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Terminology

• Definition of an Observational Study: A study of the effects caused by competingtreatments that were not randomly assigned to individuals (Cochran 1965, JRSS-A,“Planning of observational studies of human populations”).

• Treatment and outcome may be associated in the absence of an effect caused by
the treatment, because treatments were not randomly assigned.

• Although we always adjust for measured covariates, treated and control groups maynonetheless differ in terms of covariates that were not measured.
• That is: without random assignment, the probability of treatment may depend uponrelevant covariates that were not measured.
• This is the main source of controversy in observational studies, and it organizes the
design and analysis of an observational study.
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An example, some methods, some theory for design and analysis

• In thinking about unmeasured biases, context matters. The talk uses a simpleexample with a context that is familiar to everyone.

• Some simple quick claims about how observational studies should be designed ifthey are to have greater insensitivity to unmeasured biases. (Proofs of these claimsare in Parts III and IV of my Design of Observational Studies, 2nd edition, 2020.)
• Some theory showing that choice of methods of analysis has a substantial effect onthe degree to which a study is sensitive to unmeasured biases.
• Perhaps surprisingly, evidence of unmeasured biasmay make an observational studyinsensitive to larger unmeasured biases.
• The example has several control groups, so the logic of several control groups will bebriefly discussed.

2  



An example, some methods, some theory for design and analysis

• In thinking about unmeasured biases, context matters. The talk uses a simpleexample with a context that is familiar to everyone.
• Some simple quick claims about how observational studies should be designed ifthey are to have greater insensitivity to unmeasured biases. (Proofs of these claimsare in Parts III and IV of my Design of Observational Studies, 2nd edition, 2020.)

• Some theory showing that choice of methods of analysis has a substantial effect onthe degree to which a study is sensitive to unmeasured biases.
• Perhaps surprisingly, evidence of unmeasured biasmay make an observational studyinsensitive to larger unmeasured biases.
• The example has several control groups, so the logic of several control groups will bebriefly discussed.

2  



An example, some methods, some theory for design and analysis

• In thinking about unmeasured biases, context matters. The talk uses a simpleexample with a context that is familiar to everyone.
• Some simple quick claims about how observational studies should be designed ifthey are to have greater insensitivity to unmeasured biases. (Proofs of these claimsare in Parts III and IV of my Design of Observational Studies, 2nd edition, 2020.)
• Some theory showing that choice of methods of analysis has a substantial effect onthe degree to which a study is sensitive to unmeasured biases.

• Perhaps surprisingly, evidence of unmeasured biasmay make an observational studyinsensitive to larger unmeasured biases.
• The example has several control groups, so the logic of several control groups will bebriefly discussed.

2  



An example, some methods, some theory for design and analysis

• In thinking about unmeasured biases, context matters. The talk uses a simpleexample with a context that is familiar to everyone.
• Some simple quick claims about how observational studies should be designed ifthey are to have greater insensitivity to unmeasured biases. (Proofs of these claimsare in Parts III and IV of my Design of Observational Studies, 2nd edition, 2020.)
• Some theory showing that choice of methods of analysis has a substantial effect onthe degree to which a study is sensitive to unmeasured biases.
• Perhaps surprisingly, evidence of unmeasured biasmay make an observational studyinsensitive to larger unmeasured biases.

• The example has several control groups, so the logic of several control groups will bebriefly discussed.

2  



An example, some methods, some theory for design and analysis

• In thinking about unmeasured biases, context matters. The talk uses a simpleexample with a context that is familiar to everyone.
• Some simple quick claims about how observational studies should be designed ifthey are to have greater insensitivity to unmeasured biases. (Proofs of these claimsare in Parts III and IV of my Design of Observational Studies, 2nd edition, 2020.)
• Some theory showing that choice of methods of analysis has a substantial effect onthe degree to which a study is sensitive to unmeasured biases.
• Perhaps surprisingly, evidence of unmeasured biasmay make an observational studyinsensitive to larger unmeasured biases.
• The example has several control groups, so the logic of several control groups will bebriefly discussed.

2  



Derived from:

STS
Springer Texts in Statistics

Paul R. Rosenbaum

An Introduction 
to the Theory 
of Observational  
Studies

Rosenbaum
An Introduction to the Theory 
of Observational  Studies

Springer Texts in Statistics

Paul R. Rosenbaum

An Introduction to the Theory of Observational  Studies

This book is an introduction to the theory of causal inference in observational studies.   
An observational study draws inferences about the effects caused by treatments or 
preventable exposures when randomized experimentation is unethical or infeasible.  
An observational study is distinguished from an experiment by the problems that 
follow from the absence of randomized assignment of individuals to treatments.  
Observational studies are common in most fields that study the effects of treatments 
or policies on people, including public health and epidemiology, economics and public 
policy, medicine and clinical psychology, and criminology and empirical legal studies. 

After Part I reviews causal inference in randomized experiments, the twelve short 
chapters in Parts II, III and IV introduce modern topics: the propensity score, ignorable 
treatment assignment, the principal unobserved covariate, algorithms for optimal 
matching, randomized reassignment techniques for appraising the covariate balance 
achieved by matching, covariance adjustment, sensitivity analysis, design sensitivity, 
ways to design an observational study to be insensitive to larger unmeasured biases, 
the large sample efficiency of a sensitivity analysis, quasi-experimental devices that 
provide observable information about unmeasured biases, evidence factors and 
complementary analyses to address unmeasured biases.

The book is accessible to anyone who has completed an undergraduate course in 
mathematical statistics.  The subject is developed with the aid of two simple empirical 
examples concerning the health benefits or harms caused by consuming alcohol.  
The data for these examples and their reanalyses are freely available in an R package, 
iTOS, associated with Introduction to the Theory of Observational Studies.

ISBN 978-3-031-90493-6
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Figure: Data in R package iTOS.3  



Some General Theses

• Every observational study is affected by unmeasured biases, but that fact is notdebilitating. Example: smoking and lung cancer.

• Unmeasured bias is unmeasured, but it often has detectable consequences. The
detectable consequences may heighten or diminish concern that the ostensiblecausal effects are spurious.

• A sensitivity analysis talks about unmeasured biases, but it is computed from – it is a
function of – observable data from observable distributions. Change the observabledistributions – change the study design – change the analysis and you change thesensitivity to unmeasured biases.

• Without guidance from statistical theory about the previous point, it is easy to makepoor decisions in design and analysis, reporting that your results are sensitive tosmall biases when they are not.
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Example: HDL Cholesterol and Light Daily Alcohol
• You often hear or read that a glass of wine each day with dinner prolongs lifereducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g.,Suh et al. Ann. Int. Med. 1992;116:881-887.

• A recent position paper by the American Society of Clinical Oncology (Noel Loconteet al. J. Clin. Oncol. 2018;36:83-93) is sharply critical of this claim, emphasizingincreased risk of death from cancer, although risks from accidents, liver diseases, andviolence are relevant too.• Purely as a methodological example, will look at a small corner (and alas lessimportant) corner of this topic, namely whether light daily alcohol consumptionincreases HDL cholesterol.• For some discussion of mortality and light alcohol consumption, see my: “Does adaily glass of wine prolong life? Insight from a second control group,” Chance,2025;38(1):25-30.
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Example: Treated and Control Groups

• Adults, age≥ 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined“binge drinking” as≥ 4 or 5 drinks in a day .
= legally drunk.)

• Treated group consumed between 1 and 3 alcoholic drinks on most days, meaning on
≥ 260 = 5 × 52 days last year. (median 520 drinks/year)

• Control group N (=Never) had fewer than 12 drinks in their life. (median 0/year).
• Control group R (=Rarely) had more than 12 drinks in their life, but fewer than 12drinks in the past year. Never had a period in their lives when they engaged in bingedrinking on most days. (median 0 drinks/year).
• Control group B (=former Binge drinker) had a period in their lives when theyengaged in binge drinking on most days, but stopped, and currently drinks, if at all,on at most one day a week (i.e., 52 days in the past year). (median 4 drinks/year)
• Take a moment and think about people in these groups.
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Observational Block Design
• I = 406 blocks of size J = 4, one person from each group, matched for age, sex, andeducation (1 is<9th grade, 3 is high school, 5 is≥ BA degree.),

• Plus a binary indicator of whether they were in a NHANES subsample that measuredmethylmercury levels in blood (200 blocks yes, 206 blocks no).
Table: Covariates Before=Be and After=Afmatching, and the remainder that was Notmatched . D=daily, N=never, R=rarely, B=past binger. All D’s were matched.

Sample Size Female % Age EducationBe Af Not Be Af Not Be Af Not Be Af NotD 406 406 0 34 34 57 57 4.1 4.1N 1536 406 1130 71 34 84 51 57 50 3.2 3.8 2.9R 1237 406 831 72 34 90 53 56 51 3.4 3.9 3.2B 914 406 508 29 34 25 54 56 53 3.1 3.9 2.5
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Brief Mention of Design Techniques to Address Unmeasured Biases
• Campbell/Bitterman idea thatmultiple control groups cannot control unmeasuredbiases, but they can systematically vary them to see if they matter.

• Comparison of daily drinkers with people who barely drink, omitting people whodrink twice a week. Omitting diluted versions of the treatment increasesinsensitivity to unmeasured biases (Design of Observational Studies, 2020, §18.4;
Introduction to the Theory of Observational Studies (iTOS), 2025, §10.3)• Blocks of size 4 are a better design (1-treated-to-3-controls), better for example thanpairs (even many more pairs). Selection bias is harder to distinguish from atreatment effect in pairs or unmatched comparisons, and easier to distinguish with1-to-3 blocks. (JASA 2024, Biometrics 2013;69:118-127, iTOS, 2025, §10.2).• An unaffected outcome, methylmercury. WHO & CDC say almost all humanexposure to methylmercury comes from eating fish/shellfish. Those who have lookedfor methylmercury in alcoholic beverages haven’t found it. Can we use this?
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Figure: I = 406 matched blocks. Each group is 33.7% female. M-estimates of location are at thetop. D = daily drinking, N = never, R = rare, B = formerly a frequent binge drinker. 6 Pairwise Holmcomparisons: D-vs-each control, P ≤ 10−16, each control-vs-control, P ≥ 0.21.
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Do you think the groups are living similar lives?

• First thesis was: In observational studies, there are always unmeasured biases.

• Tests use Friedman or Cochran Q
Table: Blocked comparisons. X is the mean, M is the median.

Variable Alcohol GroupD=daily, N=never, R=rarely, B=past binge D N R B P-valueEver tried marijuana or hashish? % 73 9 25 75 0.0000000Ever tried cocaine, heroin, meth? % 29 4 4 37 0.0000000Methylmercury in blood (µg/L) M 1.12 0.54 0.56 0.56 0.0000008Been to dentist in past year? % 67 58 57 48 0.0000006
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Basic Structure: Treatments, Covariates, Outcomes

• Treatments: Treated if Z = 1 or control if Z = 0.

• Causal effects: (Neyman 1923, Rubin 1974) Comparison of a potential outcome rTunder treatment, seen if Z = 1, and a potential outcome under control, rC, seen if
Z = 0, so we observe from a person (R, Z) for a person, where R = Z rT +(1− Z) rC.

• Outcomes rT, rC and R may bemultivariate. (HDL cholesterol, methymercury).
• Covariates: We also observe a covariate x and are concerned about unobservedcovariates u.
• Randomized experiment: Z is determined by a coin flip, perhaps after blocking ormatching for some function h(x). The coin is “fair” in not depending upon (rT, rC),or more precisely . . .
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• Outcomes rT, rC and R may bemultivariate. (HDL cholesterol, methymercury).
• Covariates: We also observe a covariate x and are concerned about unobservedcovariates u.
• Randomized experiment: Z is determined by a coin flip, perhaps after blocking ormatching for some function h(x). The coin is “fair” in not depending upon (rT, rC),or more precisely . . .
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Ignorable Treatment Assignment & Principal Unobserved Covariate
• Treatment assignment is ignorable given the observed covariates x if

0 < Pr(Z = 1 | x, rT, rC) = Pr(Z = 1 | x) < 1 (1)

• If ignorable, adjustments for x suffice for causal inference.
• We often speak of ignorable assignment given something else, given a function h(x)of x, or given (x, u) where u is an unobserved covariate.
• Pr(Z = 1 | x) = e(x), say, is the propensity score, and (1)=⇒ ignorable given e(x).
• Pr(Z = 1 | x, rT, rC) = ζ is the principal unobserved covariate.
• Suppose 0 < ζ < 1. Two key facts follow. Then, (i) treatment assignment isignorable given x ⇐⇒ e(x) = ζ, and (ii) treatment assignment is always ignorablegiven {h(x), ζ} for any function h(·).
• Importantly, ζ = Pr(Z = 1 | rT, rC, x) is a function of (rT, rC, x).
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Observational Block Design

• Build I blocks, i = 1, . . . , I, and J people per block, j = 1, . . . , J, with one treatedindividual per block, 1 =
∑J

j=1 Zij for each i.

• Sample independent (R, Z, x) and assemble into blocks.
• Create I non-overlapping blocks matched for h(x),

h(xi1) = · · · = h(xiJ), i = 1, . . . , I.

• Our worry is that the blocking has not controlled the principal unobserved
covariate, ζ, so that ζij ̸= ζij′ for some i, j.

• Could happen in any of three ways: (i) controlling for h(x) did not control for e(x),(ii) controlling for h(x) did not control for ζij because treatment assignment is notignorable given x, or (iii) both (i) and (ii).
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Notation

• Write F = {
(

rTij, rCij, xij
)
, i = 1, . . . , I, j = 1, . . . , J}.

• Principal unobserved covarate ζ = Pr(Z = 1|rT, rC,X) is a function of (rT, rC,X), allof which are in F , so ζij = Pr(Zij = 1 | F).
• Let Z be the set of possible values, z, of Z = (Z11, . . . , ZIJ), so zij = 0 or 1, and

1 =
∑J

j=1 zij for i = 1, . . . , I. So, Z contains JI elements z.
• We sampled independent people and blocked so that Z ∈ Z , i.e., by conditioning onthe event Z ∈ Z .
• Abbreviate conditioning on Z ∈ Z as conditioning on Z .
• For example, in a randomized block design,

1
J
= Pr(Zij = 1 | F ,Z)
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Bias Within Blocks; Introducing θij

• Given F , the chance that ij is the only treated individual in block i is the chance that
Zij = 1 and Zik = 0 for k ̸= i

ζij

J∏
k̸=j

(1 − ζik) =
ζij

1 − ζij

J∏
k=1

(1 − ζik) ,

• So, conditioning on∑J
k=1 Zik = 1 says Pr

(
Zij = 1

∣∣rTij, rCij, xij,
∑

Zik = 1
) equals

Pr
(

Zij = 1 |F ,Z
)
=

ζij
1−ζij∑J

k=1
ζik

1−ζik

= θij,

say, where 1 =
∑J

j=1 θij for each i.
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Sensitivity Analysis in Terms of ζ
• From the previous slide, 1 =

∑J
j=1 θij and

Pr
(

Zij = 1
∣∣∣rTij, rCij, xij,

∑
Zik = 1

)
= Pr

(
Zij = 1 |F ,Z

)
=

ζij
1−ζij∑J

k=1
ζik

1−ζik

= θij,

• Sensitivity analysis in terms of the principal unobserved covariate
ζ = Pr(Z = 1 | rt, rC, x)

Γ ≥
ζij (1 − ζij′)

ζij′ (1 − ζij)
≥ 1

Γ
for all i, j, j′.

is the same as
Γ ≥

θij

θij′
≥ 1

Γ
for all i, j, j′
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Comparing Methods and Designs for Observational Studies

• Different statistics, different research designs, correctly yield different levels of
sensitivity to unobserved biases.

• We would like to understand this, so we can make wise choices in design andanalysis.
• First, let’s do an analysis of the alcohol data and see it happen in one data set.
• Second, set aside our one data set, replace it by a probability model that generates
data, and demonstrate that what happened once in data should always happen,measuring precisely when and to what degree it happens.

• Start with a collection of closely related statistics, including familiar and unfamiliarstatistics. See how the results vary in this collection.
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Weighted Rank Statistics

• Test the hypothesis of no effect, H0 : rTij = rCij, ∀i, j.

• Rank Rij from 1 to J in each block i, with average ranks for ties, calling thewithin-block ranks qij.• Let Iwi be the rank the ith of the I within-block ranges bi = maxRij − minRij, withaverage ranks for ties, so 0 ≤ wi ≤ 1.
• Score the ranks of the ranges by a function φ(wi), where φ : [0, 1] → [0,1].
• The test statistic is T =

∑I
i φ(wi)

∑J
j=1 Zij qij.• For pairs, J = 2, taking φ(w) = 1 yields the sign test, taking φ(w) = w yieldsWilcoxon’s signed rank test, and for general φ(w) it is a general signed rank test.

• For J ≥ 2, taking φ(wi) = 1 yields the blocked Wilcoxon rank sum test (Lehmann1975 Nonparametrics, §3.3), and taking φ(w) = w yields Quade’s (1979, JASA)statistic.
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Figure: Four weight functions φ(w) of the block ranges.
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The Set BΓ of Biased Treatment Assignments θ

• Define BΓ as the set of all θ = (θ11, . . . , θIJ) such that:
1 =

∑
j

θij, i = 1, . . . , I and Γ ≥
θij

θij′
≥ 1

Γ
for all i, j, j′

• With I = 406 and J = 4, each θ is of dimension IJ = 1624 but lives in flat of
dimension I(J − 1) = 1218. BΓ is a closed and bounded (hence compact) set of θ’s.

• Nested sets, BΓ ⊂ BΓ′ for Γ < Γ′, assume less and less as Γ → ∞.
• Every θ with 0 < θij < 1 and 1 =

∑
j θij is in some BΓ for large enough Γ.

• A randomized block design has θ = θ where θij = 1/J or equivalently θ ∈ B1.
• The central problem in an observational block design is that there is no basis forassuming θ ∈ B1. For Γ > 1, θ ∈ BΓ does not identify θ.
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Sensitivity Analysis
• Reject H0 if T ≥ t where T =

∑
i φ(wi)

∑
j Zij qij and Pr (Z = z |F ,Z ) =

∏
i
∏

j θ
zij
ij .

• [A] = 1 if event A occurs; otherwise 0. Rejection of H0: [∑i φ(wi)
∑

j zij qij ≥ t
]
= 1.

• For fixed θ, rejection occurs with probability∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

• For a given Γ ≥ 1, the max P-value for θ ∈ BΓ is

PΓ = maxθ∈BΓ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij
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Sensitivity Analysis, Alcohol Example, Comparing 4 Statistics

Table: Upper bounds on one-sided P-values testing no effect of light daily alcohol on HDLCholesterol. In a column, bold is a P-value near 0.05. Hammond’s (1964, JNCI) study of smokingand lung cancer is sensitive to a bias of Γ = 6. The choice of test statistic matters.
Γ Wilcoxon Quade U868 U8781 0.0000 0.0000 0.0000 0.00002 0.0000 0.0000 0.0000 0.00003.5 0.0603 0.0002 0.0000 0.00004 0.3478 0.0052 0.0003 0.00014.5 0.7401 0.0447 0.0028 0.00105 0.9429 0.1775 0.0154 0.00505.5 0.9926 0.4123 0.0537 0.01746 0.9994 0.6642 0.1340 0.0456
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Is 1-to-3 Better Than 1-to-1? A Fair Comparison

• Want to see in the data my earlier claim that 1-to-3 blocks more insensitive to biasthan 1-to-1 pairs.

• Not fair to compare 406 1-to-3 blocks to 406 1-to-1 pairs.
• Consider the usual Gaussian linear model, additive block effects, constant withinblock variance σ2. Estimator is the mean of the treated-minus-average controldifference.
• With M 1-to-1 pairs, estimator has variance 2σ2/M. With I 1-to-3 blocks, estimatorhas variance (1 + 1/3)σ2/I. As far as the standard error goes, M pairs is about thesame as I 1-to-3 blocks if I = (1 + 1/3)M/2. For M = 406 pairs, take

I = 2M/3 .
= 271 blocks.
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Fair Comparison, Pairs Versus Blocks

Table: Bounds on P-values for the hypothesis of no effect. Last P-value≤ 0.05 is in bold.
406 1-to-1 Pairs 271 1-to-3 Blocks

Γ Wilcoxon Quade U868 U878 Wilcoxon Quade U868 U8781 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.0002 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.0003.5 0.994 0.233 0.013 0.003 0.044 0.001 0.000 0.0004 1.000 0.584 0.064 0.015 0.224 0.008 0.001 0.0014.5 1.000 0.851 0.182 0.046 0.532 0.045 0.007 0.0045 1.000 0.963 0.359 0.106 0.799 0.143 0.024 0.0145.5 1.000 0.993 0.552 0.198 0.937 0.310 0.063 0.0346 1.000 0.999 0.720 0.311 0.985 0.511 0.131 0.069
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Can We Understand This Theoretically?

• Suppose that we have somemodel that generated the data, I blocks of size J, onetreated individual per block. Let I → ∞.

• When letting I → ∞, quantities gain a subscript I: T becomes TI , for example.
• A basic block model with continuous & bivariate exchangeable errors (εTij, εCij)

rTij = µ+ βi + τ + εTij, rCij = µ+ βi + εCij, rTij − rCij = τ + εTij − εCij,

• Treated-minus-control pair difference in block i is rTij − rCij′ = τ + εTij − εCij′ issymmetric about τ . Numerical work takes 1 =
√

var(εTij − εCij′) and τ = 1/2.
• Imagine the study is unaffected by unmeasured bias (i.e., ignorable given x), so that

1/J = θij = Pr
(

Zij = 1
∣∣rTij, rCij, xij,

∑
Zik = 1

)
, ∀i, j.

• If τ ̸= 0, then it is in precisely this sort of case (a so-called favorable situation) thatyou hope to report insensitivity to unmeasured biases. Will you?
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Design Sensitivity and Bahadur Efficiency Under a Favorable Model
• Test no effect, H0, with bias≤ Γ versus a simple HA from a favorable model.

• For fixed Γ, with I blocks, and a required power ω = 0.9, there is a level of the test,
αΓI , that achieves that power. For Γ = 1, that is the level of the randomization test.For large Γ, that level might be close to 1.• Want αΓI → 0 as fast as possible as I → ∞. Ultimately, ω does not matter.• There is (typically) a number, Γ̃ called the design sensitivity, such that, as I → ∞:

αΓI → 0 for Γ < Γ̃, αΓI → 1 for Γ > Γ̃.

• If Γ < Γ̃ there is (typically) a Bahadur slope ρΓ/2 > 0 such that
ρΓ = −limI→∞

log(αΓI)

I
so that αΓI ≈ exp(−IρΓ) as I → ∞.

• The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better thanPitman efficiency for observational studies because Pitman lets τ → 0 as I → ∞.
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• Test no effect, H0, with bias≤ Γ versus a simple HA from a favorable model.• For fixed Γ, with I blocks, and a required power ω = 0.9, there is a level of the test,
αΓI , that achieves that power. For Γ = 1, that is the level of the randomization test.For large Γ, that level might be close to 1.

• Want αΓI → 0 as fast as possible as I → ∞. Ultimately, ω does not matter.• There is (typically) a number, Γ̃ called the design sensitivity, such that, as I → ∞:
αΓI → 0 for Γ < Γ̃, αΓI → 1 for Γ > Γ̃.

• If Γ < Γ̃ there is (typically) a Bahadur slope ρΓ/2 > 0 such that
ρΓ = −limI→∞

log(αΓI)

I
so that αΓI ≈ exp(−IρΓ) as I → ∞.

• The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better thanPitman efficiency for observational studies because Pitman lets τ → 0 as I → ∞.

27  



Design Sensitivity and Bahadur Efficiency Under a Favorable Model
• Test no effect, H0, with bias≤ Γ versus a simple HA from a favorable model.• For fixed Γ, with I blocks, and a required power ω = 0.9, there is a level of the test,
αΓI , that achieves that power. For Γ = 1, that is the level of the randomization test.For large Γ, that level might be close to 1.• Want αΓI → 0 as fast as possible as I → ∞. Ultimately, ω does not matter.

• There is (typically) a number, Γ̃ called the design sensitivity, such that, as I → ∞:
αΓI → 0 for Γ < Γ̃, αΓI → 1 for Γ > Γ̃.

• If Γ < Γ̃ there is (typically) a Bahadur slope ρΓ/2 > 0 such that
ρΓ = −limI→∞

log(αΓI)

I
so that αΓI ≈ exp(−IρΓ) as I → ∞.

• The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better thanPitman efficiency for observational studies because Pitman lets τ → 0 as I → ∞.

27  



Design Sensitivity and Bahadur Efficiency Under a Favorable Model
• Test no effect, H0, with bias≤ Γ versus a simple HA from a favorable model.• For fixed Γ, with I blocks, and a required power ω = 0.9, there is a level of the test,
αΓI , that achieves that power. For Γ = 1, that is the level of the randomization test.For large Γ, that level might be close to 1.• Want αΓI → 0 as fast as possible as I → ∞. Ultimately, ω does not matter.• There is (typically) a number, Γ̃ called the design sensitivity, such that, as I → ∞:

αΓI → 0 for Γ < Γ̃, αΓI → 1 for Γ > Γ̃.

• If Γ < Γ̃ there is (typically) a Bahadur slope ρΓ/2 > 0 such that
ρΓ = −limI→∞

log(αΓI)

I
so that αΓI ≈ exp(−IρΓ) as I → ∞.

• The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better thanPitman efficiency for observational studies because Pitman lets τ → 0 as I → ∞.

27  



Design Sensitivity and Bahadur Efficiency Under a Favorable Model
• Test no effect, H0, with bias≤ Γ versus a simple HA from a favorable model.• For fixed Γ, with I blocks, and a required power ω = 0.9, there is a level of the test,
αΓI , that achieves that power. For Γ = 1, that is the level of the randomization test.For large Γ, that level might be close to 1.• Want αΓI → 0 as fast as possible as I → ∞. Ultimately, ω does not matter.• There is (typically) a number, Γ̃ called the design sensitivity, such that, as I → ∞:

αΓI → 0 for Γ < Γ̃, αΓI → 1 for Γ > Γ̃.

• If Γ < Γ̃ there is (typically) a Bahadur slope ρΓ/2 > 0 such that
ρΓ = −limI→∞

log(αΓI)

I
so that αΓI ≈ exp(−IρΓ) as I → ∞.

• The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better thanPitman efficiency for observational studies because Pitman lets τ → 0 as I → ∞.

27  



Design Sensitivity and Bahadur Efficiency Under a Favorable Model
• Test no effect, H0, with bias≤ Γ versus a simple HA from a favorable model.• For fixed Γ, with I blocks, and a required power ω = 0.9, there is a level of the test,
αΓI , that achieves that power. For Γ = 1, that is the level of the randomization test.For large Γ, that level might be close to 1.• Want αΓI → 0 as fast as possible as I → ∞. Ultimately, ω does not matter.• There is (typically) a number, Γ̃ called the design sensitivity, such that, as I → ∞:

αΓI → 0 for Γ < Γ̃, αΓI → 1 for Γ > Γ̃.

• If Γ < Γ̃ there is (typically) a Bahadur slope ρΓ/2 > 0 such that
ρΓ = −limI→∞

log(αΓI)

I
so that αΓI ≈ exp(−IρΓ) as I → ∞.

• The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better thanPitman efficiency for observational studies because Pitman lets τ → 0 as I → ∞.
27  



Some Design Sensitivities
■What you saw in the example happens in the limit as I → ∞ for the block model withNormal errors.

Table: Design sensitivity Γ̃ with Normal errors and τ = 1/2 of the standard deviation of atreated-minus-control pair difference. The best result in each situation is in bold.
Wilcoxon Quade U868 U878

J = 2 Pairs 2.2 3.2 4.2 5.1
J = 4 1-to-3 Blocks 3.5 4.4 5.2 5.7

■ Results for τ = 1/3 have smaller Γ̃, but a similar pattern. E.g., Quade has Γ̃ = 2.1 for
J = 2 and Γ̃ = 2.8 for J = 4, while U878 has Γ̃ = 2.8 for J = 2 and Γ̃ = 3.2 for J = 4.
■ Results for τ = 1/2 and errors with a t5-distribution are similar.
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Table: Efficiency at Γ = 2. Comparing Block Sizes J = 2 to J = 4 in a sensitivity analysis. Top half ispure block size. Bottom half is block size plus change in test statistic.
Sensitivity Analysis Performed with Γ = 2

τ = 1/2 τ = 1/3

J Normal t5 Normal t5U868 compared to U868 at J = 22 1.00 1.00 1.00 1.003 1.37 1.23 2.14 1.664 1.83 1.63 3.07 2.29U868 compared to SRS at J = 22 1.58 1.26 8.08 3.053 2.16 1.55 17.26 5.074 2.89 2.04 24.81 6.98
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Figure: Right panel tests the conjunction of H0 : θ = θ (or equivalently H0 : θ ∈ B1) and no effecton methylmercury, rejecting it with a P-value too small to calculate using Quade’s statistic.
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Unaffected Outcomes
• What should we make of the evidence from methylmercury of biased treatmentassignment evident, θ ̸= θ, where θij = 1/J, ∀i, j and B1 = {θ}?

• To avoid many possible combinations, will do two-sided, 0.05-level Quade’s tests forboth effect and bias. (This is intended to be simple and not distracting, rather thanoptimal (e.g., see Table 3 in R 2023 Stat. Sci.).• Using the 200 blocks with methylmercury levels (rather than all 406 blocks),rejection of no effect on HDL cholesterol level becomes sensitive at Γ = 3.614. No
θ ∈ B3.614 would lead to a P-value above 0.05. (Was B4.5 for I = 406.)• In parallel, using the same people in the same blocks, no θ ∈ B1.993 is plausible ifalcohol does not affect methylmercury levels, having been rejected in a 0.05 leveltest.• The sensitivity analysis for HDL cholesterol doesn’t require amendment, but it doesleave us wondering about θ ∈ B3.614 − B1.993; i.e., in B3.614 but not in B1.993.
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Gaps Between Tests for Bias and Sensitivity Analyses
• Part of the boundary of B3.614 is troublesome, because there is a θ ∈ B3.615 thatwould lead us to accept no effect of alcohol on HDL cholesterol. Call these
troublesome boundary points J . What does methylmercury say about thetroublesome boundary points J ?

• We would like to say: “no θ ∈ J is plausible.” That would mean that the HDLcholesterol comparison isn’t sensitive at Γ = 3.614 after all, but only to a larger Γ. Ifthis were true, say that there is no gap between the test for bias usingmethylmercury and the sensitivity analysis for HDL cholesterol.• We can test each of the troublesome θ ∈ J using the methylmercury data. Whenwe do this, the maximum P-value testing H0 : θ = θ0 for θ0 ∈ J is 1.17 × 10−7.• The troublesome biases θ ∈ J are not plausible; so, there is no gap, and Γmust belarger than Γ = 3.614 to explain the higher HDL cholesterol levels of light dailydrinkers. The evident bias in methylmercury strengthened the causal claim.
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Confidence Set for θ; Informed Sensitivity Analyses
• What if we tested all θ’s? LetΘ be the set of all θ0’s such that: (i) 1 =

∑J
j=1 θ0ij, (ii)

0 ≤ θ0ij ≤ 1, and (iii) the test using methylmercury does not reject H0 : θ = θ0 atthe 0.05 level. An infinite set of IJ dimensional θ0’s.

• A sensitivity analysis is informed by a test for bias if it is confined to θ ∈ BΓ ∩Θ:

P′
Γ = maxθ∈BΓ∩Θ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

instead of PΓ = maxθ∈BΓ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

• Always, P′
Γ ≤ PΓ. For HDL cholesterol, P3.614 = 0.05 = P′

3.82.• Γ = 3.614 is (Λ, ∆) = (6, 8.7), while Γ = 3.82 is (Λ, ∆) = (6, 10.1).

33  



Confidence Set for θ; Informed Sensitivity Analyses
• What if we tested all θ’s? LetΘ be the set of all θ0’s such that: (i) 1 =

∑J
j=1 θ0ij, (ii)

0 ≤ θ0ij ≤ 1, and (iii) the test using methylmercury does not reject H0 : θ = θ0 atthe 0.05 level. An infinite set of IJ dimensional θ0’s.• A sensitivity analysis is informed by a test for bias if it is confined to θ ∈ BΓ ∩Θ:

P′
Γ = maxθ∈BΓ∩Θ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

instead of PΓ = maxθ∈BΓ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

• Always, P′
Γ ≤ PΓ. For HDL cholesterol, P3.614 = 0.05 = P′

3.82.• Γ = 3.614 is (Λ, ∆) = (6, 8.7), while Γ = 3.82 is (Λ, ∆) = (6, 10.1).

33  



Confidence Set for θ; Informed Sensitivity Analyses
• What if we tested all θ’s? LetΘ be the set of all θ0’s such that: (i) 1 =

∑J
j=1 θ0ij, (ii)

0 ≤ θ0ij ≤ 1, and (iii) the test using methylmercury does not reject H0 : θ = θ0 atthe 0.05 level. An infinite set of IJ dimensional θ0’s.• A sensitivity analysis is informed by a test for bias if it is confined to θ ∈ BΓ ∩Θ:

P′
Γ = maxθ∈BΓ∩Θ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

instead of PΓ = maxθ∈BΓ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

• Always, P′
Γ ≤ PΓ. For HDL cholesterol, P3.614 = 0.05 = P′

3.82.

• Γ = 3.614 is (Λ, ∆) = (6, 8.7), while Γ = 3.82 is (Λ, ∆) = (6, 10.1).

33  



Confidence Set for θ; Informed Sensitivity Analyses
• What if we tested all θ’s? LetΘ be the set of all θ0’s such that: (i) 1 =

∑J
j=1 θ0ij, (ii)

0 ≤ θ0ij ≤ 1, and (iii) the test using methylmercury does not reject H0 : θ = θ0 atthe 0.05 level. An infinite set of IJ dimensional θ0’s.• A sensitivity analysis is informed by a test for bias if it is confined to θ ∈ BΓ ∩Θ:

P′
Γ = maxθ∈BΓ∩Θ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

instead of PΓ = maxθ∈BΓ

∑
z∈Z

∑
i

φ(wi)
∑

j

zij qij ≥ t

 ∏
i

∏
j

θ
zij
ij

• Always, P′
Γ ≤ PΓ. For HDL cholesterol, P3.614 = 0.05 = P′

3.82.• Γ = 3.614 is (Λ, ∆) = (6, 8.7), while Γ = 3.82 is (Λ, ∆) = (6, 10.1).
33  



D C

50

100

150

200

HDL Cholesterol (200 blocks)

D=daily, C=control

H
D

L
 C

h
o
le

s
te

ro
l,
 m

g
/d

L

D C

Methylmercury (200 blocks)

D=daily, C=control; root scale

M
e
th

y
lm

e
rc

u
ry

 u
g
/L

, 
R

o
o
t 
s
c
a
le

0.5

2

5

10

20

40

Figure: Summary: θ ̸= θ from right. The smallest Γ explaining the right is too small to explain theleft. The smallest Γ that explains both sides is larger than the smallest Γ that explains the left.
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Summary

• Unmeasured biases are present in observational studies, but they may not bedebilitating.

• Statistical theory can aid in avoiding mistakes that exaggerate the sensitivity tounmeasured biases. Large mistakes are possible in design and analysis.
• Design sensitivity and Bahadur efficiency of a sensitivity analysis are two tools thatguide design and analysis.
• Evidence of biased treatment assignment may increase insensitivity to unmeasuredbias.
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Understanding φ(·) in terms of abz(y) for J = 2

• For a single treated-minus-control matched pair difference, Y,
abz(y) = Pr(Y > 0| |Y| = y), for y > 0,

from Albers, Bickel, van Zwet (1976, AOS, 4, 108-156).

• Question: Suppose that you could observe an infinite number of pair differences, Yi,but only for a single value of y of |Y| = y. What y would you pick?
• Given that |Y| = y, a bias of Γ in the absence of a treatment effect cannot produceso many Y > y if

abz(y) >
Γ

Γ + 1
.

So, the answer is the y that maximizes abz(y). (Rosenbaum 2010 JASA 105, 692-702).
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Adaptive Inference: Use Two φ’s

• Do two tests with different φ’s, and take the minimum of the two P-values as a teststatistic, obtaining a P-value from it.
• Berk and Jones (1978) show this is “relatively optimal” in the sense of having thelarger Bahadur efficiency of the two tests.
• This also works in sensitivity analyses, where it also has the larger of the two designsensitivities.

Berk, R.H., Jones, D.H. Relatively optimal combinations of test statistics. Scand J Stat1978;5:158-62.Rosenbaum, P.R. Testing one hypothesis twice ... Biometrika 2012;99:763-74.Rosenbaum, P.R. Bahadur efficiency of observational block designs. JASA 2024;119:1871-81.
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Example of Adaptive Inference from weightedRank in R

library(weightedRank)

wgtRank(y,phi="wilc",gamma=4.5)

pval 0.7400862

wgtRank(y,phi="quade",gamma=4.5)

pval 0.04470762

Test-twice (tt) at gamma=4.4

wgtRanktt(y,phi1="wilc",phi2="quade",gamma=4.4)

jointP 0.04521279

cor12 0.8686031

Separate p-values

phi1 0.6719488

phi2 0.0312262
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Proof of Ignorability Given ζ

• Essentially the same as the corresponding result for the propensity score e(x).

• Must show: Pr(Z = 1|x, rT, rC) = Pr(Z = 1|ζ).
• ζ is by definition ζ = Pr(Z = 1|x, rT, rC), so the task is to show ζ = Pr(Z = 1|ζ).
• Also, ζ = Pr(Z = 1|x, rT, rC) is a function of (x, rT, rC), so

Pr(Z = 1|x, rT, rC) = Pr(Z = 1|x, rT, rC, ζ).
• Trivially,

Pr(Z = 1|ζ) = E{Pr(Z = 1|x, rT, rC, ζ) | ζ}

= E{Pr(Z = 1|x, rT, rC) | ζ} = E(ζ | ζ) = ζ,
as required to complete the proof.

42  



Proof of Ignorability Given ζ

• Essentially the same as the corresponding result for the propensity score e(x).
• Must show: Pr(Z = 1|x, rT, rC) = Pr(Z = 1|ζ).

• ζ is by definition ζ = Pr(Z = 1|x, rT, rC), so the task is to show ζ = Pr(Z = 1|ζ).
• Also, ζ = Pr(Z = 1|x, rT, rC) is a function of (x, rT, rC), so

Pr(Z = 1|x, rT, rC) = Pr(Z = 1|x, rT, rC, ζ).
• Trivially,

Pr(Z = 1|ζ) = E{Pr(Z = 1|x, rT, rC, ζ) | ζ}

= E{Pr(Z = 1|x, rT, rC) | ζ} = E(ζ | ζ) = ζ,
as required to complete the proof.

42  



Proof of Ignorability Given ζ

• Essentially the same as the corresponding result for the propensity score e(x).
• Must show: Pr(Z = 1|x, rT, rC) = Pr(Z = 1|ζ).
• ζ is by definition ζ = Pr(Z = 1|x, rT, rC), so the task is to show ζ = Pr(Z = 1|ζ).

• Also, ζ = Pr(Z = 1|x, rT, rC) is a function of (x, rT, rC), so
Pr(Z = 1|x, rT, rC) = Pr(Z = 1|x, rT, rC, ζ).

• Trivially,
Pr(Z = 1|ζ) = E{Pr(Z = 1|x, rT, rC, ζ) | ζ}

= E{Pr(Z = 1|x, rT, rC) | ζ} = E(ζ | ζ) = ζ,
as required to complete the proof.

42  



Proof of Ignorability Given ζ

• Essentially the same as the corresponding result for the propensity score e(x).
• Must show: Pr(Z = 1|x, rT, rC) = Pr(Z = 1|ζ).
• ζ is by definition ζ = Pr(Z = 1|x, rT, rC), so the task is to show ζ = Pr(Z = 1|ζ).
• Also, ζ = Pr(Z = 1|x, rT, rC) is a function of (x, rT, rC), so

Pr(Z = 1|x, rT, rC) = Pr(Z = 1|x, rT, rC, ζ).

• Trivially,
Pr(Z = 1|ζ) = E{Pr(Z = 1|x, rT, rC, ζ) | ζ}

= E{Pr(Z = 1|x, rT, rC) | ζ} = E(ζ | ζ) = ζ,
as required to complete the proof.

42  



Proof of Ignorability Given ζ

• Essentially the same as the corresponding result for the propensity score e(x).
• Must show: Pr(Z = 1|x, rT, rC) = Pr(Z = 1|ζ).
• ζ is by definition ζ = Pr(Z = 1|x, rT, rC), so the task is to show ζ = Pr(Z = 1|ζ).
• Also, ζ = Pr(Z = 1|x, rT, rC) is a function of (x, rT, rC), so

Pr(Z = 1|x, rT, rC) = Pr(Z = 1|x, rT, rC, ζ).
• Trivially,

Pr(Z = 1|ζ) = E{Pr(Z = 1|x, rT, rC, ζ) | ζ}

= E{Pr(Z = 1|x, rT, rC) | ζ} = E(ζ | ζ) = ζ,
as required to complete the proof.

42  



R Code from weightedRank

ef2C(hdl3,gamma=4,upsilon = 3.75)$pvalsTreatedVSControl1 0.11069568Control2vsOthers 0.11173143Combined 0.04667447
p1=dwgtRank(hdl3[,1:2],gamma=4,m=8, m1=7, m2=8)$pval

p2=dwgtRank(hdl3[,3:1],gamma=3.75,alternative="less",m=8,m1=8,m2=8,

range=FALSE,scores=c(1,2,5))$pval

c(p1,p2)

0.1106957 0.1117314
sensitivitymv::truncatedP(c(p1,p2))

0.04667447
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Bahadur Efficiencies for Pairs, J = 2

Table: Efficiency of a sensitivity analysis at Γ vs. U868 with Normal errors and τ = 1/2 of thestandard deviation of a treated-minus-control pair difference. The best result is in bold.
Normal Errors, Paired Data, J = 2Wilcoxon Quade U868 U878

Γ Γ̃ 2.2 3.2 4.2 5.11 0.72 1.05 1.00 0.921.5 0.36 0.86 1.00 1.002 0.06 0.63 1.00 1.113 0.00 0.05 1.00 1.704 0.00 0.00 1.00 15.56
■ By definition, efficiency of U868 is 1.00.
■ Quade=Wilcoxon’s signed rank best at Γ = 1, but not at Γ = 1.5.
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Bahadur Efficiencies for 1-to-3 Blocks, J = 4

Table: Efficiency relative to U868 with Normal errors and τ = 1/2 of the standard deviation of atreated-minus-control pair difference. The best result is in bold.
Normal Errors, 1-to-3 Blocks, J = 4Wilcoxon Quade U868 U878

Γ Γ̃ 3.5 4.4 5.2 5.71 1.08 1.21 1.00 0.851.5 0.83 1.11 1.00 0.892 0.58 1.01 1.00 0.933 0.15 0.76 1.00 1.044 0.00 0.23 1.00 1.41

■ Quade’s statistic does well for Γ ≤ 2 but falls behind for Γ ≥ 3.
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J > 2 Needs a Larger Γ Than J = 2 to Produce the Same Mean

• In the favorable situation, Treated are N(1/2, 1), Controls are N(0, 1) in I = 100, 000blocks of size J = 4.
• In the unfavorable situations, order statistics from the one treated individual and

J − 1 of the controls are reallocated to “treatment” or “control” under the sensitivitymodel with θij that maximize the “treated” group’s expectation for Γ = 2.5.
Situation T-mean C-mean Difference T-sd C-sd Stand-diffFavorable, J = 4 0.50 0.00 0.50 1.00 1.00 0.35Unfavorable, J = 4 0.45 0.02 0.43 1.02 1.00 0.30Unfavorable, J = 2 0.50 0.00 0.51 1.00 1.00 0.36
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Randomized Trials of Alcohol and HDL-C

• Haskell, W.L. et al, 1984. The effect of cessation and resumption of moderate alcoholintake on serum high-density-lipoprotein subfractions: A controlled study. New
England Journal of Medicine, 310(13), pp.805-810.

• Burr, M.L. et. al, 1986. Alcohol and high-density-lipoprotein cholesterol: Arandomized controlled trial. British Journal of Nutrition, 56(1), pp.81-86.
• Gepner, Y. et al, 2015. Effects of initiating moderate alcohol intake on cardiometabolicrisk in adults with type 2 diabetes: a 2-year randomized, controlled trial. Annals of
Internal Medicine, 163(8), pp.569-579.
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