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Terminology

¢ Definition of an Observational Study: A study of the effects caused by competing
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Terminology

¢ Definition of an Observational Study: A study of the effects caused by competing
treatments that were not randomly assigned to individuals (Cochran 1965, JRSS-A,
“Planning of observational studies of human populations”).

e Treatment and outcome may be associated in the absence of an effect caused by
the treatment, because treatments were not randomly assigned.

e Although we always adjust for measured covariates, treated and control groups may
nonetheless differ in terms of covariates that were not measured.

e That is: without random assignment, the probability of treatment may depend upon
relevant covariates that were not measured.

e This is the main source of controversy in observational studies, and it organizes the
design and analysis of an observational study.
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¢ In thinking about unmeasured biases, context matters. The talk uses a simple
example with a context that is familiar to everyone.

& Wharton



An example, some methods, some theory for design and analysis

¢ In thinking about unmeasured biases, context matters. The talk uses a simple
example with a context that is familiar to everyone.

e Some simple quick claims about how observational studies should be designed if
they are to have greater insensitivity to unmeasured biases. (Proofs of these claims
are in Parts Ill and IV of my Design of Observational Studies, 214 edition, 2020.)

& Wharton



An example, some methods, some theory for design and analysis

¢ In thinking about unmeasured biases, context matters. The talk uses a simple
example with a context that is familiar to everyone.

e Some simple quick claims about how observational studies should be designed if
they are to have greater insensitivity to unmeasured biases. (Proofs of these claims
are in Parts Ill and IV of my Design of Observational Studies, 214 edition, 2020.)

e Some theory showing that choice of methods of analysis has a substantial effect on
the degree to which a study is sensitive to unmeasured biases.

& Wharton



An example, some methods, some theory for design and analysis

¢ In thinking about unmeasured biases, context matters. The talk uses a simple
example with a context that is familiar to everyone.

e Some simple quick claims about how observational studies should be designed if
they are to have greater insensitivity to unmeasured biases. (Proofs of these claims
are in Parts Ill and IV of my Design of Observational Studies, 214 edition, 2020.)

e Some theory showing that choice of methods of analysis has a substantial effect on
the degree to which a study is sensitive to unmeasured biases.

e Perhaps surprisingly, evidence of unmeasured bias may make an observational study
insensitive to larger unmeasured biases.

& Wharton



An example, some methods, some theory for design and analysis

¢ In thinking about unmeasured biases, context matters. The talk uses a simple
example with a context that is familiar to everyone.

e Some simple quick claims about how observational studies should be designed if
they are to have greater insensitivity to unmeasured biases. (Proofs of these claims
are in Parts Ill and IV of my Design of Observational Studies, 214 edition, 2020.)

e Some theory showing that choice of methods of analysis has a substantial effect on
the degree to which a study is sensitive to unmeasured biases.

e Perhaps surprisingly, evidence of unmeasured bias may make an observational study
insensitive to larger unmeasured biases.

e The example has several control groups, so the logic of several control groups will be
briefly discussed.

& Wharton



Derived from:

Paul R. Rosenbaum

An Introduction
to the Theory

of Observational
Studies

Figure: Data in R package iTOS. % Wharton




Some General Theses

e Every observational study is affected by unmeasured biases, but that fact is not
debilitating. Example: smoking and lung cancer.

& Wharton



Some General Theses

e Every observational study is affected by unmeasured biases, but that fact is not
debilitating. Example: smoking and lung cancer.

e Unmeasured bias is unmeasured, but it often has detectable consequences. The
detectable consequences may heighten or diminish concern that the ostensible
causal effects are spurious.

& Wharton



Some General Theses

e Every observational study is affected by unmeasured biases, but that fact is not
debilitating. Example: smoking and lung cancer.

e Unmeasured bias is unmeasured, but it often has detectable consequences. The
detectable consequences may heighten or diminish concern that the ostensible
causal effects are spurious.

¢ A sensitivity analysis talks about unmeasured biases, but it is computed from - itis a
function of - observable data from observable distributions. Change the observable
distributions - change the study design - change the analysis and you change the
sensitivity to unmeasured biases.

& Wharton



Some General Theses

e Every observational study is affected by unmeasured biases, but that fact is not
debilitating. Example: smoking and lung cancer.

e Unmeasured bias is unmeasured, but it often has detectable consequences. The
detectable consequences may heighten or diminish concern that the ostensible
causal effects are spurious.

¢ A sensitivity analysis talks about unmeasured biases, but it is computed from - itis a
function of - observable data from observable distributions. Change the observable
distributions - change the study design - change the analysis and you change the
sensitivity to unmeasured biases.

e Without guidance from statistical theory about the previous point, it is easy to make
poor decisions in design and analysis, reporting that your results are sensitive to
small biases when they are not.
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Example: HDL Cholesterol and Light Daily Alcohol

e You often hear or read that a glass of wine each day with dinner prolongs life
reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g.,
Suh et al. Ann. Int. Med. 1992;116:881-887.

& Wharton



Example: HDL Cholesterol and Light Daily Alcohol

e You often hear or read that a glass of wine each day with dinner prolongs life
reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g.,
Suh et al. Ann. Int. Med. 1992;116:881-887.

e Arecent position paper by the American Society of Clinical Oncology (Noel Loconte
et al. J. Clin. Oncol. 2018;36:83-93) is sharply critical of this claim, emphasizing
increased risk of death from cancer, although risks from accidents, liver diseases, and
violence are relevant too.

& Wharton



Example: HDL Cholesterol and Light Daily Alcohol

e You often hear or read that a glass of wine each day with dinner prolongs life
reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g.,
Suh et al. Ann. Int. Med. 1992;116:881-887.

e Arecent position paper by the American Society of Clinical Oncology (Noel Loconte
et al. J. Clin. Oncol. 2018;36:83-93) is sharply critical of this claim, emphasizing
increased risk of death from cancer, although risks from accidents, liver diseases, and
violence are relevant too.

e Purely as a methodological example, will look at a small corner (and alas less
important) corner of this topic, namely whether light daily alcohol consumption
increases HDL cholesterol.

& Wharton



Example: HDL Cholesterol and Light Daily Alcohol

e You often hear or read that a glass of wine each day with dinner prolongs life
reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g.,
Suh et al. Ann. Int. Med. 1992;116:881-887.

e Arecent position paper by the American Society of Clinical Oncology (Noel Loconte
et al. J. Clin. Oncol. 2018;36:83-93) is sharply critical of this claim, emphasizing
increased risk of death from cancer, although risks from accidents, liver diseases, and
violence are relevant too.

e Purely as a methodological example, will look at a small corner (and alas less
important) corner of this topic, namely whether light daily alcohol consumption
increases HDL cholesterol.

e For some discussion of mortality and light alcohol consumption, see my: “Does a
daily glass of wine prolong life? Insight from a second control group,” Chance,
2025;38(1):25-30.
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Example: Treated and Control Groups

e Adults, age > 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined
“binge drinking” as > 4 or 5 drinks in a day = legally drunk.)

e Treated group consumed between 1 and 3 alcoholic drinks on most days, meaning on
> 260 = 5 x 52 days last year. (median 520 drinks/year)

e Control group N (=Never) had fewer than 12 drinks in their life. (median o/year).

e Control group R (=Rarely) had more than 12 drinks in their life, but fewer than 12
drinks in the past year. Never had a period in their lives when they engaged in binge
drinking on most days. (median o drinks/year).

e Control group B (=former Binge drinker) had a period in their lives when they
engaged in binge drinking on most days, but stopped, and currently drinks, if at all,
on at most one day a week (i.e., 52 days in the past year). (median 4 drinks/year)

e Take a moment and think about people in these groups.
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Observational Block Design

e [ = 406 blocks of size ] = 4, one person from each group, matched for age, sex, and
education (1is <9th grade, 3 is high school, 5 is > BA degree.),

& Wharton



Observational Block Design

e [ = 406 blocks of size ] = 4, one person from each group, matched for age, sex, and
education (1is <9th grade, 3 is high school, 5 is > BA degree.),
e Plus a binary indicator of whether they were in a NHANES subsample that measured
methylmercury levels in blood (200 blocks yes, 206 blocks no).

Table: Covariates Before=Be and After=Af matching, and the remainder that was Not

matched . D=daily, N=never, R=rarely, B=past binger. All D's were matched.

Sample Size Female % Age Education
Be Af Not Be Af Not Be Af Not Be Af Not
D | 406 406 o) 34 34 57 57 41 44
N |[1536 406 1130 | 71 34 84 51 57 50 |32 38 29
R | 1237 406 831 72 34 90 53 56 51 34 3.9 3.2
B| 914 406 508 | 29 34 25 54 56 53 31 39 25
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Brief Mention of Design Techniques to Address Unmeasured Biases

e Campbell/Bitterman idea that multiple control groups cannot control unmeasured
biases, but they can systematically vary them to see if they matter.

& Wharton



Brief Mention of Design Techniques to Address Unmeasured Biases

e Campbell/Bitterman idea that multiple control groups cannot control unmeasured
biases, but they can systematically vary them to see if they matter.

e Comparison of daily drinkers with people who barely drink, omitting people who
drink twice a week. Omitting diluted versions of the treatment increases
insensitivity to unmeasured biases (Design of Observational Studies, 2020, §18.4;
Introduction to the Theory of Observational Studies (iTOS), 2025, §10.3)

& Wharton



Brief Mention of Design Techniques to Address Unmeasured Biases

e Campbell/Bitterman idea that multiple control groups cannot control unmeasured
biases, but they can systematically vary them to see if they matter.

e Comparison of daily drinkers with people who barely drink, omitting people who
drink twice a week. Omitting diluted versions of the treatment increases
insensitivity to unmeasured biases (Design of Observational Studies, 2020, §18.4;
Introduction to the Theory of Observational Studies (iTOS), 2025, §10.3)

¢ Blocks of size 4 are a better design (1-treated-to-3-controls), better for example than
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Brief Mention of Design Techniques to Address Unmeasured Biases

e Campbell/Bitterman idea that multiple control groups cannot control unmeasured
biases, but they can systematically vary them to see if they matter.

e Comparison of daily drinkers with people who barely drink, omitting people who
drink twice a week. Omitting diluted versions of the treatment increases
insensitivity to unmeasured biases (Design of Observational Studies, 2020, §18.4;
Introduction to the Theory of Observational Studies (iTOS), 2025, §10.3)

¢ Blocks of size 4 are a better design (1-treated-to-3-controls), better for example than
pairs (even many more pairs). Selection bias is harder to distinguish from a
treatment effect in pairs or unmatched comparisons, and easier to distinguish with
1-to-3 blocks. (JASA 2024, Biometrics 2013;69:118-127, iTOS, 2025, §10.2).

¢ An unaffected outcome, methylmercury. WHO & CDC say almost all human
exposure to methylmercury comes from eating fish/shellfish. Those who have looked
for methylmercury in alcoholic beverages haven't found it. Can we use this?
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Figure: I = 406 matched blocks. Each group is 33.7% female. M-estimates of location are at the
top. D = daily drinking, N = never, R = rare, B = formerly a frequent binge drinker. 6 Pairwise Holm
comparisons: D-vs-each control, P < 10~1¢, each control-vs-control, P > 0.21.
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Do you think the groups are living similar lives?

e First thesis was: In observational studies, there are always unmeasured biases.
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Do you think the groups are living similar lives?

e First thesis was: In observational studies, there are always unmeasured biases.

e Tests use Friedman or Cochran Q

Table: Blocked comparisons. X is the mean, M is the median.

Variable Alcohol Group

D=daily, N=never, R=rarely, B=past binge D N R B P-value
Ever tried marijuana or hashish? % 73 9 25 75 0.0000000
Ever tried cocaine, heroin, meth? % 29 4 4 37 0.0000000
Methylmercury in blood (ug/L) M 112 0.54 0.56 0.56 0.0000008
Been to dentist in past year? % 67 58 57 48 0.0000006
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Figure: 200 blocks with methylmercury data. /y scale on right. Control groups are merged.
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Basic Structure: Treatments, Covariates, Outcomes

e Treatments: Treated if Z = 1 or control if Z = 0.
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Basic Structure: Treatments, Covariates, Outcomes

e Treatments: Treated if Z = 1 or control if Z = 0.

e Causal effects: (Neyman 1923, Rubin 1974) Comparison of a potential outcome rr
under treatment, seen if Z = 1, and a potential outcome under control, r¢, seen if
Z = 0, so we observe from a person (R, Z) for a person, where R = Zry+ (1 —Z) r.

e Outcomes rr, rc and R may be multivariate. (HDL cholesterol, methymercury).

e Covariates: We also observe a covariate x and are concerned about unobserved
covariates u.

e Randomized experiment: Z is determined by a coin flip, perhaps after blocking or
matching for some function h(x). The coin is “fair” in not depending upon (rr, rc¢),
or more precisely ...
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Ignorable Treatment Assignment & Principal Unobserved Covariate

e Treatment assignment is ignorable given the observed covariates x if

O<Pr(Z=1|x,rr,rc)=Pr(Z=1|x) <1 (1)
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Ignorable Treatment Assignment & Principal Unobserved Covariate

Treatment assignment is ignorable given the observed covariates x if
O<Pr(Z=1|x,rr,rc)=Pr(Z=1|x) <1 (1)

If ignorable, adjustments for x suffice for causal inference.

We often speak of ignorable assignment given something else, given a function h(x)
of X, or given (X, u) where u is an unobserved covariate.

Pr(Z = 1|x) = e(x), say, is the propensity score, and (1) = ignorable given e(x).
Pr(Z = 1|x, rr, rc) = ( is the principal unobserved covariate.

Suppose 0 < ¢ < 1. Two key facts follow. Then, (i) treatment assignment is
ignorable given x <= e(x) = ¢, and (ii) treatment assignment is always ignorable
given {h(x), ¢} for any function h(-).

Importantly, = Pr(Z = 1| rr, re, X) is a function of (rr, re, x).
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Observational Block Design

e Build I blocks,i = 1,..., I, and J people per block,j = 1, ..., J, with one treated
individual per block, 1 = ZJLI Z for each i.

¢ Sample independent (R, Z, x) and assemble into blocks.

e Create I non-overlapping blocks matched for h(x),

h(x;;) =---=h(xy), i=1,..., L

e Our worry is that the blocking has not controlled the principal unobserved
covariate, ¢, so that (; # (j for some i, j.
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Observational Block Design

e Build I blocks,i = 1,..., I, and J people per block,j = 1, ..., J, with one treated
individual per block, 1 = ZJLI Z for each i.

¢ Sample independent (R, Z, x) and assemble into blocks.

e Create I non-overlapping blocks matched for h(x),

h(x;;) =---=h(xy), i=1,..., L

e Our worry is that the blocking has not controlled the principal unobserved
covariate, ¢, so that (; # (j for some i, j.

¢ Could happen in any of three ways: (i) controlling for h(x) did not control for e(x),
(ii) controlling for h(x) did not control for Gjj because treatment assignment is not
ignorable given x, or (iii) both (i) and (ii).
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Notation

° Write]-":{(rTij, r'cij, Xij),i: 1,...,L j= 1,...,]}.

e Principal unobserved covarate ¢ = Pr(Z = 1|rr, ¢, X) is a function of (rr, re, X), all
of which are in F, so (jj = Pr(Z; = 1| F).

e Let Z be the set of possible values, z, of Z = (Z11, ..., Zy), so z;j = 0 or 1, and
1= Z}Zl zijfori=1,...,I. So, Z contains J elements z.

e We sampled independent people and blocked so that Z € Z, i.e., by conditioning on
theeventZ € Z.

e Abbreviate conditioning on Z € Z as conditioning on Z.

e For example, in a randomized block design,
1

=P =1]F.2)
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Bias Within Blocks; Introducing 0

e Given F, the chance that ij is the only treated individual in block i is the chance that
Zij =1landZy = Ofork 751

J -
G [T -G = IC’JG, IT =G,
k£ Y k=1
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Bias Within Blocks; Introducing 0

e Given F, the chance that ij is the only treated individual in block i is the chance that
Zij =1landZy = Ofork 751

J -
G [T -G = IC’JG, IT =G,
k£ Y k=1

e So, conditioning on Z{<=1 Zy = 1saysPr(Zy = 1 |rpy, rey, Xy, > Zi = 1) equals

Cij
Pr(Z=11F,2) = o = by,
1 T Ci

say, where 1 = Z}Zl ¢;; for each i.
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Sensitivity Analysis in Terms of

e From the previous slide, 1 = 2}:1 ¢;; and

Pr (Zl.l =1 ‘rTU',T‘CU,X,'j,ZZik = 1) = Pr (ZU = 1|./—",Z) = - — "Cik = 9ij7
k=1 1—Cy
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Sensitivity Analysis in Terms of

e From the previous slide, 1 = 2}:1 ¢;; and

Pr (Zl.l _ 1‘rTijarCU7Xij7ZZik = ]_) = Pr (ZU = 1|./—",Z) = ]_74”( =

e Sensitivity analysis in terms of the principal unobserved covariate
C(=Pr(Z=1]|r,re,x)

foralli, j, j .

is the same as
foralli, j,j’

k=1 1—(y
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Comparing Methods and Designs for Observational Studies

o Different statistics, different research designs, correctly yield different levels of
sensitivity to unobserved biases.
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e We would like to understand this, so we can make wise choices in design and
analysis.
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e Second, set aside our one data set, replace it by a probability model that generates
data, and demonstrate that what happened once in data should always happen,
measuring precisely when and to what degree it happens.
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Comparing Methods and Designs for Observational Studies

o Different statistics, different research designs, correctly yield different levels of
sensitivity to unobserved biases.

e We would like to understand this, so we can make wise choices in design and
analysis.

e First, let’s do an analysis of the alcohol data and see it happen in one data set.

e Second, set aside our one data set, replace it by a probability model that generates
data, and demonstrate that what happened once in data should always happen,
measuring precisely when and to what degree it happens.

e Start with a collection of closely related statistics, including familiar and unfamiliar
statistics. See how the results vary in this collection.
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Weighted Rank Statistics

e Test the hypothesis of no effect, Hp : rrjj = rejj, Vi, j.
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Weighted Rank Statistics

e Test the hypothesis of no effect, Hp : rrjj = rejj, Vi, j.
e Rank R;; from 1to ] in each block i, with average ranks for ties, calling the
within-block ranks g;;.

e Let Iw; be the rank the ith of the I within-block ranges b; = maxR;; — minR;;, with
average ranks for ties, so 0 < w; < 1.

e Score the ranks of the ranges by a function ¢ (w;), where ¢ : [0, 1] — [0, 1].

o The test statisticis T = "I oo(w;) Z}:l Zjj qij.

e For pairs, ] = 2, taking ¢(w) = 1 yields the sign test, taking o(w) = w yields
Wilcoxon's signed rank test, and for general ¢(w) it is a general signed rank test.

e For] > 2, taking ¢(w;) = 1 yields the blocked Wilcoxon rank sum test (Lehmann

1975 Nonparametrics, §3.3), and taking ¢(w) = w yields Quade’s (1979, JASA)
statistic.
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Transformed rank

1.0
0.8
0.6
0.4
0.2
0.0

Wilcoxon
""" Quade
--- u86s
— u878

Untransformed Rank

Figure: Four weight functions ¢(w) of the block ranges.
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The Set Br of Biased Treatment Assignments 6

e Define Br asthe setof all @ = (011, ..., 6y) such that:

0; 1
1= 65i=1,....I and eri> foralli, j,j’
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The Set Br of Biased Treatment Assignments 6

Define Br as the set of all @ = (611, . .., f) such that:

O 1
I:ZGU,i:L...,I and FZG—J> foralli, j,j’

With I = 406 and | = 4, each 8 is of dimension I] = 1624 but lives in flat of
dimension I(J] — 1) = 1218. By is a closed and bounded (hence compact) set of €’s.

Nested sets, Br C By for I' < I, assume less and less as I — oo.
Every @ with0 < 03 < land 1= Zj 0y is in some Br for large enough I'.
A randomized block design has & = 0 where ?ij = 1/] or equivalently 6 € B;.

The central problem in an observational block design is that there is no basis for
assuming @ € B;. ForI' > 1, 8 € Br does not identify 6.
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Sensitivity Analysis

* Reject Hoif T > twhere T =37, o(wi) 3 ; Zjq; and Pr(Z = z|F, 2) = [[; ] 9;”.
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* Reject Hoif T > twhere T =37, o(wi) 3 ; Zjq; and Pr(Z = z|F, 2) = [[; ] 9;”.
e [A] =1if event A occurs; otherwise 0. Rejection of Hy: [Zl e(wi) > izijqy > t) = 1.
¢ For fixed 0, rejection occurs with probability
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Sensitivity Analysis

Reject Hoif T > twhere T = 3, p(wi) >, Zjq and Pr(Z = z|F, Z) = [[; [ [; 9;”.
[A] =1if event A occurs; otherwise 0. Rejection of Hy: [Zl e(wi) > izijqy > t) = 1.
For fixed 6, rejection occurs with probability

ST o) ziag>c| TT]]65
i

ZEZ i j

e ForagivenI' > 1, the max P-value for @ € Br is

Pr = maxgep, Z Z‘P(Wi) Zzif qij >t HHQZU
i

ZEZ i j
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Sensitivity Analysis, Alcohol Example, Comparing 4 Statistics

Table: Upper bounds on one-sided P-values testing no effect of light daily alcohol on HDL

Cholesterol. In a column, bold is a P-value near 0.05. Hammond’s (1964, JNCI) study of smoking

and lung cancer is sensitive to a bias of I' = 6. The choice of test statistic matters.

I' Wilcoxon Quade usés us78
1 0.0000 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000 0.0000
3.5 0.0603 0.0002 0.0000 0.0000
4 0.3478 0.0052 0.0003 0.0001
4.5 07401 0.0447 0.0028 0.0010
5 0.9429 0.1775 0.0154 0.0050
5.5 0.9926  0.4123 0.0537 0.0174
6 0.9994 0.6642 0.1340 0.0456
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Is 1-to-3 Better Than 1-to-1? A Fair Comparison

e Want to see in the data my earlier claim that 1-to-3 blocks more insensitive to bias
than 1-to-1 pairs.
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Is 1-to-3 Better Than 1-to-1? A Fair Comparison

e Want to see in the data my earlier claim that 1-to-3 blocks more insensitive to bias
than 1-to-1 pairs.

e Not fair to compare 406 1-to-3 blocks to 406 1-to-1 pairs.

e Consider the usual Gaussian linear model, additive block effects, constant within
block variance o2. Estimator is the mean of the treated-minus-average control
difference.

e With M 1-to-1 pairs, estimator has variance 202 /M. With I 1-to-3 blocks, estimator
has variance (1 + 1/3)02 /1. As far as the standard error goes, M pairs is about the
same as I 1-to-3 blocks if I = (1 + 1/3)M/2. For M = 406 pairs, take
I =2M/3 = 271 blocks.
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Fair Comparison, Pairs Versus Blocks

Table: Bounds on P-values for the hypothesis of no effect. Last P-value < 0.05 is in bold.

406 1-to-1 Pairs

271 1-to-3 Blocks

I' | Wilcoxon Quade U868 U878 | Wilcoxon Quade U868 U878

1 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

2 0.006 0.000 0.000 0.000 0.000 0.000 0.000 0.000
3.5 0.994 0.233 0.013 0.003 0.044 0.001 0.000 0.000
4 1.000 0.584 0.064 0.015 0.224 0.008 0.001 0.001
4.5 1.000 0.851 0.182 0.046 0.532 0.045 0.007 0.004
5 1.000 0.963 0.359 0.106 0799  0.143 0.024 0.014
5.5 1.000 0.993 0.552 0.198 0.937 0.310 0.063 0.034
6 1.000 0.999 0720 0.311 0.985 0.511  0.131 0.069
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Can We Understand This Theoretically?

e Suppose that we have some model that generated the data, I blocks of size J, one
treated individual per block. Let I — oo.
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e A basic block model with continuous & bivariate exchangeable errors (e, ecjj)

reg=p+Bi+T+ern,  rejg=p+Bitec, iy —Tej =T+ ETj — Ecy

e Treated-minus-control pair difference in block i is rrjj — rejp = 7 + erj — eyt is

symmetric about 7. Numerical work takes 1 = | /var(erjj — i) and 7 = 1/2.
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Can We Understand This Theoretically?

e Suppose that we have some model that generated the data, I blocks of size J, one
treated individual per block. Let I — oo.

e When letting I — oo, quantities gain a subscript I: T becomes Tj, for example.
e A basic block model with continuous & bivariate exchangeable errors (e, ecjj)

reg=p+Bi+T+ern,  rejg=p+Bitec, iy —Tej =T+ ETj — Ecy

e Treated-minus-control pair difference in block i is rrjj — rejp = 7 + erj — eyt is

symmetric about 7. Numerical work takes 1 = | /var(erjj — i) and 7 = 1/2.

¢ Imagine the study is unaffected by unmeasured bias (i.e., ignorable given x), so that
1/] = 05 = Pr (Zj = 1|ry, rey Xy, > Zge = 1), Vi,j.

o If 7 £ 0, then it is in precisely this sort of case (a so-called favorable situation) that
you hope to report insensitivity to unmeasured biases. Will you?
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Design Sensitivity and Bahadur Efficiency Under a Favorable Model

e Test no effect, Hy, with bias < I" versus a simple H, from a favorable model.
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Design Sensitivity and Bahadur Efficiency Under a Favorable Model

e Test no effect, Hy, with bias < I" versus a simple H, from a favorable model.

e For fixed I', with I blocks, and a required power w = 0.9, there is a level of the test,
ar, that achieves that power. For I' = 1, that is the level of the randomization test.
For large I, that level might be close to 1.

e Want ap; — 0 as fast as possible as I — oo. Ultimately, w does not matter.

e There is (typically) a number, I called the design sensitivity, such that, as I — oo:

arf — OforT < T,  apy— 1forD >T.
o IfT < I thereis (typically) a Bahadur slope pr/2 > 0 such that
log(an)

pr = —limI_,oof sothat ar; ~ exp(—Ipr)asI — oo.

e The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better than
Pitman efficiency for observational studies because Pitman lets 7 — 0 as I — oo.
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Some Design Sensitivities

B What you saw in the example happens in the limit as I — oo for the block model with
Normal errors.

Table: Design sensitivity T’ with Normal errors and 7 = 1/2 of the standard deviation of a
treated-minus-control pair difference. The best result in each situation is in bold.

Wilcoxon Quade U868 U878
= Pairs 2.2 3.2 4.2 5.1
= 1-to-3 Blocks 3.5 4.4 5.2 5.7

J
J

B Results for 7 = 1/3 have smaller F but a similar pattern. E.g., Quade hasT' = 2.1 for
]—2andI‘— 2.8 for] =4, while U878 has T = 2. 8for]—2andF— 3.2for] = 4.
B Results for 7 = 1/2 and errors with a ts-distribution are similar.
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Table: Efficiency at I' = 2. Comparing Block Sizes ] = 2 to ] = 4 in a sensitivity analysis. Top half is
pure block size. Bottom half is block size plus change in test statistic.

Sensitivity Analysis Performed with I" = 2

| T=1/2 T=1/3
J | Normal t5  Normal ts
U868 compared to U868 at ] = 2
2 1.00 1.00 1.00 1.00
3 1.37 1.23 2.14 1.66
4 1.83 1.63 3.07 2.29
U868 comparedtoSRS at ] = 2
2 1.58 1.26 8.08 3.05
3 216 1.55 17.26 5.07
4| 289 204 24.81 6.98
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HDL Cholesterol (200 blocks) Methylmercury (200 blocks)
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Figure: Right panel tests the conjunction of Hy : @ = 0 (or equivalently Hy : @ € B;) and no effect
on methylmercury, rejecting it with a P-value too small to calculate using Quade’s statistic.
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Unaffected Outcomes

e What should we make of Efle eviderlce from methylmercury oibiased treatment
assignment evident, 6 # 6, where §;; = 1/],Vi,jand B; = {0}?
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Unaffected Outcomes

e What should we make of the evidence from methylmercury of biased treatment
assignment evident, 8 # 6, where 6;; = 1/], Vi,j and By = {6}?

e To avoid many possible combinations, will do two-sided, 0.05-level Quade’s tests for
both effect and bias. (This is intended to be simple and not distracting, rather than
optimal (e.g., see Table 3 in R 2023 Stat. Sci.).

e Using the 200 blocks with methylmercury levels (rather than all 406 blocks),
rejection of no effect on HDL cholesterol level becomes sensitive at I' = 3.614. No
6 € B3 414 would lead to a P-value above 0.05. (Was By 5 for I = 406.)

e In parallel, using the same people in the same blocks, no @ € Bj 993 is plausible if
alcohol does not affect methylmercury levels, having been rejected in a 0.05 level
test.

e The sensitivity analysis for HDL cholesterol doesn’t require amendment, but it does
leave us wondering about @ € B3 g14 — B1.993; i.€., in B3 g14 but not in By 993.
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Gaps Between Tests for Bias and Sensitivity Analyses

e Part of the boundary of B3 ¢14 is troublesome, because there is a @ € B3 ¢15 that
would lead us to accept no effect of alcohol on HDL cholesterol. Call these
troublesome boundary points 7. What does methylmercury say about the

troublesome boundary points [7?
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troublesome boundary points [7?

e We would like to say: “no @ € J is plausible.” That would mean that the HDL
cholesterol comparison isn't sensitive at I' = 3.614 after all, but only to a larger I'. If
this were true, say that there is no gap between the test for bias using
methylmercury and the sensitivity analysis for HDL cholesterol.
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Gaps Between Tests for Bias and Sensitivity Analyses

e Part of the boundary of B3 ¢14 is troublesome, because there is a @ € B3 ¢15 that
would lead us to accept no effect of alcohol on HDL cholesterol. Call these
troublesome boundary points 7. What does methylmercury say about the
troublesome boundary points [7?

e We would like to say: “no @ € J is plausible.” That would mean that the HDL
cholesterol comparison isn't sensitive at I' = 3.614 after all, but only to a larger I'. If
this were true, say that there is no gap between the test for bias using
methylmercury and the sensitivity analysis for HDL cholesterol.

e We can test each of the troublesome 0 € 7 using the methylmercury data. When
we do this, the maximum P-value testing Hy : @ = 0 for g € J is 1.17 x 10~7.

e The troublesome biases 8 € 7 are not plausible; so, there is no gap, and I" must be
larger than I" = 3.614 to explain the higher HDL cholesterol levels of light daily
drinkers. The evident bias in methylmercury strengthened the causal claim.
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Confidence Set for 8; Informed Sensitivity Analyses

e What if we tested all 8’s? Let © be the set of all 8y’s such that: (i) 1 = ZJI=1 B, (i)
0 < o < 1, and (iii) the test using methylmercury does not reject Hg : 6 = 6 at
the 0.05 level. An infinite set of I] dimensional 8¢’s.
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e What if we tested all 8’s? Let © be the set of all 8y’s such that: (i) 1 = ZJI=1 B, (i)
0 < o < 1, and (iii) the test using methylmercury does not reject Hg : 6 = 6 at
the 0.05 level. An infinite set of I] dimensional 8¢’s.

o A sensitivity analysis is informed by a test for bias if it is confined to & € Br N ©:

P = maxgepno Z Zg) wj ZZ‘J qij >t HH@Z”

zeZ i

instead of Pr = maxgep,. Z ng w; ZZU qij >t HHGZ’J

zZEZ i
e Always, Pj. < Pr. For HDL cholesterol, P3 14 = 0.05 = P} g,.
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Confidence Set for 8; Informed Sensitivity Analyses

What if we tested all 8’s? Let © be the set of all 8¢’s such that: (i) 1 = ZJI=1 B, (i)
0 < o < 1, and (iii) the test using methylmercury does not reject Hg : 6 = 6 at
the 0.05 level. An infinite set of I] dimensional 8¢’s.

A sensitivity analysis is informed by a test for bias if it is confined to & € Br N O:

P = maxgepno Z Zg) wj ZZ‘J qij >t HH@Z”

zeZ i

instead of Pr = maxgep,. Z ng w; ZZU qij >t HHGZ’J

zeZ i

Always, Pj- < Pr. For HDL cholesterol, P3 14 = 0.05 = Pj g,.
[ =3.614is (A, A) = (6, 8.7), while T = 3.821is (A, A) = (6, 10.1).
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HDL Cholesterol (200 blocks) Methylmercury (200 blocks)
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Figure: Summary: @ # 6 from right. The smallest I" explaining the right is too small to explain the
left. The smallest I" that explains both sides is larger than the smallest I" that explains the left.
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Summary

e Unmeasured biases are present in observational studies, but they may not be
debilitating.
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Summary

e Unmeasured biases are present in observational studies, but they may not be
debilitating.

e Statistical theory can aid in avoiding mistakes that exaggerate the sensitivity to
unmeasured biases. Large mistakes are possible in design and analysis.

e Design sensitivity and Bahadur efficiency of a sensitivity analysis are two tools that
guide design and analysis.

e Evidence of biased treatment assignment may increase insensitivity to unmeasured
bias.
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Understanding ¢ (-) in terms of abz(y) for ] = 2

e For a single treated-minus-control matched pair difference, Y,
abz(y) = Pr(Y > 0||Y| =y), fory > 0,

from Albers, Bickel, van Zwet (1976, AOS, 4, 108-156).
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Understanding ¢ (-) in terms of abz(y) for ] = 2

e For a single treated-minus-control matched pair difference, Y,
abz(y) = Pr(Y > 0||Y| =y), fory > 0,

from Albers, Bickel, van Zwet (1976, AOS, 4, 108-156).

e Question: Suppose that you could observe an infinite number of pair differences, Y;,
but only for a single value of y of |Y| = y. What y would you pick?

e Given that |Y| = y, a bias of I in the absence of a treatment effect cannot produce

somany Y > yif
r

r+1’
So, the answer is the y that maximizes abz(y). (Rosenbaum 2010 JASA 105, 692-702).

abz(y) >
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Y is a treated-control pair difference, i.e. J=2

1.0
I>|‘ 0.9
>
2 0.8
z
G 07 Normal
— —— Norma _
> os | T Logitc E(Y)/sd(Y) = 1/2
g - =+ twith 5 df r/(1+1)=0.8
— 0.8 =4
0.5 -
T T T T T T
0 1 2 3 4 5

ly] = Absolute Pair Difference

Figure: abz(y) plotted against |y| where Y — § is N(0,1), logistic, or ts, and 6 = 0/2 so that

E(Y)/o = 1/2 for each distribution, where ¢ is the standard deviation of Y.
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3.0

Normal

2.8 —

Expected Rank

Block Range

Expected Rank

3.0

2.8
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t with 5 DF

Block Range

Figure: In 1-to-2 blocks of size ] = 3, the curves show the expected within block rank — 1, 2, or 3 —
conditionally given the within block range. Horizontal lines show maximum expectation with a bias

of I and no treatment effect.

& Wharton



Adaptive Inference: Use Two ¢’s

e Do two tests with different ’s, and take the minimum of the two P-values as a test
statistic, obtaining a P-value from it.

e Berk and Jones (1978) show this is “relatively optimal” in the sense of having the
larger Bahadur efficiency of the two tests.
e This also works in sensitivity analyses, where it also has the larger of the two design
sensitivities.
Berk, R.H., Jones, D.H. Relatively optimal combinations of test statistics. Scand J Stat
1978;5:158-62.
Rosenbaum, P.R. Testing one hypothesis twice ... Biometrika 2012;99:763-74.
Rosenbaum, P.R. Bahadur efficiency of observational block designs. JASA 2024;119:1871-81.
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Example of Adaptive Inference from weightedRank in R

library(weightedRank)

wgtRank (y,phi="wilc",6gamma=4.5)
pval 0.7400862

wgtRank (y,phi="quade",gamma=4.5)
pval 0.04470762

Test-twice (tt) at gamma=4.4

wgtRanktt (y,phil="wilc",phi2="quade",gamma=4.4)
jointP 0.04521279

corl2 0.8686031

Separate p-values

phil 0.6719488

phi2 0.0312262
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Proof of Ignorability Given (

e Essentially the same as the corresponding result for the propensity score e(x).

& Wharton



42

Proof of Ignorability Given (

e Essentially the same as the corresponding result for the propensity score e(x).
e Must show: Pr(Z = 1|x,rr,r¢) = Pr(Z = 1/().

& Wharton



42

Proof of Ignorability Given (

e Essentially the same as the corresponding result for the propensity score e(x).
e Must show: Pr(Z = 1|x,rr,r¢) = Pr(Z = 1/().
e ( is by definition ( = Pr(Z = 1|x, rr,r¢), so the task is to show ¢ = Pr(Z = 1/().

& Wharton



42

Proof of Ignorability Given (

Essentially the same as the corresponding result for the propensity score e(x).
Must show: Pr(Z = 1|x,rr,r¢) = Pr(Z = 1|().
( is by definition ( = Pr(Z = 1|x, rr,r¢), so the task is to show ¢ = Pr(Z = 1|().
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Proof of Ignorability Given (

Essentially the same as the corresponding result for the propensity score e(x).
Must show: Pr(Z = 1|x,rr,r¢) = Pr(Z = 1|().
( is by definition ( = Pr(Z = 1|x, rr,r¢), so the task is to show ¢ = Pr(Z = 1|().

Also, ¢ = Pr(Z = 1|x,rr,rc) is a function of (x, rr,r¢), so

PI'(Z = 1|X> rr, T'C) = PI‘(Z = 1|Xa rr,re, C)

Trivially,
Pr(Z = 1|¢) = E{Pr(Z = 1|x,r1,7c, ¢) | (}

= E{Pr(Z = 1x,rr,rc) | C} = E(C| ) = G,

as required to complete the proof.
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R Code from weightedRank

ef2C(hd13,gamma=4,upsilon = 3.75)$pvals
TreatedVSControl1 0.11069568

Control2vsOthers 0.11173143

Combined 0.04667447

pl=dwgtRank (hd13[,1:2],gamma=4,m=8, m1=7, m2=8)3$pval

p2=dwgtRank (hd13[,3:1] ,gamma=3.75,alternative="1less" ,m=8,m1=8,m2=8,
range=FALSE, scores=c(1,2,5))$pval

c(pl,p2)
0.1106957 0.1117314
sensitivitymv::truncatedP(c(pl,p2))

0.04667447
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Bahadur Efficiencies for Pairs, ] = 2

Table: Efficiency of a sensitivity analysis at " vs. U868 with Normal errors and 7 = 1/2 of the
standard deviation of a treated-minus-control pair difference. The best result is in bold.

Normal Errors, Paired Data, ] = 2

Wilcoxon Quade U868 U878
r r 2.2 3.2 4.2 541
1 072 1.05 .00 0.92
1.5 0.36 0.86 1.00 1.00
2 0.06 0.63 1.00 1.1
3 0.00 0.05 .00 170
4 0.00 0.00 1.00 15.56

Bl By definition, efficiency of U868 is 1.00.
B Quade=Wilcoxon’s signed rank best at I' = 1, but not at I" = 1.5.
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Bahadur Efficiencies for 1-to-3 Blocks, ] = 4

Table: Efficiency relative to U868 with Normal errors and 7 = 1/2 of the standard deviation of a
treated-minus-control pair difference. The best result is in bold.

Normal Errors, 1-to-3 Blocks, ] = 4

Wilcoxon Quade U868 U878
r r 3.5 4.4 5.2 5.7
1 1.08 1.21 1.00 0.85
1.5 0.83 1.1 1.00 0.89
2 0.58 1.01 1.00  0.93
3 0.15 0.76 1.00 1.04
4 0.00 0.23 1.00  1.41

B Quade’s statistic does well for I' < 2 but falls behind for I > 3.
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J > 2 Needs a Larger I' Than ] = 2 to Produce the Same Mean

e In the favorable situation, Treated are N(1/2, 1), Controls are N(0, 1) in I = 100, 000

blocks of size ] = 4.

¢ In the unfavorable situations, order statistics from the one treated individual and
J — 1 of the controls are reallocated to “treatment” or “control” under the sensitivity
model with 6;; that maximize the “treated” group’s expectation for I' = 2.5.

Situation T-mean C-mean Difference T-sd C-sd Stand-diff
Favorable, ] = 4 0.50 0.00 0.50 1.00 1.00 0.35
Unfavorable, ] = 4 0.45 0.02 0.43 1.02 1.00 0.30
Unfavorable, ] = 2 0.50 0.00 0.51 1.00 1.00 0.36
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Randomized Trials of Alcohol and HDL-C

e Haskell, W.L. et al, 1984. The effect of cessation and resumption of moderate alcohol
intake on serum high-density-lipoprotein subfractions: A controlled study. New
England Journal of Medicine, 310(13), pp.805-810.

e Burr, M.L. et. al, 1986. Alcohol and high-density-lipoprotein cholesterol: A
randomized controlled trial. British Journal of Nutrition, 56(1), pp.81-86.

e Gepner, Y. et al, 2015. Effects of initiating moderate alcohol intake on cardiometabolic
risk in adults with type 2 diabetes: a 2-year randomized, controlled trial. Annals of
Internal Medicine, 163(8), pp.569-579.
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