled as non-zero) and the false negative rate (the fraction of non-zeros incorrectly labeled as

zero). We see that the mixture loss function (with K > 0 penalty) results in a much lower false

positive rate than the estimator with K = 0, while at the same time maintaining comparable false

negative rates.
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4.6 Reduction in TSE due to mixture loss

The mixture loss function also results in a reduction in the total squared error of the estimate.

Figure 10(a) plots the total squared error for the same setup for different loss functions. We see

that the proposed estimator with K > 0 results is a lower TSE than the estimator with K = 0

(without the mixture loss). This can be clearly seen in Figure 10(d) which plots the corresponding

reduction in TSE obtained due to the mixture loss function. The normal prior with L2 loss gives

the best performance.

4.7 Loss functions and priors

The L1 loss itself (with K = 0) can also result in some thresholding. However our proposed

estimator, involving K in the loss, results in a more accurate threshold. From Figure 9(b) we can

see that adding the penalty term in the mixture loss function accurately captures the net sparsity

in the signal, but using L1 loss alone does not. Also the total squared error is smaller with the

mixture loss (See Figure 10).

4.8 Comparison with other methods

We compare our proposed method with some of the best performing methods in Table I of Johnstone

and Silverman (2004).

• The EBayesThresh (Johnstone and Silverman (2004)) method is a special case of our proposed

method, i.e., Laplace prior with K = 0. Results are reported for both the posterior median

and mean.

• The SURE (Donoho and Johnstone (1995)) method minimizes Stein’s unbiased risk estimate

for the mean squared error of soft thresholding.

• The FDR (Abramovich, Benjamini, Donoho, and Johnstone (2006)) method is derived from

the principle of controlling the false discovery rate in simultaneous hypothesis testing.

• The Universal hard threshold corresponds to using a thresholded MLE with the threshold
√

2 log N .

• We also compare our method with the Lasso estimator. This is a special case of our proposed

estimator with the mixture parameter w = 0 and a Laplace prior for the non-zero part.
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Table 1 shows the results of our simulations for various choices of the prior and the loss using our

recommended K. We also tabulate the results for K = 0. The results for EBayesThresh, FDR,

SURE, and Universal hard threshold are directly taken from Table I in Johnstone and Silverman

(2004). The following observations can be made.

1. For very sparse signals(R = 5) the proposed method and the EBayesThresh show similar

performance.

2. For sparse(R = 50) and dense(R = 500) signals the proposed method is better than the other

methods.

3. The posterior mean or median, i.e., K = 0 shows good performance only for very sparse small

strength signals. For the rest of the cases our proposed thresholding rule with the mixture

loss function is superior.

4. For very sparse signals(R = 5) the laplace and normal priors have similar errors.

5. For sparse(R = 50) and dense(R = 500) signals the normal prior in general performs better

than the laplace.

6. The FDR method shows good performance for some settings; this depends on the choice of

q, which varies from case to case.

7. We also ranked the different procedures by computing the average rank among all the different

scenarios. Based on the table the proposed method with L2/L1 loss and normal prior seems

to be the best performing one.

5 Feature selection for classification

In a typical two-class classification scenario we are given a training set D = {(xj , yj)}N
j=1 containing

N instances, where xj ∈ Rd is an instance (the d-dimensional feature vector) and yj ∈ Y =

{0, 1} is the corresponding known class label. The task is to learn a classification function f :

Rd → Y that generalizes well on unseen datasets. During the past few decades it has become

relatively easy to gather datasets with a huge number of features. In such situations very often we

would like the classification function f to use as few features as possible without any appreciable

decrease in predictive accuracy. Feature selection is very often beneficial for cost effectiveness and
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interpretability. In many situations it also increases the prediction accuracy by preventing over-

fitting. While many sophisticated methods have been proposed for feature selection (see Guyon

and Elisseeff (2003) for a review), one of the earliest and the most widely used algorithms is feature

ranking. This is a very simple and scalable method that has had considerable empirical success

either as a stand-alone feature selection mechanism, or as a pre-processing step for other methods.

Essentially, for each feature, a score measuring the degree of relevance to the label is computed.

The features are then ranked in the order of decreasing scores. Only the top most relevant features

are used and the rest are discarded. The number of features to retain is often based on ad-hoc rules

and/or domain knowledge. An important issue is how to set the threshold between the relevant

and irrelevant features.

Let zi, i = 1, . . . , d, be the computed ranking criterion for the ith feature. Various ranking

scores have been used in different application domains (Guyon and Elisseeff (2003)). Commonly

used scores are related to Fisher’s criterion or the t-test criterion, but the form may vary. For

example zi can be a scaled difference between means among two classes.

zi =
m+

i −m−
i√

(σ+
i )2

N+ + (σ−i )2

N−

, (42)

where m+
i and m−

i are the means, (σ+
i )2 and (σ−i )2 are the variances, and N+ and N− are the

number of examples of the positive and negative class, respectively. Note that if a feature is

irrelevant then zi is close to zero.

We assume that each zi is a noisy realization of some underlying µi, zi = µi + εi, where the

εi are independent and identically distributed as εi ∼ N (0, σ2), a normal distribution with mean

zero and a known variance σ2 (which can be well estimated when it is unknown). The normality

assumption of the score zi is valid among most commonly used scores. Even though the features

are not necessarily independent, it is a reasonable assumption in the context of feature ranking

methods. It has also been noticed that for datasets with a large number of features, treating

features independently give us as good a classifier as others or even better ones (see for example

Domingos and Pazzani (1997); Bickel and Levina (2004)).

Note that if a feature is irrelevant, then the corresponding µi is zero, relevant features have

µi 6= 0. Based on the observation z = (z1, z2, . . . , zd), we need to find a desirable estimate µ̂ of the

unknown parameters µ = (µ1, µ2, . . . , µd), and to determine how many of them are zero. With this

setup we can directly use the proposed Bayesian thresholding procedure to estimate µ̂ and select

the number of relevant features.
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5.1 Experimental validation

Table 2 summarizes the four publicly available datasets used in our experiments. These datasets

were downloaded from http://www.nipsfsc.ecs.soton.ac.uk/datasets/ and http://www.agnostic.

inf.ethz.ch/datasets.php, and have been previously used for feature selection challenges.

Our proposed method of selecting the relevant features can be used in conjunction with any

ranking criterion having an approximate normal distribution. For our experiments we used the two-

sample t-statistic (42) for the scores. We compare dthe number of features selected by the proposed

method to those selected by the cross-validated area under the ROC curve (AUC) based criterion.

The AUC based criterion operates as follows: features are first sorted based on the absolute value

of the two-sample t-statistic; a linear discriminant analysis (LDA) classifier is trained using the

top t features. The performance of this classifier was tested on an independent validation set (see

Table 2). We used the AUC as our performance metric. This was repeated for t varying from 1 to

d–the number of features. The optimal number of features selected was the value of t where the

AUC on the validation set was maximum.

Table 3 compares the number of features selected by the proposed method with those selected

by the cross-validated AUC based criteria. The resulting AUC on the validation set was also

compared. This table can be studied in conjunction with Figure 11 which plots the AUC on both

the training and the validation set as a function of t. The following observations can be made.

1. From Table 3, for most datasets the number of features selected by the proposed algorithm is

very close to those selected by the cross-validation based criterion; in cases where they differ

the proposed method achieves very similar AUC on the test set.

2. For some datasets (see Figures 11(a) and (b)) the AUC on the validation set reaches a peak

and then starts decreasing. In such cases the number of features selected by the proposed

algorithm is very close to the features selected by cross-validation.

3. For some datasets (see Figures 11(c) and (d)), the AUC on the validation set saturates after

which there is no further significant improvement in the AUC by including more features. In

such cases the proposed method achieves very similar AUC on the validation set.

4. The proposed algorithm shows good generalization properties. The number of features se-

lected by the proposed algorithm leads to the best AUC on the validation set.

5. The proposed method is computationally efficient. It does not require any sort of cross-

validation. The cross-validated AUC based criteria is very time and memory consuming,
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especially if the number of features is large.

A Appendix: Computational details

In this appendix we list the details needed for the implementation of our thresholding rules.

A.1 Quantities of interest for the Normal prior

For the normal prior γa(µ) = N (µ|0, a2) = (2πa2)−1/2 exp (−µ2/2a2), we have ga(x) = N (x|0, 1 +

a2), G(µ) = N (µ|m,σ2), where m = a2

1+a2 x and σ =
√

a2

1+a2 . Then EG[µ] = m and EG[|µ|] =

m[2Φ(m
σ ) − 1] + 2φ(m

σ ), where Φ(x) =
∫ x
−∞ φ(z)dz is the cumulative distribution function of the

standard normal φ(x) = N (x|0, 1). The solution to
∫ y
−∞G(µ)dµ = c is given by y = σΦ−1(c) + m,

and
∫∞
−∞ |µ̂− µ|G(µ)dµ = (m− µ̂)(2Φ(m−µ̂

σ )− 1) + 2φ(m−µ̂
σ ).

A.2 Quantities of interest for the Laplace prior

For the Laplace prior γa(µ) = a
2 exp (−a|µ|) we have the following,

ga(x) =
a

2
exp(a2/2) [exp(−ax)Φ(x− a) + exp(ax)(1− Φ(x + a))] . (43)

G(µ) =
exp(−sgn(µ)ax)N (µ|x− sgn(µ)a, 1)

exp(−ax)Φ(x− a) + exp(ax)(1− Φ(x + a))
, (44)

where sgn(z) = 1 if z ≥ 0 and sgn(z) = −1 if z < 0.

EG[µ] =
exp(−ax) ((x− a)Φ(x− a) + φ(x− a)) + exp(ax) ((x + a)(1− Φ(x + a))− φ(x + a))

exp(−ax)Φ(x− a) + exp(ax)(1− Φ(x + a))
. (45)

EG[|µ|] =
exp(−ax) ((x− a)Φ(x− a) + φ(x− a))− exp(ax) ((x + a)(1− Φ(x + a))− φ(x + a))

exp(−ax)Φ(x− a) + exp(ax)(1− Φ(x + a))
. (46)

∫ y

−∞
G(µ)dµ =





eaxΦ(y−(x+a))
e−axΦ(x−a)+eax(1−Φ(x+a))

if y < 0
eaxΦ(−(x+a))+e−ax(Φ(y−(x−a))−Φ(−(x−a)))

e−axΦ(x−a)+eax(1−Φ(x+a))
if y ≥ 0

. (47)

The solution to
∫ y
−∞G(µ)dµ = c is given by

y =





x + a + Φ−1{c(e−2axΦ(x− a) + 1− Φ(x + a))} if y < 0

x− a + Φ−1{1 + x− a + (c− 1)(e2ax + Φ(x− a)− e2axΦ(x + a))} if y ≥ 0
. (48)

∫ ∞

−∞
|µ− µ̂|G(µ)dµ

=
{

eax{2(µ̂−x−a)Φ(µ̂−x−a)−(µ̂−x−a)Φ(−(x+a))−φ(x+a)}+e−ax{φ(a−x)−(µ̂−x+a)Φ(x−a)}
e−axΦ(x−a)+eax(1−Φ(x+a))

if µ̂ < 0

eax{(µ̂−x−a)Φ(−(x+a))+φ(x+a)}e−ax{2(µ̂−x+a)Φ(µ̂−x+a)−(µ̂−x+a)Φ(a−x)−(µ̂−x+a)+2φ(µ̂−x+a)−φ(a−x)}
e−axΦ(x−a)+eax(1−Φ(x+a))

if µ̂ ≥ 0

(49)
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Table 1: Average of the total squared error for various signals and different settings of our

proposed procedure. See Section 4 for details of the simulation setup. Some of the methods with

the minimum error are in bold, the best method is underlined. The results for EBayesThresh,

FDR, SURE, and Universal hard threshold are directly taken from Table I in Johnstone and

Silverman (2004). The left most column ranks the different procedures by computing the average

rank among the different scenarios.

R (Number nonzero) 5 5 5 5 50 50 50 50 500 500 500 500

Rank V (Value nonzero) 3 4 5 7 3 4 5 7 3 4 5 7

Proposed method

7 L2 loss normal prior K=0 34 30 18 12 194 158 112 80 857 819 752 665

1 L2 loss normal prior 34 30 17 10 193 151 96 54 807 722 585 502

9 L2 loss laplace prior K=0 33 31 19 10 200 167 120 86 862 889 832 711

3 L2 loss laplace prior 33 30 18 6 198 159 102 60 848 774 649 572

4 L1 loss normal prior K=0 36 31 15 8 213 149 96 70 819 778 697 620

2 L1 loss normal prior 36 32 15 5 214 155 96 57 790 698 614 516

6 L1 loss laplace prior K=0 35 31 15 8 213 154 100 74 859 874 790 661

5 L1 loss laplace prior 35 32 15 6 215 159 102 67 855 777 751 673

15 L1 loss lasso prior 50 69 78 88 238 272 290 332 857 876 876 889

EBayesThresh

8 Laplace prior pos. median 36 32 17 8 214 156 101 73 857 873 783 658

10 Laplace prior pos. mean 34 32 21 11 201 169 122 85 860 888 826 708

FDR

12 q=0.01 43 51 26 5 392 299 125 55 2568 1332 656 524

11 q=0.1 40 35 19 13 280 175 113 102 1149 744 651 644

16 q=0.4 58 58 53 52 298 265 256 254 919 866 860 860

14 SURE 38 42 42 43 202 209 210 210 829 835 835 835

13 Universal hard threshold 39 37 18 7 370 340 163 52 3672 3355 1578 505
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Table 2: The four data sets used in our feature selection experiments.

Dataset Training examples Validation examples Number of features Domain

madelon 2000 600 500 Synthetic

gina 3153 315 970 Handwriting

ada 4147 415 48 Marketing

sylva 13086 1309 216 Ecology

Table 3: The number of features selected by the proposed method (with normal prior and L2

loss) and those selected by the cross-validated AUC based criteria for the different datasets. The

resulting AUC on the validation set is also shown.

Dataset Features Proposed procedure Cross-validated AUC criterion

Features selected Validation set AUC Features Validation set AUC

madelon 500 13 0.634 15 0.645

gina 970 292 0.943 280 0.946

ada 48 20 0.861 31 0.867

sylva 216 18 0.987 11 0.997
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Figure 1: A sample sequence used in our simulation studies. The N = 1000 length sequence has

R = 5 values that are non-zero, with signal strength V = 7.
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Figure 2: Illustration of our thresholding rule with 0/1+L2-mixture loss and normal non-zero prior

for the sequence shown in Figure 1. (a) The estimated sequence with K = 10 penalty in the mixture

loss. (b) The thresholding behavior of the estimator, the estimated hyperparameters a and w are

also shown. (c) and (d) show the same without the 0/1 loss, i.e, K = 0. This leads to shrinkage

but no thresholding.
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Figure 3: Illustration of our thresholding rule with 0/1+L1-loss and normal non-zero prior for

the sample sequence shown in Figure 1. (a) The estimated sequence with K = 10 penalty in the

mixture loss. (b) The thresholding behavior of the estimator, the estimated hyperparameters a and

w are also shown. (c) and (d) show the same without the 0/1 loss, i.e, K = 0. While K = 0 also

results in thresholding, the TSE with non-zero K = 10 is much smaller than with K = 0.
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Figure 4: Very sparse signal R = 5. The total squared error (TSE) averaged over 100 trials as a

function of K for different choices of the mixture loss functions (0/1+L1 and 0/1+L2) and non-zero

part of the mixture prior (normal and Laplace), and for signal strengths (a) V = 3 and (b) V = 7.

In each plot the dashed horizontal line corresponds to the estimator with K = 0.
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Figure 5: Sparse signal R = 50. The total squared error (TSE) averaged over 100 trials as a function

of K for different choices of the mixture loss functions (0/1+L1 and 0/1+L2) and non-zero part of

the mixture prior (normal and Laplace), and for signal strengths (a) V = 3 and (b) V = 7. In each

plot the dashed horizontal line corresponds to the estimator with K = 0.
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Figure 6: Dense signal R = 500. The total squared error (TSE) averaged over 100 trials as a

function of K for different choices of the mixture loss functions (0/1+L1 and 0/1+L2) and non-

zero part of the mixture prior (normal and Laplace), and for signal strengths (a) V = 3 and (b)

V = 7. In each plot the dashed horizontal line corresponds to the estimator with K = 0.
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Figure 7: (a) Plots comparing the optimal value of the penalty K and the value recommended (K =

C10c/ŵ, where we have set the constant C = 10−3) as a function of the estimated hyperparameter

â for a sequence of length N = 1000 with R = 50 non-zero values; the normal non-zero prior and

0/1+L2 mixture loss was used. (b) Plots comparing the minimum TSE that can be achieved by the

optimal K and that obtained by our procedure; plots were generated by running the simulations

for different values of non-zero signal strength V and are averaged over 100 repetitions.
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Figure 8: (a) Plots comparing of the optimal value of K and the value recommended (K = C10c/ŵ,

where we have set the constant C = 10−3) as a function of the estimated hyperparameter ŵ for

a sequence of length N = 1000, with R non-zero values and signal strength for V = 5. (b) Plot

comparing the minimum TSE that can be achieved by the optimal K and that obtained by our

procedure; plots were generated by running the simulations for different number of non-zero values

R and are averaged over 100 repetitions.
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(d)

Figure 9: (a) The estimated hyperparameter w and (b) the actual fraction of zeros in the final

estimate as a function of 1 − R/N (the fraction of zeros in the signal) for different choices of the

mixture loss functions (0/1+L1 and 0/1+L2) and non-zero part of the mixture prior (normal and

laplace) and for signal strength V = 5. The corresponding (c) false positive rate (the fraction

of zeros incorrectly labeled as non-zero) and (d) the false negative rate (the fraction of non-zeros

incorrectly labeled as zero) are also shown. In each plot the dashed line corresponds to the estimator

with K = 0.
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Figure 10: (a) The total squared error (TSE) corresponding to the experiment in Figure 9. (b)

The corresponding percentage improvement in TSE obtained due to the mixture loss function.
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Figure 11: The Area under the ROC curve (AUC) for both the training and the validation set as a

function of the number of top features used to train the LDA classifier for different datasets. The

number of features selected by the proposed method (which requires no cross-validation) is marked

as a red dotted line. The number of features selected by the cross-validation based AUC criterion

is marked as a dotted black line.
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