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Abstract We propose and implement a density estimation procedure which begins
by turning density estimation into a nonparametric regression problem. This regres-
sion problem is created by binning the original observations into many small size bins,
and by then applying a suitable form of root transformation to the binned data counts.
In principle many common nonparametric regression estimators could then be applied
to the transformed data. We propose use of a wavelet block thresholding estimator in
this paper. Finally, the estimated regression function is un-rooted by squaring and nor-
malizing. The density estimation procedure achieves simultaneously three objectives:
computational efficiency, adaptivity, and spatial adaptivity. A numerical example and a
practical data example are discussed to illustrate and explain the use of this procedure.
Theoretically it is shown that the estimator simultaneously attains the optimal rate
of convergence over a wide range of the Besov classes. The estimator also automati-
cally adapts to the local smoothness of the underlying function, and attains the local
adaptive minimax rate for estimating functions at a point. There are three key steps in
the technical argument: Poissonization, quantile coupling, and oracle risk bound for
block thresholding in the non-Gaussian setting. Some of the technical results may be
of independent interest.
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1 Introduction

Density estimation and nonparametric regression are two fundamental nonparametric
problems and have traditionally been treated separately in the literature. In this paper
we describe a simple algorithm that allows density estimation to be treated as a non-
parametric regression problem. We then show in detail how this algorithm can be used
along with a wavelet regression estimator. The resulting procedure yields a conve-
nient, effective density estimator that is adaptive and rate-optimal over a broad range
of function classes.

Our basic algorithm can be termed a “root–unroot” procedure. It can easily be
shown in special settings that the resulting density estimator shares analogous asymp-
totic optimality properties with the nonparametric regression estimator used in the
algorithm. It is more complex to show this in broad adaptive settings. The current
paper provides a complete proof of this in such a broad setting, and hence validates
the root–unroot algorithm in this setting and provides strong evidence for the generality
of the heuristic motivation underlying the algorithm.

As we describe in Sect. 3, the root–unroot procedure involves binning the obser-
vations and using a “mean-matching” square root of the bin counts. Virtually any
reliable nonparametric regression estimator can be applied to these square rooted bin
counts. The resulting regression estimator is then un-rooted and normalized in order
to provide the final density estimator. Two key steps are the choice of bin-size and the
use of the asymptotically “mean-matching” square root transformation. The algorithm
is particularly convenient for the use of wavelet methods because with no difficulty it
can provide the binary number of equally spaced regression observations for which a
wavelet method is most suited.

There are two separate, though related, motivations for the root–unroot algorithm.
First, recent results in asymptotic equivalence theory have shown that, under very mild
regularity conditions, density estimation is asymptotically equivalent to nonparametric
regression. For such equivalence results see [5,29]. Binning and taking the square-root
of the bin counts lies at the heuristic heart of these equivalence results. It turns out
that mean-matching allows simple and effective use of transformed bin-counts for the
specific goal of density estimation without the necessity of implementing the much
more complex equivalence mappings described in these papers.

A second motivation for the method involves the ideas of Poissonization and var-
iance stabilization. Poissonization is discussed in several sources [25,27]. The bin
counts have a multinomial distribution and here Poissonization allows one to treat
the bin counts as if they were independent Poisson variables. The variance stabilizing
transformation for Poisson variables is any member of a family of square-root trans-
formations. This family was discussed in Barlett [3] and Anscombe [1]. Anscombe
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described a particular member of this family that provides the greatest asymptotic con-
trol over the variance of the resulting transformed variables. However, for the present
purposes it is more important (and often essential) to have better asymptotic control
over the bias of the transformed variables, whereas optimal control of the variance
term is not essential. The mean-matching transformation that we use provides the
necessary degree of control over the bias of our resulting estimator.

The root transform turns the density estimation problem into a standard
nonparametric regression problem. Virtually any good nonparametric regression pro-
cedure can then be applied. In this paper we shall use a wavelet estimator. Wavelet
methodology has demonstrated considerable success in nonparametric regression in
terms of spatial adaptivity and asymptotic optimality. In particular, block threshold-
ing rules have been shown to possess impressive properties. The estimators make
simultaneous decisions to retain or to discard all the coefficients within a block and
increase estimation accuracy by utilizing information about neighboring coefficients.
In the context of nonparametric regression local block thresholding has been studied
[8,9,11,21].

The wavelet regression estimator used in our implementation of the root–unroot
algorithm is one such block thresholding procedure. It first divides the empirical coef-
ficients at each resolution level into non-overlapping blocks and then simultaneously
keeps or kills all the coefficients within a block, based on the sum of the squared
empirical coefficients within that block. Motivated by the analysis of block thres-
holding rules for nonparametric regression in Cai [8], the block size is chosen to be
asymptotically log n. It is shown that the estimator has a high degree of adaptivity.
The root–unroot and block thresholding procedure is easy to implement and the pro-
cedure performs well for modest, realistic sample sizes and not only for sample sizes
approaching infinity as is promised by asymptotic theory.

Theoretically we show that our density estimator possesses several desirable prop-
erties. It is shown that the estimator simultaneously attains the optimal rate of con-
vergence under both the squared Hellinger distance loss and the integrated squared
error over a wide range of the Besov classes. The estimator is also spatially adap-
tive: it attains the local adaptive minimax rate for estimating functions at a point.
Implementation of our procedure is relatively straightforward, but the proof of the
main theoretical results requires several steps. The first step is Poissonization. It is
shown that the fixed sample size density problem is not essentially different from
the density problem where the sample size is a Poisson random variable. The second
step is the use of an appropriate version of the quantile coupling inequality of Komlós
et al. [24] to approximate the binned and root transformed data by independent normal
variables. The third step is the derivation of a risk bound for block thresholding in the
case where the noise is not necessarily Gaussian. Some of these technical results may
be of independent interest.

It should be noted that density estimation has a long history and an extensive liter-
ature [31]. The traditional estimators are typically linear and thus not spatially adap-
tive. A wavelet density estimator was first introduced by Donoho et al. [18]. Minimax
convergence rates over Besov classes were derived. It was shown that nonlinear thres-
holding approach can have significant advantage over the traditional linear methods.
However, the wavelet density estimator introduced in that paper is not practical as the
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thresholds are not fully specified. The resulting density estimator is also not fully adap-
tive. In the case of term-by-term wavelet thresholding estimators, analysis of mean
integrated squared error of single functions is also available [22].

We should also note that wavelet block thresholding has been used for density esti-
mation in the literature. A local block thresholding density estimator was introduced
in Hall et al. [21]. The estimator was shown to be globally rate optimal over a range
of function classes of inhomogeneous smoothness under integrated squared error.
However the estimator does not achieve the optimal local adaptivity under pointwise
squared error. Chicken and Cai [12] proposed a block thresholding density estimator
which is adaptive under both the global and pointwise risk measures. However these
estimators are not very practical as they are not easily implementable and require
tuning parameters.

The paper is organized as follows. Section 2 discusses the mean-matching variance
stabilizing root transform for a Poisson variable. We first discuss the general ideas for
the root–unroot transform approach in Sect. 3 and then consider our specific wavelet
block thresholding implementation of the general approach in Sect. 4. Theoretical
properties of the root–unroot block thresholding density estimator are discussed in
Sect. 5. In Sect. 6, we discuss the implementation of the estimator and application of
the procedure to a call center data set. Technical proofs are given in Sect. 7.

2 Root transform

Variance stabilizing transformations, and closely related transformations to approx-
imate normality, have been used in many statistical contexts. See Hoyle [23] for a
review of the extensive literature. See also [19] and [2]. For Poisson distributions,
Bartlett [3] was the first to propose the root transform

√
X in a homoscedastic linear

model where X ∼ Poisson(λ). Anscombe [1] proposed improving the variance sta-

bilizing properties by instead using
√

X + 3
8 . The constant 3

8 is chosen to optimally
stabilize the variance using the Taylor expansion. Anscombe’s variance stabilizing
transformation has also been briefly discussed in Donoho [16] for density estimation.

In the context of nonparametric density estimation considered in the present paper,
in comparison to variance stabilization, mean matching is more important. A mean-
matching root transform is needed for minimizing the bias as well as stabilizing the
variance. The goal of mean matching is to choose a constant c so that the mean of√

X + c is “closest” to
√
λ. The following lemma gives the expansions of the mean

and variance of root transform of the form
√

X + c where c is a constant. It can be
seen easily that c = 1

4 is the optimal choice for minimizing the bias E(
√

X + c)−√
λ

in the first order.

Lemma 1 Let X ∼ Poisson(λ) with λ > 0 and let c ≥ 0 be a constant. Then

E
(√

X + c
)

= λ
1
2 + 4c − 1

8
· λ− 1

2 − 16c2 − 24c + 7

128
· λ− 3

2 + O(λ− 5
2 ) (1)

Var
(√

X + c
)

= 1

4
+ 3 − 8c

32
· λ−1 + 32c2 − 52c + 17

128
λ−2 + O(λ−3). (2)
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Fig. 1 Comparison of the mean (left panel) and variance (right panel) of root transforms with c = 0 (solid

line), c = 1
4 (plus line) and c = 3

8 (dashed line)

In particular, for c = 1
4

E

(√
X + 1

4

)
= λ

1
2 − 1

64
λ− 3

2 + O(λ− 5
2 ) (3)

Var

(√
X + 1

4

)
= 1

4
+ 1

32
λ−1 + 3

64
λ−2 + O(λ−3). (4)

Lemma 1 shows that with c = 1
4 the root transformed variable

√
X + c has van-

ishing first order bias and almost constant variance. Lemma 1 follows from Taylor
expansion and straightforward algebra [1].

Figure 1 compares the mean and variance of three root transforms with c = 0,
c = 1

4 and c = 3
8 . The left panel plots the bias Eλ(

√
X + c) − √

λ as a function of
λ for c = 0, c = 1

4 and c = 3
8 . It is clear from the plot that c = 1

4 is the best choice
among the three for matching the mean. For this value of c the bias is negligible for
λ as small as 2. On the other hand, the root transform with c = 0 yields significant
negative bias and the transform with c = 3

8 produces noticeable positive bias. The
right panel plots the variance of

√
X + c for c = 0, c = 1

4 and c = 3
8 . For variance

c = 3
8 is the best choice among the three when λ is not too small. The root transform

with c = 1
4 is slightly worse than but comparable to the case with c = 3

8 and clearly
c = 0 is the worst choice of the three.

3 Density estimation through regression

We now consider density estimation, the main problem of interest in this paper.
We shall discuss the general ideas for the root–unroot transform approach in this
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section and consider a specific wavelet block thresholding implementation of the gen-
eral approach in Sect. 4.

Suppose that {X1, . . . , Xn} is a random sample from a distribution with the density
function f . We assume that the density function f is compactly supported on an
interval, say the unit interval [0, 1]. Divide the interval into T equi-length subinter-
vals and let Qi be the number of observations on the i th subinterval Ii = [ i−1

T , i
T ),

i = 1, 2, . . . T . Set m = n
T . The counts {Qi } can be treated as observations for a

nonparametric regression directly, but this then becomes a heteroscedastic problem

since the variance of Qi is mpi (1 − pi/T ) where pi = T
∫ i

T
i−1
T

f (x)dx . Instead, we

first apply the root transform discussed in Sect. 2, and treat {
√

Qi + 1
4 } as new regres-

sion observations. The constant 1
4 is chosen to stabilize the variance and at the same

time match the mean as discussed in Sect. 2. We will estimate
√

f first, then square
it back and normalize to get an estimator of f . After the density estimation problem
is transferred into a regression problem, any nonparametric regression method can
be applied. The general ideas for the root–unroot transform approach can be more
formally explained as follows.

The first step of the procedure is binning. Let T be some positive integer (The
choice of T will be discussed later.) Divide {Xi } into T equal length subintervals
between 0 and 1. Let Q1, . . . , QT be the number of observations in each of the subin-
tervals. The Qi ’s jointly have a multinomial distribution. Note that if the sample size
is Poissonized, that is, it is not fixed but a Poisson random variable with mean n and
independent of the Xi ’s, then the counts {Qi : i = 1, . . . , T } are independent Poisson
random variables with

Qi ∼ Poisson(mpi ) where pi = T

i
T∫

i−1
T

f (x)dx .

We then apply the mean-matching root transform discussed in Sect. 2. Set

Yi =
√

Qi + 1

4
, where Qi = Card({k : Xk ∈ Ii }), i = 1, . . . , T, (5)

and treat Y = (Y1,Y2, . . . ,YT ) as the new equi-spaced sample for a nonparametric
regression problem. Through binning and the root transform the density estimation
problem has now been transferred to an equi-spaced, nearly constant variance non-
parametric regression problem. Any good nonparametric regression procedure, such
as a kernel, spline or wavelet procedure, can be applied to yield an estimator

√̂
f of√

f . The final density estimator can be obtained by normalizing the square of
√̂

f .
Algorithmically, the root–unroot density estimation procedure can be summarized as
follows.

1. Binning. Divide {Xi } into T equal length intervals between 0 and 1. Let Q1,
Q2, . . ., QT be the number of observations in each of the intervals.
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2. Root transform. Let Yi =
√

Qi + 1
4 , i = 1, . . . , T , and treat Y = (Y1,Y2,

. . . ,YT ) as the new equi-spaced sample for a nonparametric regression problem.
3. Nonparametric regression. Apply your favorite nonparametric regression

procedure to the binned and root transformed data Y to obtain an estimate
√̂

f of√
f .

4. Unroot. The density function f is estimated by f̂ = (
√̂

f )2.
5. Normalization. The estimator f̂ given in Step 4 may not integrate to 1. Set

f̃ (t) = f̂ (t)/

1∫

0

f̂ (t)dt

and use f̃ as the final estimator.

In this paper, we combine the formal Root–Unroot procedure with the wavelet
block thresholding method BlockJS given in Cai [8]. We will describe the BlockJS
procedure in the next section and show in Sect. 5 that the resulting density estimator
enjoys a high degree of adaptivity over a wide range of Besov classes. The numerical
performance of this type of root–unroot procedure was investigated in Zhang [35],
using the VisuShrink wavelet estimator at Step 3.

Remark 1 An advantage of the root–unroot methodology is that it turns the density
estimation problem to a standard homoscedastic nonparametric regression in which
better-understood tools can then be used to construct confidence sets for the density,
in addition to estimates. For the construction of confidence sets in regression setting
[10,20].

4 Wavelets and block thresholding

Let {φ,ψ} be a pair of compactly supported father and mother wavelets with
∫
φ = 1.

Dilation and translation of φ and ψ generate an orthonormal wavelet basis. For sim-
plicity in exposition, we work with periodized wavelet bases on [0, 1]. Let

φ
p
j,k(x) =

∞∑

l=−∞
φ j,k(x − l), ψ

p
j,k(x) =

∞∑

l=−∞
ψ j,k(x − l), for x ∈ [0, 1]

where φ j,k(x) = 2 j/2φ(2 j x − k) and ψ j,k(x) = 2 j/2ψ(2 j x − k). The collection
{φ p

j0,k
, k = 1, . . . , 2 j0; ψ p

j,k, j ≥ j0 ≥ 0, k = 1, . . . , 2 j } is then an orthonormal

basis of L2[0, 1], provided j0 is large enough to ensure that the support of the wavelets
at level j0 is not the whole of [0, 1]. The superscript “p” will be suppressed from the
notation for convenience. A square-integrable function f on [0, 1] can be expanded
into a wavelet series,
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f (x) =
2 j0∑

k=1

ξ j0,kφ j0,k(x)+
∞∑

j= j0

2 j∑

k=1

θ j,kψ j,k(x), (6)

where ξ j0,k = 〈 f, φ j0,k〉 are the coefficients of the father wavelets at the coarsest level
which represent the gross structure of the function f , and θ j,k = 〈 f, ψ j,k〉 are the
wavelet coefficients which represent finer and finer structures as the resolution level
j increases.

An orthonormal wavelet basis has an associated orthogonal Discrete Wavelet Trans-
form (DWT) which transforms sampled data into the wavelet coefficients. See [14]
and [32] for further details about the wavelets and discrete wavelet transform. Note
that one can also use boundary corrected wavelet bases, instead of periodized wavelet
bases. See [13] and [15] for more on boundary corrected wavelet bases.

4.1 Root–unroot and block thresholding for density estimation

We now return to the density estimation problem. Set J = Jn = �log2 n3/4	 and let
T = 2J . Divide {Xi } into T equal length subintervals between 0 and 1, Ii = [ i−1

T , i
T )

for i = 1, . . . , T . Apply the discrete wavelet transform to the binned and root trans-

formed data Y = (Y1, . . . ,YT ) where Yi are given as in (5), and let U = n− 1
2 W Y

be the empirical wavelet coefficients, where W is the discrete wavelet transformation
matrix. Write

U =
(

ũ j0,1, . . . , ũ j0,2 j0 , u j0,1, . . . , u j0,2 j0 , . . . , u J−1,1, . . . , u J−1,2J−1

)′
. (7)

Here ũ j0,k are the gross structure terms at the lowest resolution level, and u j,k

( j = j0, . . . , J −1, k = 1, . . . , 2 j ) are empirical wavelet coefficients at level j which
represent detail structure at scale 2 j . It is important to note that the empirical wavelet
coefficients can be written as

u j,k = θ j,k + ε j,k + 1

2
√

n
z j,k + ξ j,k (8)

where θ jk are the true wavelet coefficients of
√

f , ε j,k are “small” deterministic
approximation errors, z j,k are i.i.d. N (0, 1), and ξ j,k are some “small” stochastic
errors. The theoretical calculations given in Sect. 7 will show that both the approxi-
mation errors ε j,k and the stochastic errors ξ j,k are negligible in certain sense. If these
negligible errors are ignored then we have an idealized sequence model with noise
level σ = 1

2
√

n
,

u j,k ≈ θ j,k + 1

2
√

n
z j,k, where z j,k

iid∼ N (0, 1). (9)

The BlockJS procedure was proposed in Cai [8] for nonparametric regression and
was shown to achieve simultaneously three objectives: adaptivity, spatial adaptivity,
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and computational efficiency. We now apply the BlockJS procedure to the empirical
coefficients u j,k as if they are observed as in (9). More specifically, at each resolution
level j , the empirical wavelet coefficients u j,k are grouped into nonoverlapping blocks
of length L = log n (in the numerical implementation we use L = 2�log2(log n)	). Let
Bi

j denote the set of indices of the coefficients in the i th block at level j , i.e.

Bi
j = {( j, k) : (i − 1)L + 1 ≤ k ≤ i L}.

Let S2
j,i ≡ ∑

( j,k)∈Bi
j
u2

j,k denote the sum of squared empirical wavelet coefficients

in the block Bi
j . The James-Stein shrinkage rule is then applied to each block Bi

j . For

( j, k) ∈ Bi
j ,

θ̂ j,k =
(

1 − λ∗L

4nS2
j,i

)
+ u j,k (10)

where, as in Sect. 4, λ∗ = 4.50524 is the solution to the equation λ∗ − log λ∗ = 3
and 4n in the shrinkage factor of (10) is due to the fact that the noise level in (9) is
σ = 1

2
√

n
. The block size L = log n and the threshold λ∗ = 4.50524 are selected

according to a block thresholding oracle inequality and a minimax criterion [8].

For the gross structure terms at the lowest resolution level j0, we set ˆ̃
θ j0,k = ũ j0,k .

The estimate of
√

f at the equi-spaced sample points { i
T : i = 1, . . . , T } is then

obtained by applying the inverse discrete wavelet transform (IDWT) to the deno-
ised wavelet coefficients. That is, {√ f ( i

T ) : i = 1, . . . , T } is estimated by
√̂

f =
{√̂ f ( i

T ) : i = 1, . . . , T } with
√̂

f = T
1
2 W −1 · θ̂ . The estimate of the whole function√

f is given by

√̂
f (t) =

2 j0∑

k=1

ˆ̃
θ j0,kφ j0,k(t)+

J−1∑

j= j0

2 j∑

k=1

θ̂ j,kψ j,k(t) (11)

and the estimator of the density function f is given by the square of
√̂

f :

f̂ (t) =
⎛
⎝

2 j0∑

k=1

ˆ̃
θ j0,kφ j0,k(t)+

J−1∑

j= j0

2 j∑

k=1

θ̂ j,kψ j,k(t)

⎞
⎠

2

. (12)

By normalizing f̂ we obtain the final density estimator f̃ where

f̃ (t) = f̂ (t)/

1∫

0

f̂ (t)dt. (13)

This density estimation procedure is easily implementable and possesses desirable
properties.
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5 Theoretical properties

We turn in this section to the theoretical properties of the root–unroot BlockJS
density estimators introduced in Sects. 3 and 4. The asymptotic results show that
the procedure enjoys a high degree of adaptivity and spatial adaptivity. Specifically,
we consider adaptivity of the estimator over a wide range of Besov spaces under both
the squared Hellinger distance loss lH (g, f ) = ‖√g−√

f ‖2
2 and the usual integrated

squared error l2(g, f ) = ‖g − f ‖2
2. We also consider spatial adaptivity under

pointwise squared error.
Besov spaces contain a number of traditional smoothness spaces such as Hölder

and Sobolev spaces as special cases and arise naturally in many fields of analysis. See
[17] for a discussion on the relevance of Besov spaces to scientific problems. A Besov
space Bαp,q has three parameters: α measures degree of smoothness, p and q specify
the type of norm used to measure the smoothness. Besov spaces can be defined in sev-
eral ways. For the present paper, we will use the Besov sequence norm based on the
wavelet coefficients. Let (φ, ψ) be a pair of compactly supported father and mother
wavelets. A mother wavelet ψ is called r-regular if ψ has r vanishing moments and
r continuous derivatives. For a given r -regular mother wavelet ψ with r > α and a
fixed primary resolution level j0, the Besov sequence norm ‖ · ‖bαp,q of a function g is
then defined by

‖g‖bαp,q = ‖ξ j0,k‖	p +
⎛
⎝

∞∑

j= j0

⎛
⎝2 js

(∑

k

|θ j,k |p

)1/p
⎞
⎠

q⎞
⎠

1/q

(14)

where s = α + 1/2 − 1/p, ξ jk = ∫ 1
0 g(t)φ jk(t) dt and θ jk = ∫ 1

0 g(t)ψ jk(t) dt . The
standard modification applies for the cases p, q = ∞. See [33] and [28] for further
details on Besov spaces. We define Bαp,q(M) = { f ; ‖ f ‖bαp,q ≤ M}.

In the present paper, we consider the risk of estimating the density function f over
Besov balls,

Fαp,q(M, ε) =
⎧
⎨
⎩ f : f ∈ Bαp,q(M),

1∫

0

f(x)dx = 1, f(x) ≥ ε for all x ∈ [0, 1]
⎫
⎬
⎭.

Note that when f is bounded below from 0 and above from a constant, the condition
f ∈ Bαp,q(M) is equivalent to that there exists M ′ > 0 such that

√
f ∈ Bαp,q

(
M ′)

[30].

Remark 2 The assumption f(x) ≥ ε implies that the number of observations Qi in
each bin is large so that Yi defined in Eq. (5) can be treated as if it were a normal random
variable. See Lemmas 2 and 3 for more details. This assumption can be relaxed. For
instance, the main results in this paper can be extended to the case that the density f
is 0 at a fixed number of points so long as f ′ is not 0 at those points.

The two density estimators, f̂ in (12) and the normalized version f̃ in (13), share
the same asymptotic properties. To save space we shall use f∗ to denote either f̂ or f̃
in the theoretical results given below. The following results show that the estimators
enjoy a high degree of adaptivity under the squared Hellinger distance loss.
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The root–unroot algorithm for density estimation 411

Theorem 1 Let x1, x2, . . . , xn be a random sample from a distribution with density
function f . Suppose the wavelet ψ is r -regular. Let f∗ be either f̂ given in (12) or f̃

given in (13) with m = Cn
1
4 . Then for p ≥ 2, α ≤ r and 2α2 − α/3

1 + 2α − 1
p > 0

sup
f ∈Fαp,q (M,ε)

E
∥∥∥
√

f∗ −√
f
∥∥∥

2

2
≤ Cn− 2α

1+2α , (15)

and for 1 ≤ p < 2, α ≤ r and 2α2 − α/3
1 + 2α − 1

p > 0

sup
f ∈Fαp,q (M,ε)

E
∥∥∥
√

f∗ −√
f
∥∥∥

2

2
≤ Cn− 2α

1+2α (log n)
2−p

p(1+2α) . (16)

Remark 3 Note that the two density estimators depend on the number of bins T or
equivalently the bin size m. Lemma 1 implies that the mean-matching variance sta-
bilization transformation leads to a bias term of order m−3/2. The cumulative con-
tribution of the biases in the mean squared error of all T bins is then at a level of
1
n T (m−3/2)2 = m−4. To make this term negligible for all α, we set m−4 = O(n−1),

i.e., m = Cn1/4, or equivalently T = C−1n3/4. In practice, we define T = 2�log2 n3/4�,
where �a� denotes the smallest integer greater than or equal to a, and consequently
the average bin size m is n/T = n2−�log2 n3/4�.

Theorem 1 together with the lower bound given in Theorem 2 below show that
the estimators f̂ and f̃ are adaptively minimax rate optimal over Besov balls with
p ≥ 2 for a large range of α, and at the same time is within a logarithmic factor of the
minimax risk over Besov balls with 1 ≤ p < 2 for a range of α.

Theorem 1 states the adaptivity results in the squared Hellinger distance error. Same
results hold for the conventional integrated squared error.

Corollary 1 Under the conditions of Theorem 1,

sup
f ∈Fαp,q (M,ε)

E‖ f∗ − f ‖2
2

≤
⎧
⎨
⎩

Cn− 2α
1+2α p ≥ 2 and 2α2 − α/3

1 + 2α − 1
p > 0

Cn− 2α
1+2α (log n)

2−p
p(1+2α) 1 ≤ p < 2 and 2α2 − α/3

1 + 2α − 1
p > 0.

(17)

The following theorem gives lower bound for the minimax risk under the squared
Hellinger distance loss.

Theorem 2 Let x1, x2, . . . , xn be a random sample from a distribution with the density
function f . Then for p ≥1 and α+ 1

2 − 1
p > 0 there exists constants c1, c2 > 0 such

that

inf
f̂

sup
f ∈Fαp,q (M,ε)

E

∥∥∥∥
√

f̂ −√ f

∥∥∥∥
2

2
≥c1n− 2α

1+2α and inf
f̂

sup
f ∈Fαp,q (M,ε)

E
∥∥ f̂ − f

∥∥2
2 ≥c2n− 2α

1+2α .
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Theorem 2 follows from similar arguments used in the proof of Theorem 2 of [18].
The upper bounds and the lower bounds given above together show that the density

estimator enjoys a high degree of adaptivity over a wide range of the Besov classes
under both the squared Hellinger distance loss and the integrated squared error. How-
ever, for functions of spatial inhomogeneity, the local smoothness of the functions
varies significantly from point to point and global risk given in Theorem 1 cannot
wholly reflect the performance of estimators at a point. We thus consider spatial adap-
tivity as measured by the local risk

R
(

f̂ (t0), f (t0)
) = E

(
f̂ (t0)− f (t0)

)2
(18)

where t0 ∈(0, 1) is any given point. The local smoothness of a function can be measured
by its local Hölder smoothness index. For a fixed point t0 ∈ (0, 1) and 0 < α ≤ 1,
define the local Hölder class 
α(M, t0, δ) as follows:


α(M, t0, δ) = {
f : | f (t)− f (t0)| ≤ M |t − t0|α, for t ∈ (t0 − δ, t0 + δ)

}
.

If α > 1, then


α(M, t0, δ)=
{

f : | f (�α	)(t)− f (�α	)(t0)| ≤ M |t − t0|α′
for t ∈ (t0 − δ, t0 + δ)

}

where �α	 is the largest integer less than α and α′ = α − �α	. In Gaussian non-
parametric regression setting, it is well known that for local estimation, one must
pay a price for adaptation. The optimal rate of convergence for estimating f (t0) over
function class
α(M, t0, δ)with α completely known is n−2α/(1+2α). Lepski [26] and
Brown and Low [7] showed that one has to pay a price for adaptation of at least a
logarithmic factor. It is shown that the local adaptive minimax rate over the Hölder
class 
α(M, t0, δ) is (log n/n)2α/(1+2α). The following theorem shows that our den-
sity estimator automatically attains the local adaptive minimax rate for estimation at
a point, without prior knowledge of the smoothness of the underlying functions.

Theorem 3 Suppose the wavelet ψ is r-regular with r ≥ α > 1/6. Let t0 ∈ (0, 1) be
fixed. Then the estimator f̂n defined in (12) satisfies

sup
f ∈
α(M,t0,δ)

E
(

f̂n(t0)− f (t0)
)2 ≤ C ·

(
log n

n

) 2α
1+2α

. (19)

5.1 A brief outline for the proof of Theorem 1

The proof of Theorem 1 is somewhat involved. There are three key steps in the proof.
The first step is Poissonization. It is shown that the fixed sample size density problem

is not essentially different from the density problem where the sample size is a Poisson
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random variable. This step enables us to treat the counts on subintervals as independent
Poisson variables as discussed briefly in Sect. 3.

The second step is the use of the quantile coupling inequality of Komlós et al. [24]
to approximate the binned and root transformed data by independent normal vari-
ables. In this step, we shall give tight bounds for both the deterministic approximation
errors ε j,k and the stochastic errors ξ j,k in the decomposition of the empirical wavelet
coefficients given in (8).

The third step is the derivation of a risk bound for block thresholding in the case
where the noise is not necessarily Gaussian. This risk bound is useful in turning the
analysis of the density estimator into the bias-variance trade-off calculation which is
often used in more standard Gaussian nonparametric regression.

6 Numerical implementation and examples

The root–unroot approach is easy to implement if the nonparametric regression pro-
cedure in Step 3 is computationally efficient. In Sect. 4, we discuss in detail a wavelet
block thresholding implementation of the root–unroot approach which is fast to com-
pute. We implement the procedure in Splus. The following plot illustrates the steps in
the root–unroot BlockJS procedure. A random sample is generated from a distribution
with a multi-modal density function. The histogram of the data is given in the upper
left panel and the binned and root transformed data is plotted in the upper right panel.
The empirical wavelet coefficients and the BlockJS denoised coefficients are plotted,
respectively, in the middle left and right panels. The estimate of the square root of
the density function (solid line) is given in the lower left panel and the estimate of
the density function is plotted in the lower right panel. The dotted lines in the lower
panels are the true functions (Fig. 2).

The following example taken from a practical data set illustrates the application of
our root–unroot wavelet method. The data are the arrival times of calls to agents at an
Israeli financial call-center. This data is a portion of that described in much more detail
and analyzed from several related perspectives in Brown [6]. The values recorded are
the times (in second) at which telephone calls seeking service from agents arrive to
be served by the agent pool. In this example we only use calls received throughout
the year on non-holiday Sundays (Sunday is the first day of the regular work-week in
Israel). The data for current analysis contains about 55,000 call arrival times.

Features of arrival densities are of practical interest. The left panel of Fig. 3 shows
the histogram of this arrival time data. The right panel shows the density estimate
produced by the root–unroot, wavelet block thresholding methodology. In this exam-
ple we use T = 512, symmelet “s16” and the primary level j0 = 4. Note the three
modes in the density plot. These occur at roughly 10–11 a.m., 2–3 p.m. and approx-
imately 10 p.m. The morning buildup and afternoon fall-off in call density is other-
wise a fairly smooth curve. The dip in arrival density between the first two modes is
presumably connected to the time of lunch break, when Israelis seem less inclined to
call their bank. The noticeable mode at around 10 p.m. may be related to societal TV or
bedtime habits or to phone rates in Israel, which change at 10 p.m. See [34] for a more
sophisticated analysis of a similar set of data from an American financial call center.
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Fig. 2 An example of the root–unroot BlockJS density estimator
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Fig. 3 The histogram (left panel) and the density estimate (right panel) of the call center data

7 Proofs

We shall only give a complete proof for Theorem 1. Theorem 2 can be proved by using
similar arguments given in the proof of Theorem 2 of [18] and the proof of Theorem 3
is similar to that of Theorem 4 of [4].
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As outlined in Sect. 5.1, the proof of Theorem 1 contains three key steps: Poiss-
onization, coupling, and bounding the risk of block thresholding estimators. We shall
proceed according to these three steps. We first prove a Poissonized version of Theo-
rem 1. The proof for squared Hellinger distance loss is given in Sect. 7.4 and the proof
for integrated squared error is given in Sect. 7.5. Section 7.6 shows that the normalized
estimator f̃ shares the same properties as the estimator f̂ . Finally we complete the
proof of Theorem 1 in Sect. 7.7 by showing that the Poissonized version of Theorem 1
yields the corresponding results for density estimation.

7.1 Poissonized density estimation

We begin by introducing a Poissonized version of the density estimation problem. Let
N ∼ Poisson(n) and let x1, x2, . . . , xN be a random sample from a distribution with
density function f . Suppose that xi ’s and N are independent and that the density f
is supported on the unit interval [0, 1]. Let Qi be the number of observations on the
interval [(i − 1)/T, i/T ), i = 1, 2, . . . T . Set m = n/T . Then Qi ∼ Poisson(mpi )

where pi = T
∫ i

T
i−1
T

f(x)dx . Set

Yi =
√

Qi + 1

4
, i = 1, 2, . . . , T (20)

and let f̂ be given as in (12) and f̃ given in (13). We shall first prove a Poissonized
version of Theorem 1 which shows that f̂ has the same rate of convergence when the
sample size is a Poisson variable as when the sample size is fixed.

Theorem 4 Let x1, x2, . . . , xN
i.i.d.∼ f, N ∼ Poisson(n). Suppose the wavelet ψ is

r-regular and α ≤ r . Let f∗ be either f̂ given in (12) or f̃ given in (13) with m = Cn
1
4 .

Then

sup
f ∈Fαp,q (M,ε)

E

∥∥∥∥
√̂

f∗ −√
f

∥∥∥∥
2

2

≤
⎧
⎨
⎩

Cn− 2α
1+2α p ≥ 2, 2α2 − α/3

1 + 2α − 1
p > 0

Cn− 2α
1+2α (log n)

2−p
p(1+2α) 1 ≤ p < 2, 2α2 − α/3

1 + 2α − 1
p > 0.

Corollary 2 Under the conditions of Theorem 4,

sup
f ∈Fαp,q (M,ε)

E‖ f∗ − f ‖2
2

≤
⎧
⎨
⎩

Cn− 2α
1+2α p ≥ 2 and 2α2 − α/3

1 + 2α − 1
p > 0

Cn− 2α
1+2α (log n)

2−p
p(1+2α) 1 ≤ p < 2 and 2α2 − α/3

1 + 2α − 1
p > 0.
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We should note that the result in Theorem 4 holds in more general setting where
one is interested in estimating the intensity function of an inhomogeneous Pois-
son process. A similar result has been used for this purpose in Zhang [35] and
Brown et al. [6].

The proof of Theorem 4 requires analysis of both the deterministic part (the mean)
and the stochastic part of Yi given in ( 20). We shall first collect in the next section
technical lemmas that are needed for the proof of Theorem 4. In Sect. 7.6, we show
the risk difference between f̂ and f̃ is negligible.

7.2 Coupling and preparatory results

We shall use the quantile coupling inequality of [24] to approximate the binned and
root transformed data by independent normal variables. The following lemma is a
direct consequence of the results given in Komlós et al. [24] and Zhou [36].

Lemma 2 Let λ > 0 and let X ∼ Poisson(λ). There exists a standard normal random
variable Z ∼ N (0, 1) and constants c1, c2, c3 > 0 not depending on λ such that
whenever the event A = {|X − λ| ≤ c1λ} occurs,

∣∣∣X − λ− √
λZ
∣∣∣ < c2 Z2 + c3. (21)

We shall develop tight bounds for both the deterministic approximation errors ε j,k

and the stochastic errors ξ j,k in the decomposition of the empirical wavelet coefficients

given in (8). Let X ∼ Poisson(λ) and let Y =
√

X + 1
4 and ε = EY −√

λ. Let Z be a

standard normal variable satisfying (21). Then Y can be written as Y = √
λ+ε+ 1

2 Z+ξ
where

ξ = X − λ√
X + 1

4 +
√
λ+ 1

4

− 1

2
Z − E

⎛
⎝ X − λ√

X + 1
4 +

√
λ+ 1

4

⎞
⎠. (22)

It follows from Lemma 1 that when λ is large, ε is “small”, |ε| ≤ 1
64λ

− 3
2 (1 + o(1)).

We shall show, using Lemma 2, that the random variable ξ is “stochastically small”.

Lemma 3 Let X ∼ Poisson(λ) and let the standard normal variable Z be given as in
Lemma 2. Let ξ be given as in (22). Then for any integer i ≥ 1 there exists a constant
Ci > 0 such that for all λ ≥ 1 and all a > 0,

E |ξ |i ≤ Ciλ
− i

2 and P(|ξ | > a) ≤ Ci (a
2λ)−

i
2 . (23)
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Proof First note that Eξ = 0. Set δ = E

(
X − λ√

X + 1
4 +
√
λ+ 1

4

)
. Then

ξ = X − λ√
X + 1

4 +
√
λ+ 1

4

− 1

2
Z − δ = ξ1 + ξ2 + ξ3

where

ξ1 = − (X − λ)2

2

(√
X + 1

4 +
√
λ+ 1

4

)2 √
λ+ 1

4

− δ (24)

ξ2 = X − λ− √
λZ

2
√
λ+ 1

4

(25)

ξ3 = − 1

8λ
√

1 + 1
4λ

(
1 +

√
1 + 1

4λ

) Z . (26)

Note that Eξl = 0, l = 1, 2, 3 and |ξ2| ≤ λ− 1
2 (C2 Z2 + C3) and |ξ3| ≤ 1

16λ
−1|Z |

on A = {|X − λ| ≤ c1λ} with P (Ac) ≤ exp (−cλ) for some c > 0. Hence for any
integer i ≥ 1 the Cauchy–Schwarz inequality implies, for some constant di > 0,

E |ξ2|i ≤ diλ
− i

2 and E |ξ3|i ≤ diλ
− i

2 . (27)

Note also that (24) yields δ= E

(
X−λ√

X+ 1
4 +
√
λ+ 1

4

)
=−E

⎛
⎜⎝ (X − λ)2

2

(√
X + 1

4 +
√
λ+ 1

4

)2√
λ+ 1

4

⎞
⎟⎠ .

Hence |δ| ≤ E(X − λ)2

2λ
3
2

= 1
2λ

− 1
2 . On the other hand, it follows directly from Lemma 4

below that for any integer i ≥ 1 there exists a constant ci > 0 such that E(X −λ)2i ≤
ciλ

i . Note that for i ≥ 1, (a + b)i ≤ 2i−1(|a|i + |b|i ). It then follows that

E |ξ1|i ≤ 2i−1
[

E(X−λ)2i

2iλ
3i
2

+|δ|i
]
≤2i−1

(
ciλ

i

2iλ
3i
2

+2−iλ− i
2

)
=
(

1

2
ci+1

2

)
λ− i

2 .

(28)

The first bound in (23) now follows by combining (27) and (28). The second bound
in (23) is a direct consequence of the first one and Markov inequality. ��

Lemmas 1, 2 and 3 together yield the following result.

Proposition 1 Let Yi =
√

Qi + 1
4 be given as in (20). Then Yi can be written as

Yi = √
mpi + εi + 1

2
Zi + ξi , i = 1, 2, . . . , T, (29)
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where Zi
i.i.d.∼ N (0, 1), εi are constants satisfying |εi | ≤ 1

64 (mpi )
− 3

2 (1 + o(1)) and
consequently for some constant C > 0

1

n

T∑

i=1

ε2
i ≤ C · m−4, (30)

and ξi are independent and “stochastically small” random variables satisfying

E |ξi |l ≤ Cl(mpi )
− l

2 and P(|ξi | > a) ≤ Cl(a
2mpi )

− l
2 (31)

where l > 0, a > 0 and Cl > 0 is a constant depending on l only.

We need the following moment bounds for an orthogonal transform of independent
variables.

Lemma 4 Let X1, . . . , Xn be independent variables with E(Xi ) = 0 for i = 1, . . . , n.
Suppose that E |Xi |k < Mk for all i and all k > 0 with Mk > 0 some constant not
depending on n. Let Y = W X be an orthogonal transform of X = (X1, . . . , Xn)

′.
Then there exist constants M ′

k not depending on n such that E |Yi |k < M ′
k for all

i = 1, . . . , n and all k > 0.

Proof Let ai , i = 1, . . . , n be constants such that
∑n

i=1 a2
i = 1. It suffices to show that

for U = ∑n
i=1 ai Xi there exist constants M ′

k not depending on n and a = (a1, . . . , an)

such that E |U |k < M ′
k for all even positive integer k.

Let k be a fixed even integer. Then, since E(Xi ) = 0 for i = 1, . . . , n,

E |U |k = E

(
n∑

i=1

ai Xi

)k

=
∑

k1+···+kn=k

(
k

k1, . . . , kn

)
ak1

1 · · · akn
n E Xk1

1 · · · E Xkn
n

=
∑

(k1,...,kn)∈S(k)

(
k

k1, . . . , kn

)
ak1

1 · · · akn
n E Xk1

1 · · · E Xkn
n .

where S(k) = {(k1, . . . , kn) : ki nonnegative integers, ki �= 1 and
∑n

i=1 ki = k}.
Set Ak = (1 + M1)(1 + M2) · · · (1 + Mk). Then, since |ai | ≤ 1,

E |U |k ≤ k!Ak

∑

(k1,...,kn)∈S(k)

|a1|k1 · · · |an|kn ≤ k!Ak

∑

(k1,...,kn)∈S(k)

|a1|2[ k1
2 ] · · · |an|2[ kn

2 ]

≤ k!Ak

k/2∑

k′=1

∑

(k′
1,...,k

′
n)∈S(k′)

(a2
1)

k′
1 · · · (a2

n)
k′

n .

Since
∑
(k′

1,...,k
′
n)∈S(k′)(a

2
1)

k′
1 · · · (a2

n)
k′

n ≤ (∑n
i=1 a2

i

)k′ = 1, E |U |k ≤ k!Ak
k
4 (

k
2 + 1).

The lemma is proved by taking M ′
k = k!Ak

k
4 (

k
2 + 1). ��
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From (29) in Proposition 1 we can write 1√
n

Yi =
√

pi√
T

+ εi√
n

+ Zi
2
√

n
+ ξi√

n
. Let

(u j,k) = n− 1
2 W · Y be the discrete wavelet transform of the binned and root trans-

formed data. Then one may write

u j,k = θ ′
j,k + ε j,k + 1

2
√

n
z j,k + ξ j,k (32)

where θ ′
jk are the discrete wavelet transform of (

√
pi√
T
) which are approximately equal

to the true wavelet coefficients of
√

f , z j,k are the transform of the Zi ’s and so are
i.i.d. N (0, 1) and ε j,k and ξ j,k are respectively the transforms of ( εi√

n
) and ( ξi√

n
). Then

it follows from Proposition 1 that

∑

j

∑

k

ε2
j,k = 1

n

∑

i

ε2
i ≤ Cm−4. (33)

It now follows from Lemma 4 and Proposition 1 that for all i > 0 and a > 0

E |ξ j,k |i ≤ C ′
i (mn)−

i
2 and P(|ξ j,k | > a) ≤ C ′

i (a
2mn)−

i
2 . (34)

7.3 Risk bound for a single block

Oracle inequalities for block thresholding estimators were derived in Cai [8] in the
case when the noise is i.i.d. normal. In the present paper we need the following risk
bound for block thresholding estimators without the normality assumption.

Lemma 5 Suppose yi = θi + zi , i = 1, . . . , L, where θi are constants and zi are
random variables. Let S2 = ∑L

i=1 y2
i and let θ̂i = (1 − λL

S2 )+yi . Then

E‖θ̂ − θ‖2
2 ≤ ‖θ‖2

2 ∧ 4λL + 4E
[
‖z‖2

2 I (‖z‖2
2 > λL)

]
. (35)

Proof It is easy to verify that ‖θ̂ − y‖2
2 ≤ λL . Hence

E
[
‖θ̂ − θ‖2

2 I (‖z‖2
2 > λL)

]
≤ 2E

[
‖θ̂ − y‖2

2 I (‖z‖2
2 > λL)

]

+2E
[
‖y − θ‖2

2 I (‖z‖2
2 > λL)

]

≤ 2λL P(‖z‖2
2 > λL)+ 2E

[
‖z‖2

2 I (‖z‖2
2 > λL)

]

≤ 4E
[
‖z‖2

2 I (‖z‖2
2 > λL)

]
. (36)
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On the other hand,

E
[
‖θ̂ − θ‖2

2 I (‖z‖2
2 ≤ λL)

]
≤ E

[
(2‖θ̂−y‖2

2 + 2‖y − θ‖2
2)I (‖z‖2

2 ≤ λL)
]
≤4λL .

(37)

Note that when S2 ≤ λL , θ̂ = 0 and hence ‖θ̂ − θ‖2
2 = ‖θ‖2

2. When ‖z‖2
2 ≤ λL and

S2 > λL ,

‖θ̂−θ‖2
2 =

∑

i

[(
1−λL

S2

)
yi−θi

]2

=
(

1−λL

S2

)[
S2−λL−2

∑

i

θi yi

]
+‖θ‖2

2

=
(

1 − λL

S2

)[∑
(θi + zi )

2 − λL − 2
∑

i

θi (θi + zi )

]
+ ‖θ‖2

2

=
(

1 − λL

S2

)(
‖z‖2

2 − λL − ‖θ‖2
2

)
+ ‖θ‖2

2 ≤ ‖θ‖2
2.

Hence E[‖θ̂ − θ‖2
2 I (‖z‖2

2 ≤ λL)] ≤ ‖θ‖2
2 and (35) follows by combining this with

(36) and (37). ��

We also need the following bound on the tail probability of a central chi-square
distribution [9].

Lemma 6 Let X ∼ χ2
L and λ > 1. Then

P(X ≥ λL) ≤ e− L
2 (λ−log λ−1) and E X I (X ≥ λL) ≤ λLe− L

2 (λ−log λ−1). (38)

Proposition 2 Let the empirical wavelet coefficients u j,k = θ ′
j,k+ε j,k+ 1

2
√

n
z j,k+ξ j,k

be given as in (32) and let the block thresholding estimator θ̂ j,k be defined as in (10).
Then for some constant C > 0

E
∑

( j,k)∈Bi
j

(
θ̂ j,k − θ ′

j,k

)2 ≤ min

⎧
⎪⎨
⎪⎩

4
∑

( j,k)∈Bi
j

(θ ′
j,k)

2, 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

+ 6
∑

( j,k)∈Bi
j

ε2
j,k + C Ln−2. (39)
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Proof It follows from Lemma 5 that

E
∑

( j,k)∈Bi
j

(
θ̂ j,k − θ ′

j,k

)2 ≤ 2E
∑

( j,k)∈Bi
j

[θ̂ j,k − (θ ′
j,k + ε j,k)]2 + 2

∑

( j,k)∈Bi
j

ε2
j,k

≤ min

⎧
⎪⎨
⎪⎩

4
∑

( j,k)∈Bi
j

(θ ′
j,k)

2, 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

+ 6
∑

( j,k)∈Bi
j

ε2
j,k

+ 2n−1 E
∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2

× I

⎛
⎜⎝

∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
> λ∗L

⎞
⎟⎠ .

Define the event A by A = {|2√
nξ j,k | ≤ L−1 for all ( j, k) ∈ Bi

j }. Then it follows
from (34) that for any i ≥ 1

P(Ac) ≤
∑

( j,k)∈Bi
j

P
(
|2√

nξ j,k | > L−1
)

≤ C ′
i (L

−2m)−
i
2 . (40)

Note that

D = E
∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
I

⎛
⎜⎝

∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
> λ∗L

⎞
⎟⎠

= E
∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
I

⎛
⎜⎝A ∩

∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
> λ∗L

⎞
⎟⎠

+ E
∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
I

⎛
⎜⎝Ac ∩

∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
> λ∗L

⎞
⎟⎠

≡ D1 + D2.

Note that for any L > 1, (x + y)2 ≤ L
L−1 x2 + Ly2 for all x and y. It then follows

from Lemma 6 and Hölder’s Inequality that

D1 = E
∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
I

⎛
⎜⎝A ∩

∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
> λ∗L

⎞
⎟⎠
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≤ 2E
∑

( j,k)∈Bi
j

z2
j,k I

⎛
⎜⎝

∑

( j,k)∈Bi
j

z2
j,k > λ∗L − λ∗ − 1

⎞
⎟⎠

+ 8nE
∑

( j,k)∈Bi
j

ξ2
j,k I

⎛
⎜⎝

∑

( j,k)∈Bi
j

z2
j,k > λ∗L − λ∗ − 1

⎞
⎟⎠

≤ 2(λ∗L − λ∗ − 1)e− L
2 (λ∗−(λ∗+1)L−1−log(λ∗−(λ∗+1)L−1)−1)

+ 8n
∑

( j,k)∈Bi
j

(Eξ2r
j,k)

1
r

⎛
⎜⎝P

⎛
⎜⎝

∑

( j,k)∈Bi
j

z2
j,k > λ∗L − λ∗ − 1

⎞
⎟⎠

⎞
⎟⎠

1
w

where r, w > 1 and 1
r + 1

w
= 1. For m = nε we take 1

w
= 1 − ε. Then it follows from

Lemma 6 and (34) that

D1 ≤ λ∗e
λ∗+1

2 Ln−1 + C Lm−1n−1−ε = C Ln−1.

On the other hand, it follows from (34) and (40) (by taking i = 10) that

D2 = E
∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
I

⎛
⎜⎝Ac ∩

∑

( j,k)∈Bi
j

(
z j,k + 2

√
nξ j,k

)2
> λ∗L

⎞
⎟⎠

≤ E
∑

( j,k)∈Bi
j

(
2z2

j,k + 8nξ2
j,k

)
I (Ac)

≤
∑

( j,k)∈Bi
j

[
2
(

Ez4
j,k

) 1
2 + 8n

(
Eξ4

j,k

) 1
2
]

· (P(Ac))
1
2

≤ C L
(

L−2m
)−5 ≤ n−1.

Hence, D = D1 + D2 ≤ C Ln−1 and consequently, for some constant C > 0,

E
∑

( j,k)∈Bi
j

(
θ̂ j,k − θ ′

j,k

)2 ≤ min

⎧
⎪⎨
⎪⎩

4
∑

( j,k)∈Bi
j

(θ ′
j,k)

2, 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

+ 6
∑

( j,k)∈Bi
j

ε2
j,k + C Ln−2.

��
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Lemma 7 Let T = 2J and d = min(α − 1
p , 1). Set pi = T

∫ i/T
(i−1)/T g2(x)dx and

ḡJ (x) = ∑T
k=1

1√
T

√
pkφJ,k(x). Then for some constant C > 0

sup
g∈Fαp,q (M,ε)

‖ḡJ − g‖2
2 ≤ CT −2d . (41)

Proof Note that it follows from embedding theorem of Besov spaces that for some
constant M ′ > 0 Bαp,q(M) ⊆ Bd∞,∞(M ′). Hence for all g ∈ Bαp,q(M) there exists a

constant C > 0 such that |βJ,k − 1√
T

g( k
T )| ≤ C2−J (d+ 1

2 ). Let g̃J (x) = ∑T
k=1

1√
T

g( k
T )φJ,k(x). Then

‖g̃J − g‖2
2 =

∑

k

(
βJ,k − 1√

T
g

(
k

T

))2

+
∑

j≥J

∑

k

θ2
J,k

≤ C22−2d J + C2−2J (α∧(α+ 1
2 − 1

p )) ≤ CT −2d .

Since ε ≤ g ≤ C0 for some C0 > 0,

∣∣∣∣
√

pk − g

(
k

T

)∣∣∣∣ =
∣∣∣T ∫ i/T

(i−1)/T (g
2(x)− g2( k

T ))dx
∣∣∣

√
T
∫ i/T
(i−1)/T g2(x)dx + g( k

T )

≤ 2C0T
∫ i/T
(i−1)/T

∣∣g(x)− g( k
T )
∣∣ dx

2ε
≤ CT −d .

Hence ‖g̃J − ḡJ ‖2
2 = 1

T

∑
k

(√
pk − g

( k
T

))2 ≤ CT −2d and consequently

sup
g∈Fαp,q (M,ε)

‖ḡJ − g‖2
2 ≤ sup

g∈Fαp,q (M,ε)

(
2‖g̃J − g‖2

2 + 2‖g̃J − ḡJ ‖2
2

)
≤ CT −2d .

��

7.4 Proof of Theorem 4

In this section we show the result holds for f̂ given in (12). In Sect. 7.6, we will see
the difference of the risk between f̂ and f̃ is o

(
n−2α/(2α+1)

)
which is negligible.

Let Y and θ̂ be given as in (20) and ( 10), respectively. Then,

E
∥∥∥
√̂

f −√
f
∥∥∥

2

2
=
∑

k

E
( ˆ̃
θ j0,k − θ̃ j,k

)2 +
J−1∑

j= j0

∑

k

E
(
θ̂ j,k − θ j,k

)2 +
∞∑

j=J

∑

k

θ2
j,k

≡ S1 + S2 + S3 (42)
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It is easy to see that the first term S1 and the third term S3 are small.

S1 = 2 j0 n−1ε2 = o
(

n−2α/(1+2α)
)

(43)

Note that for x ∈ R

m and 0 < p1 ≤ p2 ≤ ∞,

‖x‖p2 ≤ ‖x‖p1 ≤ m
1
p1

− 1
p2 ‖x‖p2 (44)

Since f ∈ Bαp,q(M), so 2 js(
∑2 j

k=1 |θ jk |p)1/p ≤ M . Now (44) yields that

S3 =
∞∑

j=J

∑

k

θ2
j,k ≤ C2−2J (α∧(α+ 1

2 − 1
p )). (45)

Proposition 2, Lemma 7 and Eq. 33 yield that

S2 ≤ 2
J−1∑

j= j0

∑

k

E
(
θ̂ j,k − θ ′

j,k

)2 + 2
J−1∑

j= j0

∑

k

(
θ ′

j,k − θ j,k

)2

≤
J−1∑

j= j0

2 j/L∑

i=1

min

⎧
⎪⎨
⎪⎩

8
∑

( j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

+ 6
J−1∑

j= j0

∑

k

ε2
j,k + Cn−1 + 10

J−1∑

j= j0

∑

k

(
θ ′

j,k − θ j,k

)2

≤
J−1∑

j= j0

2 j/L∑

i=1

min

⎧
⎪⎨
⎪⎩

8
∑

( j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

+ Cm−4 + Cn−1 + CT −2d

(46)

We now divide into two cases. First consider the case p ≥ 2. Let J1 = [ 1
1+2α log2 n].

So, 2J1 ≈ n1/(1 + 2α). Then (46) and (44) yield

S2 ≤ 8λ∗
J1−1∑

j= j0

2 j/L∑

i=1

Ln−1 + 8
J−1∑

j=J1

∑

k

θ2
j,k + Cn−1 + CT −2d ≤ Cn−2α/(1+2α)

(47)

By combining (47) with (43) and (45), we have E‖θ̂ − θ‖2
2 ≤ Cn−2α/(1+2α), for

p ≥ 2.
Now let us consider the case p < 2. First we state the following lemma without

proof.
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Lemma 8 Let 0 < p < 1 and S = {x ∈ R

k : ∑k
i=1 x p

i ≤ B, xi ≥ 0, i =
1, . . . , k}. Then supx∈S

∑k
i=1(xi ∧ A) ≤ B · A1−p for all A > 0.

Let J2 be an integer satisfying 2J2 � n1/(1+2α)(log n)(2−p)/p(1+2α). Note that

2 j/L∑

i=1

⎛
⎜⎝

∑

( j,k)∈Bi
j

θ2
j,k

⎞
⎟⎠

p
2

≤
2 j∑

k=1

(θ2
j,k)

p
2 ≤ M2− jsp.

It then follows from Lemma 8 that

J−1∑

j=J2

2 j/L∑

i=1

min

⎧
⎪⎨
⎪⎩

8
∑

( j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

≤ Cn− 2α
1+2α (log n)

2−p
p(1+2α) . (48)

On the other hand,

J2−1∑

j= j0

2 j/L∑

i=1

min

⎧
⎪⎨
⎪⎩

8
∑

( j,k)∈Bi
j

θ2
j,k, 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

≤
J2−1∑

j= j0

∑

b

8λ∗Ln−1

≤ Cn− 2α
1+2α (log n)

2−p
p(1+2α) . (49)

Putting (43), (45), (48) and (49) together yields E‖θ̂ − θ‖2
2 ≤ Cn− 2α

1+2α (log n)
2−p

p(1+2α) .

��

Remark 4 The condition 2α2−α/3
1+2α > 1

p is purely due to approximation error over
Besov spaces. To make the other terms negligible (or at least not dominant) for all α,

we need to have m−4 = O(n− 2α
1+2α ) and T −2((α− 1

p )∧1) = O(n− 2α
1+2α ). This condition

puts constraints on both m and α (and p). We choose m = n
1
4 and so T = n

3
4 . Then we

need 3
2 (α − 1

p ) >
2α

1 + 2α or equivalently 2α2−α/3
1 + 2α > 1

p . The other condition, m ≥ n
1
4 ,

is needed for bounding the stochastic error.

7.5 Asymptotic optimality under L2 Loss

Proof of Corollary 2 In this section, we only give a proof for f̂ given in (12). See the
next section for f̃ .

The L2 loss can be related to Hellinger loss as follows

E
∥∥ f̂ − f

∥∥2
2 = E

∫ (√
f̂ −√ f

)2 (√
f̂ +√

f

)2

≤2E
∫ (√

f̂ −√ f

)2 (
f̂ + f

)
.
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Since f is bounded by a constant C0, we then have

E
∥∥ f̂ − f

∥∥2
2 ≤ 2 (C + C0) E

∫ (√
f̂ −√

f

)2

+ 2E
∫ (√

f̂ −√
f

)2

f̂ I
(∥∥∥
√̂

f
∥∥∥∞ > C

)
.

where the constant C will be specified later. To prove the Theorem, it suffices to show
the second term is negligible for an appropriate constant C . The Cauchy–Schwarz
inequality implies

[
E
∫ (√

f̂ −√
f

)2
f̂ I
(∥∥∥
√̂

f
∥∥∥∞ > C

)]2

≤ P
(∥∥∥
√̂

f
∥∥∥∞ > C

)
E
∫ (√

f̂ −√
f

)4
f̂ 2

≤ 2P
(∥∥∥
√̂

f
∥∥∥∞ > C

)
E
∫ (

f̂ 4 + f 2 f̂ 2
)
.

It then suffices to show that there exists a constant C such that

sup√
f ∈Fαp,q (M,ε)

P
{∥∥∥
√̂

f
∥∥∥∞ > C

}
≤ Cln

−l ,

for any l > 1, since it is easy to see that a crude bound for E
∫ (

f̂ 4 + f 2 f̂ 2
)

is Cn4.
Recall that we can write the discrete wavelet transform of the binned data as

u j,k = θ ′
j,k + ε j,k + 1

2
√

n
z j,k + ξ j,k

where θ ′
jk are the discrete wavelet transform of (

√
pi√
T
) which are approximately equal

to the true wavelet coefficients θ jk of
√

f . Note that |θ ′
jk − θ jk | = O(2− j (d+1/2)),

for d = min(α− 1/p, 1). Note also that a Besov Ball Bαp,q(M) can be embedded in
Bd∞,∞(M1) for some M1 > 0 [28]. From the equation above, we have

2 j0∑

k=1

θ̃ j́0,kφ j0,k(t)+
J−1∑

j= j0

2 j∑

k=1

θ ′
j,kψ j,k(t) ∈ Bd∞,∞ (M2)

for some M2 > 0. Applying the Block thresholding approach, we have

θ̂ jk =
(

1−λLσ 2

S2
( j,i)

)

+
θ ′

j,k+
(

1−λLσ 2

S2
( j,i)

)

+
ε j,k+

(
1−λLσ 2

S2
( j,i)

)

+

(
1

2
√

n
z j,k+ξ j,k

)

= θ̂1, jk+θ̂2, jk+θ̂3, jk, for ( j, k) ∈ Bi
j , j0 ≤ j < J.
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Note that |θ̂1, jk | ≤ |θ ′
j,k | and so ĝ1 = ∑2 j0

k=1 θ̃
′
j0,k
φ j0,k + ∑J−1

j= j0

∑2 j

k=1 θ̂1, j,kψ j,k ∈
Bd∞,∞(M2). This implies ĝ1 is uniformly bounded. Note that T

1
2 (
∑

j,k(ε
2
j,k))

1/2 =
T

1
2 · O(m−2) = o(1), so W −1 · T

1
2 (θ̂2, jk) is a uniformly bounded vector. For 0 <

β < 1/6 and a constant a > 0 we have

P
(∣∣∣θ̂3, jk

∣∣∣ > a2− j(β+1/2)
)

≤ P
(∣∣∣θ̂3, jk

∣∣∣ > aT −(β+1/2)
)

≤ P

(∣∣∣∣
1

2
√

n
z j,k

∣∣∣∣ >
1

2
aT −(β+1/2)

)

+P

(∣∣ξ j,k
∣∣ > 1

2
aT −(β+1/2)

)

≤ Aln
−l

for any l > 1 by Mill’s ratio inequality and Inequality (31). Let A = ∪
j,k

{|θ̂3, jk | >
a2− j (β+1/2)}. Then P(A) = Cln−l . On the event Ac we have

ĝ3 (t) =
J−1∑

j= j0

2 j∑

k=1

θ̂3, jkψ j,k(t) ∈ Bβ∞,∞ (M3) , for some M3 > 0

which is uniformly bounded. Combining these results we know that for C sufficiently
large,

sup√
f ∈Fαp,q (M,ε)

P
{∥∥∥
√̂

f
∥∥∥∞ > C

}
≤ sup√

f ∈Fαp,q (M,ε)
P (A) = Cln

−l . (50)

��

7.6 Normalization

We now show that the normalized estimator f̃ has the same properties as the
estimator f̂ .

Theorem 5

sup√
f ∈Fαp,q (M,ε)

E
∥∥ f − f̃

∥∥2
2 ≤ (1 + o (1)) sup√

f ∈Fαp,q (M,ε)
E
∥∥ f − f̂

∥∥2
2 . (51)

sup√
f ∈Fαp,q (M,ε)

E

∥∥∥∥
√

f −
√

f̃

∥∥∥∥
2

2
≤ (1 + o (1)) sup√

f ∈Fαp,q (M,ε)
E

∥∥∥∥
√

f −
√

f̂

∥∥∥∥
2

2
. (52)
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Proof of Theorem 5 We will only prove (51). The Cauchy–Schwarz inequality yields

E
∥∥ f − f̃

∥∥2
2 ≤

(√
E‖ f − f̂ ‖2

2 +
√

E‖ f̂ − f̃ ‖2
2

)2

.

We know sup√
f ∈Fαp,q (M,ε)

E‖ f − f̂ ‖2
2 ≥ cn−2α/(2α+1) in Theorem 2. It thus suffices

to show

sup√
f ∈Fαp,q (M,ε)

E
∥∥ f̂ − f̃

∥∥2
2 = o

(
n−2α/(2α+1)

)
.

We write
∫ (

f̂ − f̃
)2 = (∫

f̂ − 1
)2 ∫

f̂ 2/
(∫

f̂
)2

, where

∫
f̂ =

2 j0∑

k=1

ũ2
j0,k +

J−1∑

j= j0

2 j∑

k=1

(
1 − λLn−1

S2
( j,i)

)2

+
u2

j,k

and S2
j,i ≡ ∑

( j,k)∈Bi
j
u2

j,k with Bi
j = {( j, k) : (i −1)L +1 ≤ k ≤ i L} (see Sect. 4.1).

Let D = {x : ∫ f̂ 2 ≥ ε−1
1 or

∫
f̂ ≤ ε1} where ε1 will be specified later, then we

have

E
∫ (

f̂ − f̃
)2 = E

[(∫
f̂ − 1

)2 ∫
f̂ 2/

(∫
f̂

)2

IDc

]
+ E

∥∥ f̂ − f̃
∥∥2

2 ID

≤ ε−3
1 E

(∫
f̂ − 1

)2

+ 2
(

E‖ f̂ − f̃ ‖4
2

)1/2
P1/2 (D) .

To prove the theorem, it suffices to show

(i) sup√
f ∈Fαp,q (M,ε)

E‖ f̂ − f̃ ‖4
2 ≤ Cnb for a fixed b > 0 and sup√

f ∈Fαp,q (M,ε)

P (D) ≤ Cln−l for all l > 0.
(ii) sup√

f ∈Fαp,q (M,ε)
E
(∫

f̂ − 1
)2 = o (1) sup√

f ∈Fαp,q (M,ε)
E‖ f − f̂ ‖2

2.

The first part of (i) follows from the following crude bound,

∫
f̂ 2 ≤ Cn4

⎡
⎣

2 j0∑

k=1

ũ4
j0,k +

J−1∑

j= j0

2 j∑

k=1

(
1 − λLn−1

S2
( j,i)

)4

+
u4

j,k

⎤
⎦ ≤ Cn4

(∫
f̂

)2

which implies
∫

f̃ 2 = O(n4
. ). To establish the second part of (i), it is enough to show

sup√
f ∈Fαp,q (M,ε)

P(
∫

f̂ ≤ ε1) ≤ Cln−l for all l > 0 since P(
∫

f̂ 2 ≥ 1/ε1) decays

faster than any polynomial of n−1 from Eq. (50) for ε1 sufficiently small. Let

A =
2 j0∑

k=1

ũ2
j0,k +

log1/2 n∑

j= j0

2 j∑

k=1

(
1 − λLn−1

S2
( j,i)

)2

+
u2

j,k, B =
2 j0∑

k=1

ũ2
j,k +

log1/2 n∑

j= j0

2 j∑

k=1

u2
j,k
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Note that
∫

f̂ ≥ A, and −2λLn−1 ≤ ∑
( j,k)∈Bi

j
[(1 − λLn−1

S2
( j,i)

)2+u2
j,k − u2

j,k] ≤ 0. By

the Hoeffding’s inequality we have P (|A − B − E (A − B)| ≥ t) decays faster than
any polynomial of n−1 for a fixed t > 0. It is easy to see E A = E B = 1 + o (1), i.e.,
A and B are both consistent estimator of

∫
f . Write

P (A ≤ ε1) ≤ P (A − B ≤ ε1 − 1/2, B ≥ 1/2)+ P (B ≤ 1/2)

≤ P (A − B ≤ ε1 − 1/2)+ P (B − E B ≤ 1/2 − E B) .

Since it is obvious to see P (|B − E B| ≥ 1/2 − E B) decays faster than any poly-
nomial of n−1 and so does P (|A − B| ≥ 1/2 − ε1) for ε1 sufficiently small, then
P
(∫

f̂ ≤ ε1
) ≤ P (A ≤ ε1) decays faster than any polynomial of n−1 uniformly

over Fαp,q(M, ε).

We now turn to (ii). Let J−
1 = [( 1

1+2α − ε2) log2 n] and J+
1 = [( 1

1+2α + ε2) log2 n]
for some ε2 > 0. Note that E(

∫
f̂ − 1)2 = E(

∫
(

√
f̂ )2 − ∫

(
√

f )2)2. So

E

(∫
f̂ − 1

)2

= E

⎛
⎜⎝

⎛
⎜⎝
∑

j≤J−
1

+
∑

J−
1 < j<J+

1

+
∑

j≥J+
1

⎞
⎟⎠
∑

k

(
θ̂2

j,k − θ2
j,k

)
⎞
⎟⎠

2

≤ 2E

⎛
⎜⎝

⎛
⎜⎝
∑

j≤J−
1

+
∑

j≥J+
1

⎞
⎟⎠
∑

k

(
θ̂2

j,k − θ2
j,k

)
⎞
⎟⎠

2

+ 2E

⎛
⎜⎝

∑

J−
1 < j<J+

1

∑

k

(
θ̂2

j,k − θ2
j,k

)
⎞
⎟⎠

2

= R1 + R2.

Let gP denote the projection of a function g to a subspace which only contains
functions whose coefficients vanish with resolutions between J−

1 and J+
1 . We write

R1 = E

(∫ (√̂
f P

)2 −
∫ (√

f P

)2
)2

.

Similar to Eq. 50 we have sup√
f ∈Fαp,q (M,ε)

P(x : ‖ f̂ P‖∞ ≥ M1 ) ≤ Cln−l for some

M1 > 0 and any l > 1, then R1 is bounded by C E
∫
(
√̂

f P − √
f P )

2 + C/n, where

E
∫ (√̂

f P −√
f P

)2 ≤
∑

j

2 j∑

k=1

min

⎧
⎪⎨
⎪⎩

8
∑

( j,k)∈Bi
j

θ2
j,k , 8λ∗Ln−1

⎫
⎪⎬
⎪⎭

+Cm−4 + Cn−1 + CT −2d

= o
(

n−2α/(2α+1)
)
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uniformly over all f following from similar arguments for Eqs. 46, 47 and 48 in the
section of the proof of the main theorem. Now we show R2 = o(n−2α/(2α+1)) uni-
formly over all f . Write θ̂ j,k = â j,ku j,k = â jk(θ

′
j,k + ε j,k + 1

2
√

n
z j,k + ξ j,k) where

0 ≤ â j,k ≤ 1 is the shrinkage factor, then R2 is bounded by

2E

⎡
⎢⎣

∑

J−
1 < j<J+

1

∑

i

(
â2

j,k − 1
)
θ2

j,k

⎤
⎥⎦

2

+ 2E

⎡
⎢⎣

∑

J−
1 < j<J+

1

∑

i

â2
j,k

(
u2

j,k − θ2
j,k

)
⎤
⎥⎦

2

≤ 2E

⎛
⎜⎝

∑

J−
1 < j<J+

1

∑

i

θ2
i j

⎞
⎟⎠

2

+ 2E

⎡
⎢⎣

∑

J−
1 < j<J+

1

∑

i

(
u2

j,k − θ ′2
j,k + θ ′2

j,k − θ2
j,k

)
⎤
⎥⎦

2

= 2E

⎛
⎜⎝

∑

J−
1 < j<J+

1

∑

i

θ2
i j

⎞
⎟⎠

2

+ 2J+
1 +2 E

∑

J−
1 < j<J+

1

∑

i

(
u2

j,k − θ ′2
j,k

)2

+ 2

⎛
⎜⎝

∑

J−
1 < j<J+

1

∑

i

(
θ ′2

j,k − θ2
j,k

)
⎞
⎟⎠

2

= R21 + R22 + R23

It is straightforward to see

R22 ≤ C
2J+

1

n

⎛
⎜⎝

∑

J−
1 < j<J+

1

∑

i

θ ′2
j,k + 1

n

⎞
⎟⎠ ≤ C

2J+
1

n

⎛
⎜⎝

∑

J−
1 < j<J+

1

∑

i

θ2
j,k + CT −2d

⎞
⎟⎠ ,

and by the Cauchy–Schwarz inequality we have

R23 ≤
∑

J−
1 < j<J+

1

∑

i

(
θ ′

j,k − θ j,k

)2 ·
∑

J−
1 < j<J+

1

∑

i

(
θ ′

j,k + θ j,k

)2
< CT −2d .

From Eq. 45 we have
∑

J−
1 < j<J+

1

∑
j θ

2
j,k ≤ C(2J−

1 )−2(α−(1/p−1/2)+). It is easy to
check 2(α − (1/p − 1/2)+) > α under the assumptions of Theorem 4 and so

R2 ≤ C

((
2J−

1

)−4(α−(1/p−1/2)+) + 2J+
1

n

(
2J−

1

)−2(α−(1/p−1/2)+)
)

= o
(

n−2α/(1+2α)
)

uniformly over all f , when ε2 is sufficiently small. This proves (ii). ��
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7.7 Proof of Theorem 1

We have given a complete proof of Theorem 4, which gives asymptotic risk properties
of our procedure for the Poissonized density estimation model,

Fn : N ∼ Poi(n) and given N , x1, x2, . . . , xN i.i.d. with density f.

We shall now show that corresponding results hold for the density estimation problem,

En : x1, x2, . . . , xn i.i.d. with density f.

Proof of Theorem 1 The Poisson experiment Fn can be generated from En as follows.
Generate N ∼ Poisson (n). If N > n, generate N − n i.i.d. additional observations
with density f ; otherwise, throw away N − n observations.

Recall that we use Ni to denote the number of observations in the i th bin for Fn

and Yi denotes
√

Ni + 1/4 for Fn . Similarly, let N∗
i be the number of observations in

the i th bin for En and Y ∗
i = √

N∗
i + 1/4. Apply the root–unroot procedure for both

En and Fn and obtain two estimators of f for En and Fn , respectively. Let ĥ denote

the estimator of f for Fn . Following the notations in Sect. 4.1
√̂

f and
√̂

h are given
as follows

√̂
h =

2 j0∑

k=1

ˆ̃
θ j0,kφ j0,k(t)+

J−1∑

j= j0

2 j∑

k=1

θ̂ j,kψ j,k(t), θ̂ j,k =
(

1 − λ∗L

4nS2
j,i

)

+
u j,k

√̂
f =

2 j0∑

k=1

ˆ̃
θ∗

j0,kφ j0,k(t)+
J−1∑

j= j0

2 j∑

k=1

θ̂∗
j,kψ j,k(t), θ̂∗

j,k =
(

1 − λ∗L

4nS∗2
j,i

)

+
u∗

j,k .

where (u∗
j,k) = W · (n− 1

2 Y ∗
i ), and S∗2

j,i ≡ ∑
( j,k)∈Bi

j
u∗2

j,k with Bi
j = {( j, k) : (i − 1)

L + 1 ≤ k ≤ i L}. Note that the Cauchy–Schwarz inequality yields

E
∥∥∥
√̂

f −√
f
∥∥∥

2

2
≤
(√

E‖√̂ f − √̂
h‖2

2 +
√

E‖√̂h −√
f ‖2

2

)2

.

It then suffices to show sup√
f ∈Fαp,q (M,ε)

E‖√̂ f − √̂
h‖2

2 = O(n−1) to establish the

theorem. Note that ‖√̂ f −√̂
h‖2

2 = ∑2 j0

k=1(̃u j0,k−ũ∗
j0,k
)2+∑J−1

j= j0

∑2 j

k=1(θ̂ j,k−θ̂∗
j,k)

2.

It is easy to check

∑

( j,k)∈Bi
j

(
θ̂ j,k − θ̂∗

j,k

)2 ≤ 2

[(
1 − λ∗L

4nS∗2
j,i

)

+

]2 ∑

( j,k)∈Bi
j

(
u j,k − u∗

j,k

)2
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+2

[(
1 − λ∗L

4nS2
j,i

)

+
−
(

1 − λ∗L

4nS∗2
j,i

)

+

]2

S2
j,i

≤ 6
∑

( j,k)∈Bi
j

(
u j,k − u∗

j,k

)2

by applying the Cauchy–Schwarz inequality twice. Then we have

∥∥∥
√̂

f − √̂
h
∥∥∥

2

2
≤ 6

⎡
⎣

2 j0∑

k=1

(
ũ j0,k − ũ∗

j0,k

)2 +
J−1∑

j= j0

2 j∑

k=1

(
u j,k − u∗

j,k

)2

⎤
⎦

= 6
1

n

T∑

i=1

(
Yi − Y ∗

i

)2
. (53)

Note that Yi = Y ∗
i − (

√
N∗

i + 1/4 − √
Ni + 1/4) = Y ∗

i − N∗
i −Ni√

N∗
i +1/4+√

Ni +1/4
, and

given N and Ni the distribution of |N∗
i − Ni | is Binomial(|N − n|, ∫

i
T

i−1
T

f (x)dx). It

is then easy to check E(Yi − Y ∗
i )

2 ≤ Cn−3/4. Thus E‖√̂ f − √̂
h‖2

2 ≤ 6C/n and the
asymptotic optimality of f̂ under Hellinger loss is proved.

The asymptotic optimality of f̂ under L2 loss and the parallel result for f̃ can be
proved by using the upper bound in Eq. (53) together with similar arguments given in
Sects. 7.5 and 7.6. ��
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