Being Realistic About Unmeasured Biases in Observational Studies

Paul R. Rosenbaum

Terminology

- Definition of an Observational Study: A study of the effects caused by competing treatments that were not randomly assigned to individuals (Cochran 1965, JRSS-A, "Planning of observational studies of human populations").

Terminology

- Definition of an Observational Study: A study of the effects caused by competing treatments that were not randomly assigned to individuals (Cochran 1965, JRSS-A, "Planning of observational studies of human populations").
- Treatment and outcome may be associated in the absence of an effect caused by the treatment, because treatments were not randomly assigned.

Terminology

- Definition of an Observational Study: A study of the effects caused by competing treatments that were not randomly assigned to individuals (Cochran 1965, JRSS-A, "Planning of observational studies of human populations").
- Treatment and outcome may be associated in the absence of an effect caused by the treatment, because treatments were not randomly assigned.
- Although we always adjust for measured covariates, treated and control groups may nonetheless differ in terms of covariates that were not measured.

Terminology

- Definition of an Observational Study: A study of the effects caused by competing treatments that were not randomly assigned to individuals (Cochran 1965, JRSS-A, "Planning of observational studies of human populations").
- Treatment and outcome may be associated in the absence of an effect caused by the treatment, because treatments were not randomly assigned.
- Although we always adjust for measured covariates, treated and control groups may nonetheless differ in terms of covariates that were not measured.
- That is: without random assignment, the probability of treatment may depend upon relevant covariates that were not measured.

Terminology

- Definition of an Observational Study: A study of the effects caused by competing treatments that were not randomly assigned to individuals (Cochran 1965, JRSS-A, "Planning of observational studies of human populations").
- Treatment and outcome may be associated in the absence of an effect caused by the treatment, because treatments were not randomly assigned.
- Although we always adjust for measured covariates, treated and control groups may nonetheless differ in terms of covariates that were not measured.
- That is: without random assignment, the probability of treatment may depend upon relevant covariates that were not measured.
- This is the main source of controversy in observational studies, and it organizes the design and analysis of an observational study.

An example, some methods, some theory for design and analysis

- In thinking about unmeasured biases, context matters. The talk uses a simple example with a context that is familiar to everyone.

An example, some methods, some theory for design and analysis

- In thinking about unmeasured biases, context matters. The talk uses a simple example with a context that is familiar to everyone.
- Some simple quick claims about how observational studies should be designed if they are to have greater insensitivity to unmeasured biases. (Proofs of these claims are in Parts III and IV of my Design of Observational Studies, $2^{\text {nd }}$ edition, 2020.)

An example, some methods, some theory for design and analysis

- In thinking about unmeasured biases, context matters. The talk uses a simple example with a context that is familiar to everyone.
- Some simple quick claims about how observational studies should be designed if they are to have greater insensitivity to unmeasured biases. (Proofs of these claims are in Parts III and IV of my Design of Observational Studies, $2^{\text {nd }}$ edition, 2020.)
- Some theory showing that choice of methods of analysis has a substantial effect on the degree to which a study is sensitive to unmeasured biases.

An example, some methods, some theory for design and analysis

- In thinking about unmeasured biases, context matters. The talk uses a simple example with a context that is familiar to everyone.
- Some simple quick claims about how observational studies should be designed if they are to have greater insensitivity to unmeasured biases. (Proofs of these claims are in Parts III and IV of my Design of Observational Studies, $2^{\text {nd }}$ edition, 2020.)
- Some theory showing that choice of methods of analysis has a substantial effect on the degree to which a study is sensitive to unmeasured biases.
- Perhaps surprisingly, evidence of unmeasured bias may make an observational study insensitive to larger unmeasured biases.

An example, some methods, some theory for design and analysis

- In thinking about unmeasured biases, context matters. The talk uses a simple example with a context that is familiar to everyone.
- Some simple quick claims about how observational studies should be designed if they are to have greater insensitivity to unmeasured biases. (Proofs of these claims are in Parts III and IV of my Design of Observational Studies, $2^{\text {nd }}$ edition, 2020.)
- Some theory showing that choice of methods of analysis has a substantial effect on the degree to which a study is sensitive to unmeasured biases.
- Perhaps surprisingly, evidence of unmeasured bias may make an observational study insensitive to larger unmeasured biases.
- The example has several control groups, so the logic of several control groups will be briefly discussed.

Some references

- Bahadur efficiency of observational block designs. J. Am. Statist. Assoc., 2024, to appear, doi:10.1080/01621459.2023.2221402.
- Can we reliably detect biases that matter in observational studies? Statist. Sci. 2023;38:440-457.
- Sensitivity analyses informed by tests for bias in observational studies. Biometrics 2023;79:475-487.
- A second evidence factor for a second control group. Biometrics 2023;79:3968-3980.
- Design sensitivity in observational studies. Biometrika 2004;91:153-164.
- Design of Observational Studies, $2^{\text {nd }}$ edition, New York: Springer, 2020.
- (with D.B. Rubin) Propensity scores in the design of observational studies for causal effects. Biometrika, 2023;110:1-13.

Some General Theses

- Every observational study is affected by unmeasured biases, but that fact is not debilitating. Example: smoking and lung cancer.

Some General Theses

- Every observational study is affected by unmeasured biases, but that fact is not debilitating. Example: smoking and lung cancer.
- Unmeasured bias is unmeasured, but it often has detectable consequences. The detectable consequences may heighten or diminish concern that the ostensible causal effects are spurious.

Some General Theses

- Every observational study is affected by unmeasured biases, but that fact is not debilitating. Example: smoking and lung cancer.
- Unmeasured bias is unmeasured, but it often has detectable consequences. The detectable consequences may heighten or diminish concern that the ostensible causal effects are spurious.
- A sensitivity analysis talks about unmeasured biases, but it is computed from - it is a function of - observable data from observable distributions. Change the observable distributions - change the study design - change the analysis and you change the sensitivity to unmeasured biases.

Some General Theses

- Every observational study is affected by unmeasured biases, but that fact is not debilitating. Example: smoking and lung cancer.
- Unmeasured bias is unmeasured, but it often has detectable consequences. The detectable consequences may heighten or diminish concern that the ostensible causal effects are spurious.
- A sensitivity analysis talks about unmeasured biases, but it is computed from - it is a function of - observable data from observable distributions. Change the observable distributions - change the study design - change the analysis and you change the sensitivity to unmeasured biases.
- Without guidance from statistical theory about the previous point, it is easy to make poor decisions in design and analysis, reporting that your results are sensitive to small biases when they are not.

Example: HDL Cholesterol and Light Daily Alcohol

- You often hear or read that a glass of wine each day with dinner prolongs life reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g., Suh et al. Ann. Int. Med. 1992;116:881-887.

Example: HDL Cholesterol and Light Daily Alcohol

- You often hear or read that a glass of wine each day with dinner prolongs life reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g., Suh et al. Ann. Int. Med. 1992;116:881-887.
- A recent position paper by the American Society of Clinical Oncology (Noel Loconte et al. J. Clin. Oncol. 2018;36:83-93) is sharply critical of this claim, emphasizing increased risk of death from cancer, although risks from accidents, liver diseases, and violence are relevant too.

Example: HDL Cholesterol and Light Daily Alcohol

- You often hear or read that a glass of wine each day with dinner prolongs life reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g., Suh et al. Ann. Int. Med. 1992;116:881-887.
- A recent position paper by the American Society of Clinical Oncology (Noel Loconte et al. J. Clin. Oncol. 2018;36:83-93) is sharply critical of this claim, emphasizing increased risk of death from cancer, although risks from accidents, liver diseases, and violence are relevant too.
- Purely as a methodological example, will look at a small corner (and alas less important) corner of this topic, namely whether light daily alcohol consumption increases HDL cholesterol.

Example: HDL Cholesterol and Light Daily Alcohol

- You often hear or read that a glass of wine each day with dinner prolongs life reducing cardiovascular mortality, perhaps by increasing HDL cholesterol levels (e.g., Suh et al. Ann. Int. Med. 1992;116:881-887.
- A recent position paper by the American Society of Clinical Oncology (Noel Loconte et al. J. Clin. Oncol. 2018;36:83-93) is sharply critical of this claim, emphasizing increased risk of death from cancer, although risks from accidents, liver diseases, and violence are relevant too.
- Purely as a methodological example, will look at a small corner (and alas less important) corner of this topic, namely whether light daily alcohol consumption increases HDL cholesterol.
- NHANES data are available as aHDL in my weightedRank package in R, and documented in the data appendix to my Biometrics 2023;79:475-487 article.

Example: Treated and Control Groups

- Adults, age ≥ 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined "binge drinking" as ≥ 4 or 5 drinks in a day \doteq legally drunk.)

Example: Treated and Control Groups

- Adults, age ≥ 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined "binge drinking" as ≥ 4 or 5 drinks in a day \doteq legally drunk.)
- Treated group consumed between 1 and 3 alcoholic drinks on most days, meaning on $\geq 260=5 \times 52$ days last year. (median 520 drinks/year)

Example: Treated and Control Groups

- Adults, age ≥ 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined "binge drinking" as ≥ 4 or 5 drinks in a day \doteq legally drunk.)
- Treated group consumed between 1 and 3 alcoholic drinks on most days, meaning on $\geq 260=5 \times 52$ days last year. (median 520 drinks/year)
- Control group N (=Never) had fewer than 12 drinks in their life. (median o/year).

Example: Treated and Control Groups

- Adults, age ≥ 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined "binge drinking" as ≥ 4 or 5 drinks in a day \doteq legally drunk.)
- Treated group consumed between 1 and 3 alcoholic drinks on most days, meaning on $\geq 260=5 \times 52$ days last year. (median 520 drinks/year)
- Control group N (=Never) had fewer than 12 drinks in their life. (median o/year).
- Control group R (=Rarely) had more than 12 drinks in their life, but fewer than 12 drinks in the past year. Never had a period in their lives when they engaged in binge drinking on most days. (median o drinks/year).

Example: Treated and Control Groups

- Adults, age ≥ 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined "binge drinking" as ≥ 4 or 5 drinks in a day \doteq legally drunk.)
- Treated group consumed between 1 and 3 alcoholic drinks on most days, meaning on $\geq 260=5 \times 52$ days last year. (median 520 drinks/year)
- Control group N (=Never) had fewer than 12 drinks in their life. (median o/year).
- Control group R (=Rarely) had more than 12 drinks in their life, but fewer than 12 drinks in the past year. Never had a period in their lives when they engaged in binge drinking on most days. (median o drinks/year).
- Control group B (=former Binge drinker) had a period in their lives when they engaged in binge drinking on most days, but stopped, and currently drinks, if at all, on at most one day a week (i.e., 52 days in the past year). (median 4 drinks/year)

Example: Treated and Control Groups

- Adults, age ≥ 20, from NHANES 2013-2016. (At this time, NHANES and CDC defined "binge drinking" as ≥ 4 or 5 drinks in a day \doteq legally drunk.)
- Treated group consumed between 1 and 3 alcoholic drinks on most days, meaning on $\geq 260=5 \times 52$ days last year. (median 520 drinks/year)
- Control group N (=Never) had fewer than 12 drinks in their life. (median o/year).
- Control group R (=Rarely) had more than 12 drinks in their life, but fewer than 12 drinks in the past year. Never had a period in their lives when they engaged in binge drinking on most days. (median o drinks/year).
- Control group B (=former Binge drinker) had a period in their lives when they engaged in binge drinking on most days, but stopped, and currently drinks, if at all, on at most one day a week (i.e., 52 days in the past year). (median 4 drinks/year)
- Take a moment and think about people in these groups.

Observational Block Design

- $I=406$ blocks of size $J=4$, one person from each group, matched for age, sex, and education (1 is <9 th grade, 3 is high school, 5 is \geq BA degree.),

Observational Block Design

- $I=406$ blocks of size $J=4$, one person from each group, matched for age, sex, and education (1 is <9 th grade, 3 is high school, 5 is \geq BA degree.),
- Plus a binary indicator of whether they were in a NHANES subsample that measured methylmercury levels in blood (200 blocks yes, 206 blocks no).

Table: Covariates Before=Be and After=Af matching, and the remainder that was Not matched. $\mathrm{D}=$ daily, $\mathrm{N}=\mathrm{never}, \mathrm{R}=$ rarely, $\mathrm{B}=$ past binger. All D 's were matched.

	Sample Size			Female \%			Age			Education		
	Be	Af	Not									
D	406	406	O	34	34		57	57		4.1	4.1	
N	1536	406	1130	71	34	84	51	57	50	3.2	3.8	2.9
R	1237	406	831	72	34	90	53	56	51	3.4	3.9	3.2
B	914	406	508	29	34	25	54	56	53	3.1	3.9	2.5

Brief Mention of Design Techniques to Address Unmeasured Biases

- Campbell/Bitterman idea that multiple control groups cannot control unmeasured biases, but they can systematically vary them to see if they matter.

Brief Mention of Design Techniques to Address Unmeasured Biases

- Campbell/Bitterman idea that multiple control groups cannot control unmeasured biases, but they can systematically vary them to see if they matter.
- Comparison of daily drinkers with people who barely drink, omitting people who drink twice a week. Omitting diluted versions of the treatment increases insensitivity to unmeasured biases (Design of Observational Studies, 2020, Proposition 18.1 and Tables 18.2-18.3)

Brief Mention of Design Techniques to Address Unmeasured Biases

- Campbell/Bitterman idea that multiple control groups cannot control unmeasured biases, but they can systematically vary them to see if they matter.
- Comparison of daily drinkers with people who barely drink, omitting people who drink twice a week. Omitting diluted versions of the treatment increases insensitivity to unmeasured biases (Design of Observational Studies, 2020, Proposition 18.1 and Tables 18.2-18.3)
- Blocks of size 4 are a better design (1-treated-to-3-controls), better for example than pairs (even many more pairs). Selection bias is harder to distinguish from a treatment effect in pairs or unmatched comparisons, and easier to distinguish with 1-to-3 blocks. (JASA 2024, Biometrics 2013;69:118-127).

Brief Mention of Design Techniques to Address Unmeasured Biases

- Campbell/Bitterman idea that multiple control groups cannot control unmeasured biases, but they can systematically vary them to see if they matter.
- Comparison of daily drinkers with people who barely drink, omitting people who drink twice a week. Omitting diluted versions of the treatment increases insensitivity to unmeasured biases (Design of Observational Studies, 2020, Proposition 18.1 and Tables 18.2-18.3)
- Blocks of size 4 are a better design (1-treated-to-3-controls), better for example than pairs (even many more pairs). Selection bias is harder to distinguish from a treatment effect in pairs or unmatched comparisons, and easier to distinguish with 1-to-3 blocks. (JASA 2024, Biometrics 2013;69:118-127).
- An unaffected outcome, methylmercury. WHO \& CDC say almost all human exposure to methylmercury comes from eating fish/shellfish. Those who have looked for methylmercury in alcoholic beverages haven't found it. Can we use this?

Figure: $I=406$ matched blocks. Each group is 33.7% female. M-estimates of location are at the top. $D=$ daily drinking, $N=$ never, $R=$ rare, $B=$ formerly a frequent binge drinker. 6 Pairwise Holm comparisons: D-vs-each control, $P \leq 10^{-16}$, each control-vs-control, $P \geq 0.21$.

Do you think the groups are living similar lives?

- First thesis was: In observational studies, there are always unmeasured biases.

Do you think the groups are living similar lives?

- First thesis was: In observational studies, there are always unmeasured biases.
- Tests use Friedman or Cochran Q

Table: Blocked comparisons. \bar{X} is the mean, M is the median.

Variable	Alcohol Group					
D=daily, N=never, R=rarely, B=past binge	D	N	R	B	P-value	
Ever tried marijuana or hashish?	$\%$	73	9	25	75	0.0000000
Ever tried cocaine, heroin, meth?	$\%$	29	4	4	37	0.0000000
Methylmercury in blood $(\mu \mathrm{g} / \mathrm{L})$	M	1.12	0.54	0.56	0.56	0.0000008
Been to dentist in past year?	$\%$	67	58	57	48	0.0000006

HDL Cholesterol (200 blocks)

D=daily, C=control

Methylmercury (200 blocks)

Figure: 200 blocks with methylmercury data. \sqrt{y} scale on right. Control groups are merged.

Basic Structure: Treatments, Covariates, Outcomes

- Treatments: Treated if $Z=1$ or control if $Z=0$.

Basic Structure: Treatments, Covariates, Outcomes

- Treatments: Treated if $Z=1$ or control if $Z=0$.
- Causal effects: (Neyman 1923, Rubin 1974) Comparison of a potential outcome r_{T} under treatment, seen if $Z=1$, and a potential outcome under control, r_{C}, seen if $Z=0$, so we observe from a person (R, Z) for a person, where $R=Z r_{T}+(1-Z) r_{C}$.

Basic Structure: Treatments, Covariates, Outcomes

- Treatments: Treated if $Z=1$ or control if $Z=0$.
- Causal effects: (Neyman 1923, Rubin 1974) Comparison of a potential outcome r_{T} under treatment, seen if $Z=1$, and a potential outcome under control, r_{C}, seen if $Z=0$, so we observe from a person (R, Z) for a person, where $R=Z r_{T}+(1-Z) r_{C}$.
- Outcomes r_{T}, r_{C} and R may be multivariate. (HDL cholesterol, methymercury).

Basic Structure: Treatments, Covariates, Outcomes

- Treatments: Treated if $Z=1$ or control if $Z=0$.
- Causal effects: (Neyman 1923, Rubin 1974) Comparison of a potential outcome r_{T} under treatment, seen if $Z=1$, and a potential outcome under control, r_{C}, seen if $Z=0$, so we observe from a person (R, Z) for a person, where $R=Z r_{T}+(1-Z) r_{C}$.
- Outcomes r_{T}, r_{C} and R may be multivariate. (HDL cholesterol, methymercury).
- Covariates: We also observe a covariate \mathbf{x} and are concerned about unobserved covariates u.

Basic Structure: Treatments, Covariates, Outcomes

- Treatments: Treated if $Z=1$ or control if $Z=0$.
- Causal effects: (Neyman 1923, Rubin 1974) Comparison of a potential outcome r_{T} under treatment, seen if $Z=1$, and a potential outcome under control, r_{C}, seen if $Z=0$, so we observe from a person (R, Z) for a person, where $R=Z r_{T}+(1-Z) r_{C}$.
- Outcomes r_{T}, r_{C} and R may be multivariate. (HDL cholesterol, methymercury).
- Covariates: We also observe a covariate \mathbf{x} and are concerned about unobserved covariates u.
- Randomized experiment: Z is determined by a coin flip, perhaps after blocking or matching for some function $\mathbf{h}(\mathbf{x})$. The coin is "fair" in not depending upon $\left(r_{T}, r_{C}\right)$, or more precisely ...

Ignorable Treatment Assignment \& Principal Unobserved Covariate

- Treatment assignment is ignorable given the observed covariates \mathbf{x} if

$$
\begin{equation*}
0<\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \mathbf{x})<1 \tag{1}
\end{equation*}
$$

Ignorable Treatment Assignment \& Principal Unobserved Covariate

- Treatment assignment is ignorable given the observed covariates \mathbf{x} if

$$
\begin{equation*}
0<\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \mathbf{x})<1 \tag{1}
\end{equation*}
$$

- If ignorable, adjustments for \mathbf{x} suffice for causal inference.
- Treatment assignment is ignorable given the observed covariates \mathbf{x} if

$$
\begin{equation*}
0<\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \mathbf{x})<1 \tag{1}
\end{equation*}
$$

- If ignorable, adjustments for \mathbf{x} suffice for causal inference.
- We often speak of ignorable assignment given something else, given a function $\mathbf{h}(\mathbf{x})$ of \mathbf{x}, or given (\mathbf{x}, u) where u is an unobserved covariate.
- Treatment assignment is ignorable given the observed covariates \mathbf{x} if

$$
\begin{equation*}
0<\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \mathbf{x})<1 \tag{1}
\end{equation*}
$$

- If ignorable, adjustments for \mathbf{x} suffice for causal inference.
- We often speak of ignorable assignment given something else, given a function $\mathbf{h}(\mathbf{x})$ of \mathbf{x}, or given (\mathbf{x}, u) where u is an unobserved covariate.
- $\operatorname{Pr}(Z=1 \mid \mathbf{x})=e(\mathbf{x})$, say, is the propensity score, and (1) \Longrightarrow ignorable given $e(\mathbf{x})$.
- Treatment assignment is ignorable given the observed covariates \mathbf{x} if

$$
\begin{equation*}
0<\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \mathbf{x})<1 \tag{1}
\end{equation*}
$$

- If ignorable, adjustments for \mathbf{x} suffice for causal inference.
- We often speak of ignorable assignment given something else, given a function $\mathbf{h}(\mathbf{x})$ of \mathbf{x}, or given (\mathbf{x}, u) where u is an unobserved covariate.
- $\operatorname{Pr}(Z=1 \mid \mathbf{x})=e(\mathbf{x})$, say, is the propensity score, and (1) \Longrightarrow ignorable given $e(\mathbf{x})$.
- $\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\zeta$ is the principal unobserved covariate.
- Treatment assignment is ignorable given the observed covariates \mathbf{x} if

$$
\begin{equation*}
0<\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \mathbf{x})<1 \tag{1}
\end{equation*}
$$

- If ignorable, adjustments for \mathbf{x} suffice for causal inference.
- We often speak of ignorable assignment given something else, given a function $\mathbf{h}(\mathbf{x})$ of \mathbf{x}, or given (\mathbf{x}, u) where u is an unobserved covariate.
- $\operatorname{Pr}(Z=1 \mid \mathbf{x})=e(\mathbf{x})$, say, is the propensity score, and (1) \Longrightarrow ignorable given $e(\mathbf{x})$.
- $\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\zeta$ is the principal unobserved covariate.
- Suppose $0<\zeta<1$. Two key facts follow. Then, (i) treatment assignment is ignorable given $\mathbf{x} \Longleftrightarrow e(\mathbf{x})=\zeta$, and (ii) treatment assignment is always ignorable given $\{\mathbf{h}(\mathbf{x}), \zeta\}$ for any function $\mathbf{h}(\cdot)$.
- Treatment assignment is ignorable given the observed covariates \mathbf{x} if

$$
\begin{equation*}
0<\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \mathbf{x})<1 \tag{1}
\end{equation*}
$$

- If ignorable, adjustments for \mathbf{x} suffice for causal inference.
- We often speak of ignorable assignment given something else, given a function $\mathbf{h}(\mathbf{x})$ of \mathbf{x}, or given (\mathbf{x}, u) where u is an unobserved covariate.
- $\operatorname{Pr}(Z=1 \mid \mathbf{x})=e(\mathbf{x})$, say, is the propensity score, and (1) \Longrightarrow ignorable given $e(\mathbf{x})$.
- $\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\zeta$ is the principal unobserved covariate.
- Suppose $0<\zeta<1$. Two key facts follow. Then, (i) treatment assignment is ignorable given $\mathbf{x} \Longleftrightarrow e(\mathbf{x})=\zeta$, and (ii) treatment assignment is always ignorable given $\{\mathbf{h}(\mathbf{x}), \zeta\}$ for any function $\mathbf{h}(\cdot)$.
- Importantly, $\zeta=\operatorname{Pr}\left(Z=1 \mid r_{T}, r_{C}, \mathbf{x}\right)$ is a function of $\left(r_{T}, r_{C}, \mathbf{x}\right)$.

Observational Block Design

- Build I blocks, $i=1, \ldots, I$, and J people per block, $j=1, \ldots, J$, with one treated individual per block, $1=\sum_{j=1}^{J} Z_{i j}$ for each i.

Observational Block Design

- Build I blocks, $i=1, \ldots, I$, and J people per block, $j=1, \ldots, J$, with one treated individual per block, $1=\sum_{j=1}^{J} Z_{i j}$ for each i.
- Sample independent (R, Z, \mathbf{x}) and assemble into blocks.

Observational Block Design

- Build I blocks, $i=1, \ldots, I$, and J people per block, $j=1, \ldots, J$, with one treated individual per block, $1=\sum_{j=1}^{J} Z_{i j}$ for each i.
- Sample independent (R, Z, \mathbf{x}) and assemble into blocks.
- Create I non-overlapping blocks matched for $\mathbf{h}(\mathbf{x})$,

$$
\mathbf{h}\left(\mathbf{x}_{i 1}\right)=\cdots=\mathbf{h}\left(\mathbf{x}_{i J}\right), i=1, \ldots, I
$$

Observational Block Design

- Build I blocks, $i=1, \ldots, I$, and J people per block, $j=1, \ldots, J$, with one treated individual per block, $1=\sum_{j=1}^{J} Z_{i j}$ for each i.
- Sample independent (R, Z, \mathbf{x}) and assemble into blocks.
- Create I non-overlapping blocks matched for $\mathbf{h}(\mathbf{x})$,

$$
\mathbf{h}\left(\mathbf{x}_{i 1}\right)=\cdots=\mathbf{h}\left(\mathbf{x}_{i J}\right), i=1, \ldots, I
$$

- Our worry is that the blocking has not controlled the principal unobserved covariate, ζ, so that $\zeta_{i j} \neq \zeta_{i j^{\prime}}$ for some i, j.

Observational Block Design

- Build I blocks, $i=1, \ldots, I$, and J people per block, $j=1, \ldots, J$, with one treated individual per block, $1=\sum_{j=1}^{J} Z_{i j}$ for each i.
- Sample independent (R, Z, \mathbf{x}) and assemble into blocks.
- Create I non-overlapping blocks matched for $\mathbf{h}(\mathbf{x})$,

$$
\mathbf{h}\left(\mathbf{x}_{i 1}\right)=\cdots=\mathbf{h}\left(\mathbf{x}_{i J}\right), i=1, \ldots, I
$$

- Our worry is that the blocking has not controlled the principal unobserved covariate, ζ, so that $\zeta_{i j} \neq \zeta_{i j^{\prime}}$ for some i, j.
- Could happen in any of three ways: (i) controlling for $\mathbf{h}(\mathbf{x})$ did not control for $e(\mathbf{x})$, (ii) controlling for $\mathbf{h}(\mathbf{x})$ did not control for $\zeta_{i j}$ because treatment assignment is not ignorable given \mathbf{x}, or (iii) both (i) and (ii).

Notation

- Write $\mathcal{F}=\left\{\left(r_{T i j}, r_{C i j}, \mathbf{x}_{i j}\right), i=1, \ldots, I, j=1, \ldots, J\right\}$.

Notation

- Write $\mathcal{F}=\left\{\left(r_{T i j}, r_{C i j}, \mathbf{x}_{i j}\right), i=1, \ldots, I, j=1, \ldots, J\right\}$.
- Principal unobserved covarate $\zeta=\operatorname{Pr}\left(Z=1 \mid r_{T}, r_{C}, \mathbf{X}\right)$ is a function of $\left(r_{T}, r_{C}, \mathbf{X}\right)$, all of which are in \mathcal{F}, so $\zeta_{i j}=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}\right)$.

Notation

- Write $\mathcal{F}=\left\{\left(r_{T i j}, r_{C i j}, \mathbf{x}_{i j}\right), i=1, \ldots, I, j=1, \ldots, J\right\}$.
- Principal unobserved covarate $\zeta=\operatorname{Pr}\left(Z=1 \mid r_{T}, r_{C}, \mathbf{X}\right)$ is a function of $\left(r_{T}, r_{C}, \mathbf{X}\right)$, all of which are in \mathcal{F}, so $\zeta_{i j}=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}\right)$.
- Let \mathcal{Z} be the set of possible values, \mathbf{z}, of $\mathbf{Z}=\left(Z_{11}, \ldots, Z_{I J}\right)$, so $z_{i j}=0$ or 1 , and $1=\sum_{j=1}^{J} z_{i j}$ for $i=1, \ldots, I$. So, \mathcal{Z} contains J^{I} elements \mathbf{z}.

Notation

- Write $\mathcal{F}=\left\{\left(r_{T i j}, r_{C i j}, \mathbf{x}_{i j}\right), i=1, \ldots, I, j=1, \ldots, J\right\}$.
- Principal unobserved covarate $\zeta=\operatorname{Pr}\left(Z=1 \mid r_{T}, r_{C}, \mathbf{X}\right)$ is a function of $\left(r_{T}, r_{C}, \mathbf{X}\right)$, all of which are in \mathcal{F}, so $\zeta_{i j}=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}\right)$.
- Let \mathcal{Z} be the set of possible values, \mathbf{z}, of $\mathbf{Z}=\left(Z_{11}, \ldots, Z_{I J}\right)$, so $z_{i j}=0$ or 1 , and $1=\sum_{j=1}^{J} z_{i j}$ for $i=1, \ldots, I$. So, \mathcal{Z} contains J^{I} elements \mathbf{z}.
- We sampled independent people and blocked so that $\mathbf{Z} \in \mathcal{Z}$, i.e., by conditioning on the event $\mathbf{Z} \in \mathcal{Z}$.

Notation

- Write $\mathcal{F}=\left\{\left(r_{T i j}, r_{C i j}, \mathbf{x}_{i j}\right), i=1, \ldots, I, j=1, \ldots, J\right\}$.
- Principal unobserved covarate $\zeta=\operatorname{Pr}\left(Z=1 \mid r_{T}, r_{C}, \mathbf{X}\right)$ is a function of $\left(r_{T}, r_{C}, \mathbf{X}\right)$, all of which are in \mathcal{F}, so $\zeta_{i j}=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}\right)$.
- Let \mathcal{Z} be the set of possible values, \mathbf{z}, of $\mathbf{Z}=\left(Z_{11}, \ldots, Z_{I J}\right)$, so $z_{i j}=0$ or 1 , and $1=\sum_{j=1}^{J} z_{i j}$ for $i=1, \ldots, I$. So, \mathcal{Z} contains J^{I} elements \mathbf{z}.
- We sampled independent people and blocked so that $\mathbf{Z} \in \mathcal{Z}$, i.e., by conditioning on the event $\mathbf{Z} \in \mathcal{Z}$.
- Abbreviate conditioning on $\mathbf{Z} \in \mathcal{Z}$ as conditioning on \mathcal{Z}.

Notation

- Write $\mathcal{F}=\left\{\left(r_{T i j}, r_{C i j}, \mathbf{x}_{i j}\right), i=1, \ldots, I, j=1, \ldots, J\right\}$.
- Principal unobserved covarate $\zeta=\operatorname{Pr}\left(Z=1 \mid r_{T}, r_{C}, \mathbf{X}\right)$ is a function of $\left(r_{T}, r_{C}, \mathbf{X}\right)$, all of which are in \mathcal{F}, so $\zeta_{i j}=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}\right)$.
- Let \mathcal{Z} be the set of possible values, \mathbf{z}, of $\mathbf{Z}=\left(Z_{11}, \ldots, Z_{I J}\right)$, so $z_{i j}=0$ or 1 , and $1=\sum_{j=1}^{J} z_{i j}$ for $i=1, \ldots, I$. So, \mathcal{Z} contains J^{I} elements \mathbf{z}.
- We sampled independent people and blocked so that $\mathbf{Z} \in \mathcal{Z}$, i.e., by conditioning on the event $\mathbf{Z} \in \mathcal{Z}$.
- Abbreviate conditioning on $\mathbf{Z} \in \mathcal{Z}$ as conditioning on \mathcal{Z}.
- For example, in a randomized block design,

$$
\frac{1}{J}=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}, \mathcal{Z}\right)
$$

Bias Within Blocks; Introducing $\theta_{i j}$

- Given \mathcal{F}, the chance that $i j$ is the only treated individual in block i is the chance that $Z_{i j}=1$ and $Z_{i k}=0$ for $k \neq i$

$$
\zeta_{i j} \prod_{k \neq j}^{J}\left(1-\zeta_{i k}\right)=\frac{\zeta_{i j}}{1-\zeta_{i j}} \prod_{k=1}^{J}\left(1-\zeta_{i k}\right),
$$

Bias Within Blocks; Introducing $\theta_{i j}$

- Given \mathcal{F}, the chance that $i j$ is the only treated individual in block i is the chance that $Z_{i j}=1$ and $Z_{i k}=0$ for $k \neq i$

$$
\zeta_{i j} \prod_{k \neq j}^{J}\left(1-\zeta_{i k}\right)=\frac{\zeta_{i j}}{1-\zeta_{i j}} \prod_{k=1}^{J}\left(1-\zeta_{i k}\right),
$$

- So, conditioning on $\sum_{k=1}^{J} Z_{i k}=1$ says $\operatorname{Pr}\left(Z_{i j}=1 \mid r_{T i j}, r_{C i j}, \mathbf{x}_{i j}, \sum Z_{i k}=1\right)$ equals

$$
\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}, \mathcal{Z}\right)=\frac{\frac{\zeta_{i j}}{1-\zeta_{i j}}}{\sum_{k=1}^{J} \frac{\zeta_{i k}}{1-\zeta_{i k}}}=\theta_{i j}
$$

say, where $1=\sum_{j=1}^{J} \theta_{i j}$ for each i.

Sensitivity Analysis in Terms of ζ

- From the previous slide, $1=\sum_{j=1}^{J} \theta_{i j}$ and

$$
\operatorname{Pr}\left(Z_{i j}=1 \mid r_{T i j}, r_{C i j}, \mathbf{x}_{i j}, \sum Z_{i k}=1\right)=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}, \mathcal{Z}\right)=\frac{\frac{\zeta_{i j}}{1-\zeta_{i j}}}{\sum_{k=1}^{J} \frac{\zeta_{i k}}{1-\zeta_{i k}}}=\theta_{i j},
$$

Sensitivity Analysis in Terms of ζ

- From the previous slide, $1=\sum_{j=1}^{J} \theta_{i j}$ and

$$
\operatorname{Pr}\left(Z_{i j}=1 \mid r_{T i j}, r_{C i j}, \mathbf{x}_{i j}, \sum Z_{i k}=1\right)=\operatorname{Pr}\left(Z_{i j}=1 \mid \mathcal{F}, \mathcal{Z}\right)=\frac{\frac{\zeta_{i j}}{1-\zeta_{i j}}}{\sum_{k=1}^{J} \frac{\zeta_{i k}}{1-\zeta_{i k}}}=\theta_{i j}
$$

- Sensitivity analysis in terms of the principal unobserved covariate $\zeta=\operatorname{Pr}\left(Z=1 \mid r_{t}, r_{C}, \mathbf{x}\right)$

$$
\Gamma \geq \frac{\zeta_{i j}\left(1-\zeta_{i j^{\prime}}\right)}{\zeta_{i j^{\prime}}\left(1-\zeta_{i j}\right)} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

is the same as

$$
\Gamma \geq \frac{\theta_{i j}}{\theta_{i j^{\prime}}} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

Comparing Methods and Designs for Observational Studies

- Different statistics, different research designs, correctly yield different levels of sensitivity to unobserved biases.

Comparing Methods and Designs for Observational Studies

- Different statistics, different research designs, correctly yield different levels of sensitivity to unobserved biases.
- We would like to understand this, so we can make wise choices in design and analysis.

Comparing Methods and Designs for Observational Studies

- Different statistics, different research designs, correctly yield different levels of sensitivity to unobserved biases.
- We would like to understand this, so we can make wise choices in design and analysis.
- First, let's do an analysis of the alcohol data and see it happen in one data set.

Comparing Methods and Designs for Observational Studies

- Different statistics, different research designs, correctly yield different levels of sensitivity to unobserved biases.
- We would like to understand this, so we can make wise choices in design and analysis.
- First, let's do an analysis of the alcohol data and see it happen in one data set.
- Second, set aside our one data set, replace it by a probability model that generates data, and demonstrate that what happened once in data should always happen, measuring precisely when and to what degree it happens.

Comparing Methods and Designs for Observational Studies

- Different statistics, different research designs, correctly yield different levels of sensitivity to unobserved biases.
- We would like to understand this, so we can make wise choices in design and analysis.
- First, let's do an analysis of the alcohol data and see it happen in one data set.
- Second, set aside our one data set, replace it by a probability model that generates data, and demonstrate that what happened once in data should always happen, measuring precisely when and to what degree it happens.
- Start with a collection of closely related statistics, including familiar and unfamiliar statistics. See how the results vary in this collection.

Weighted Rank Statistics

- Test the hypothesis of no effect, $H_{0}: r_{T i j}=r_{C i j}, \forall i, j$.

Weighted Rank Statistics

- Test the hypothesis of no effect, $H_{0}: r_{T i j}=r_{C i j}, \forall i, j$.
- Rank $R_{i j}$ from 1 to J in each block i, with average ranks for ties, calling the within-block ranks $q_{i j}$.

Weighted Rank Statistics

- Test the hypothesis of no effect, $H_{0}: r_{T i j}=r_{C i j}, \forall i, j$.
- Rank $R_{i j}$ from 1 to J in each block i, with average ranks for ties, calling the within-block ranks $q_{i j}$.
- Let $I w_{i}$ be the rank the i th of the I within-block ranges $b_{i}=\max R_{i j}-\min R_{i j}$, with average ranks for ties, so $0 \leq w_{i} \leq 1$.

Weighted Rank Statistics

- Test the hypothesis of no effect, $H_{0}: r_{T i j}=r_{C i j}, \forall i, j$.
- Rank $R_{i j}$ from 1 to J in each block i, with average ranks for ties, calling the within-block ranks $q_{i j}$.
- Let $I w_{i}$ be the rank the i th of the I within-block ranges $b_{i}=\max R_{i j}-\min R_{i j}$, with average ranks for ties, so $0 \leq w_{i} \leq 1$.
- Score the ranks of the ranges by a function $\varphi\left(w_{i}\right)$, where $\varphi:[0,1] \rightarrow[0,1]$.

Weighted Rank Statistics

- Test the hypothesis of no effect, $H_{0}: r_{T i j}=r_{C i j}, \forall i, j$.
- Rank $R_{i j}$ from 1 to J in each block i, with average ranks for ties, calling the within-block ranks $q_{i j}$.
- Let $I w_{i}$ be the rank the i th of the I within-block ranges $b_{i}=\max R_{i j}-\min R_{i j}$, with average ranks for ties, so $0 \leq w_{i} \leq 1$.
- Score the ranks of the ranges by a function $\varphi\left(w_{i}\right)$, where $\varphi:[0,1] \rightarrow[0,1]$.
- The test statistic is $T=\sum_{i}^{I} \varphi\left(w_{i}\right) \sum_{j=1}^{J} Z_{i j} q_{i j}$.

Weighted Rank Statistics

- Test the hypothesis of no effect, $H_{0}: r_{T i j}=r_{C i j}, \forall i, j$.
- Rank $R_{i j}$ from 1 to J in each block i, with average ranks for ties, calling the within-block ranks $q_{i j}$.
- Let $I w_{i}$ be the rank the i th of the I within-block ranges $b_{i}=\max R_{i j}-\min R_{i j}$, with average ranks for ties, so $0 \leq w_{i} \leq 1$.
- Score the ranks of the ranges by a function $\varphi\left(w_{i}\right)$, where $\varphi:[0,1] \rightarrow[0,1]$.
- The test statistic is $T=\sum_{i}^{I} \varphi\left(w_{i}\right) \sum_{j=1}^{J} Z_{i j} q_{i j}$.
- For pairs, $J=2$, taking $\varphi(w)=1$ yields the sign test, taking $\varphi(w)=w$ yields Wilcoxon's signed rank test, and for general $\varphi(w)$ it is a general signed rank test.

Weighted Rank Statistics

- Test the hypothesis of no effect, $H_{0}: r_{T i j}=r_{C i j}, \forall i, j$.
- Rank $R_{i j}$ from 1 to J in each block i, with average ranks for ties, calling the within-block ranks $q_{i j}$.
- Let $I w_{i}$ be the rank the i th of the I within-block ranges $b_{i}=\max R_{i j}-\min R_{i j}$, with average ranks for ties, so $0 \leq w_{i} \leq 1$.
- Score the ranks of the ranges by a function $\varphi\left(w_{i}\right)$, where $\varphi:[0,1] \rightarrow[0,1]$.
- The test statistic is $T=\sum_{i}^{I} \varphi\left(w_{i}\right) \sum_{j=1}^{J} Z_{i j} q_{i j}$.
- For pairs, $J=2$, taking $\varphi(w)=1$ yields the sign test, taking $\varphi(w)=w$ yields Wilcoxon's signed rank test, and for general $\varphi(w)$ it is a general signed rank test.
- For $J \geq 2$, taking $\varphi\left(w_{i}\right)=1$ yields the blocked Wilcoxon rank sum test (Lehmann 1975 Nonparametrics, §3.3), and taking $\varphi(w)=w$ yields Quade's (1979, JASA) statistic.

Figure: Four weight functions $\varphi(w)$ of the block ranges.

The Set B_{Γ} of Biased Treatment Assignments θ

- Define B_{Γ} as the set of all $\boldsymbol{\theta}=\left(\theta_{11}, \ldots, \theta_{I J}\right)$ such that:

$$
1=\sum_{j} \theta_{i j}, i=1, \ldots, I \quad \text { and } \quad \Gamma \geq \frac{\theta_{i j}}{\theta_{i j j^{\prime}}} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

The Set B_{Γ} of Biased Treatment Assignments $\boldsymbol{\theta}$

- Define B_{Γ} as the set of all $\boldsymbol{\theta}=\left(\theta_{11}, \ldots, \theta_{I J}\right)$ such that:

$$
1=\sum_{j} \theta_{i j}, i=1, \ldots, I \quad \text { and } \quad \Gamma \geq \frac{\theta_{i j}}{\theta_{i j^{\prime}}} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

- With $I=406$ and $J=4$, each θ is of dimension $I J=1624$ but lives in flat of dimension $I(J-1)=1218 . B_{\Gamma}$ is a closed and bounded (hence compact) set of $\boldsymbol{\theta}$'s.

The Set B_{Γ} of Biased Treatment Assignments $\boldsymbol{\theta}$

- Define B_{Γ} as the set of all $\boldsymbol{\theta}=\left(\theta_{11}, \ldots, \theta_{I J}\right)$ such that:

$$
1=\sum_{j} \theta_{i j}, i=1, \ldots, I \quad \text { and } \quad \Gamma \geq \frac{\theta_{i j}}{\theta_{i j^{\prime}}} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

- With $I=406$ and $J=4$, each θ is of dimension $I J=1624$ but lives in flat of dimension $I(J-1)=1218 . B_{\Gamma}$ is a closed and bounded (hence compact) set of $\boldsymbol{\theta}$'s.
- Nested sets, $B_{\Gamma} \subset B_{\Gamma^{\prime}}$ for $\Gamma<\Gamma^{\prime}$, assume less and less as $\Gamma \rightarrow \infty$.

The Set B_{Γ} of Biased Treatment Assignments $\boldsymbol{\theta}$

- Define B_{Γ} as the set of all $\boldsymbol{\theta}=\left(\theta_{11}, \ldots, \theta_{I J}\right)$ such that:

$$
1=\sum_{j} \theta_{i j}, i=1, \ldots, I \quad \text { and } \quad \Gamma \geq \frac{\theta_{i j}}{\theta_{i j^{\prime}}} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

- With $I=406$ and $J=4$, each θ is of dimension $I J=1624$ but lives in flat of dimension $I(J-1)=1218 . B_{\Gamma}$ is a closed and bounded (hence compact) set of $\boldsymbol{\theta}$'s.
- Nested sets, $B_{\Gamma} \subset B_{\Gamma^{\prime}}$ for $\Gamma<\Gamma^{\prime}$, assume less and less as $\Gamma \rightarrow \infty$.
- Every $\boldsymbol{\theta}$ with $0<\theta_{i j}<1$ and $1=\sum_{j} \theta_{i j}$ is in some B_{Γ} for large enough Γ.

The Set B_{Γ} of Biased Treatment Assignments θ

- Define B_{Γ} as the set of all $\boldsymbol{\theta}=\left(\theta_{11}, \ldots, \theta_{I J}\right)$ such that:

$$
1=\sum_{j} \theta_{i j}, i=1, \ldots, I \quad \text { and } \quad \Gamma \geq \frac{\theta_{i j}}{\theta_{i j^{\prime}}} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

- With $I=406$ and $J=4$, each θ is of dimension $I J=1624$ but lives in flat of dimension $I(J-1)=1218 . B_{\Gamma}$ is a closed and bounded (hence compact) set of $\boldsymbol{\theta}$'s.
- Nested sets, $B_{\Gamma} \subset B_{\Gamma^{\prime}}$ for $\Gamma<\Gamma^{\prime}$, assume less and less as $\Gamma \rightarrow \infty$.
- Every $\boldsymbol{\theta}$ with $0<\theta_{i j}<1$ and $1=\sum_{j} \theta_{i j}$ is in some B_{Γ} for large enough Γ.
- A randomized block design has $\boldsymbol{\theta}=\overline{\boldsymbol{\theta}}$ where $\bar{\theta}_{i j}=1 / J$ or equivalently $\boldsymbol{\theta} \in B_{1}$.

The Set B_{Γ} of Biased Treatment Assignments $\boldsymbol{\theta}$

- Define B_{Γ} as the set of all $\boldsymbol{\theta}=\left(\theta_{11}, \ldots, \theta_{I J}\right)$ such that:

$$
1=\sum_{j} \theta_{i j}, i=1, \ldots, I \quad \text { and } \quad \Gamma \geq \frac{\theta_{i j}}{\theta_{i j^{\prime}}} \geq \frac{1}{\Gamma} \text { for all } i, j, j^{\prime}
$$

- With $I=406$ and $J=4$, each θ is of dimension $I J=1624$ but lives in flat of dimension $I(J-1)=1218 . B_{\Gamma}$ is a closed and bounded (hence compact) set of $\boldsymbol{\theta}$'s.
- Nested sets, $B_{\Gamma} \subset B_{\Gamma^{\prime}}$ for $\Gamma<\Gamma^{\prime}$, assume less and less as $\Gamma \rightarrow \infty$.
- Every $\boldsymbol{\theta}$ with $0<\theta_{i j}<1$ and $1=\sum_{j} \theta_{i j}$ is in some B_{Γ} for large enough Γ.
- A randomized block design has $\boldsymbol{\theta}=\overline{\boldsymbol{\theta}}$ where $\bar{\theta}_{i j}=1 / J$ or equivalently $\boldsymbol{\theta} \in B_{1}$.
- The central problem in an observational block design is that there is no basis for assuming $\boldsymbol{\theta} \in B_{1}$. For $\Gamma>1, \boldsymbol{\theta} \in B_{\Gamma}$ does not identify $\boldsymbol{\theta}$.

Sensitivity Analysis

- Reject H_{0} if $T \geq t$ where $T=\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j}$ and $\operatorname{Pr}(\mathbf{Z}=\mathbf{z} \mid \mathcal{F}, \mathcal{Z})=\prod_{i} \prod_{j} \theta_{i j}^{Z_{i j}}$.

Sensitivity Analysis

- Reject H_{0} if $T \geq t$ where $T=\sum_{i} \varphi\left(w_{i}\right) \sum_{j} Z_{i j} q_{i j}$ and $\operatorname{Pr}(\mathbf{Z}=\mathbf{z} \mid \mathcal{F}, \mathcal{Z})=\prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}$.
- $[A]=1$ if event A occurs; otherwise 0 . Rejection of $H_{0}:\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right]=1$.

Sensitivity Analysis

- Reject H_{0} if $T \geq t$ where $T=\sum_{i} \varphi\left(w_{i}\right) \sum_{j} Z_{i j} q_{i j}$ and $\operatorname{Pr}(\mathbf{Z}=\mathbf{z} \mid \mathcal{F}, \mathcal{Z})=\prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}$.
- $[A]=1$ if event A occurs; otherwise 0 . Rejection of $H_{0}:\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right]=1$.
- For fixed θ, rejection occurs with probability

$$
\sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}
$$

Sensitivity Analysis

- Reject H_{0} if $T \geq t$ where $T=\sum_{i} \varphi\left(w_{i}\right) \sum_{j} Z_{i j} q_{i j}$ and $\operatorname{Pr}(\mathbf{Z}=\mathbf{z} \mid \mathcal{F}, \mathcal{Z})=\prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}$.
- $[A]=1$ if event A occurs; otherwise 0 . Rejection of $H_{0}:\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right]=1$.
- For fixed θ, rejection occurs with probability

$$
\sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}
$$

- For a given $\Gamma \geq 1$, the max P -value for $\boldsymbol{\theta} \in B_{\Gamma}$ is

$$
P_{\Gamma}=\max _{\boldsymbol{\theta} \in B_{\Gamma}} \sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}
$$

Sensitivity Analysis, Alcohol Example, Comparing 4 Statistics

Table: Upper bounds on one-sided P-values testing no effect of light daily alcohol on HDL Cholesterol. In a column, bold is a P-value near 0.05. Hammond's (1964, JNCI) study of smoking and lung cancer is sensitive to a bias of $\Gamma=6$. The choice of test statistic matters.

Γ	Wilcoxon	Quade	U868	U878
1	0.0000	0.0000	0.0000	0.0000
2	0.0000	0.0000	0.0000	0.0000
3.5	0.0603	0.0002	0.0000	0.0000
4	0.3478	0.0052	0.0003	0.0001
4.5	0.7401	0.0447	0.0028	0.0010
5	0.9429	0.1775	0.0154	0.0050
5.5	0.9926	0.4123	0.0537	0.0174
6	0.9994	0.6642	0.1340	0.0456

Is 1-to-3 Better Than 1-to-1? A Fair Comparison

- Want to see in the data my earlier claim that 1-to-3 blocks more insensitive to bias than 1-to-1 pairs.

Is 1-to-3 Better Than 1-to-1? A Fair Comparison

- Want to see in the data my earlier claim that 1-to-3 blocks more insensitive to bias than 1-to-1 pairs.
- Not fair to compare 406 1-to-3 blocks to 406 1-to-1 pairs.

Is 1-to-3 Better Than 1-to-1? A Fair Comparison

- Want to see in the data my earlier claim that 1-to-3 blocks more insensitive to bias than 1-to-1 pairs.
- Not fair to compare 406 1-to-3 blocks to 406 1-to-1 pairs.
- Consider the usual Gaussian linear model, additive block effects, constant within block variance σ^{2}. Estimator is the mean of the treated-minus-average control difference.

Is 1-to-3 Better Than 1-to-1? A Fair Comparison

- Want to see in the data my earlier claim that 1-to-3 blocks more insensitive to bias than 1-to-1 pairs.
- Not fair to compare 406 1-to-3 blocks to 406 1-to-1 pairs.
- Consider the usual Gaussian linear model, additive block effects, constant within block variance σ^{2}. Estimator is the mean of the treated-minus-average control difference.
- With $M_{1 \text {-to-1 }}$ pairs, estimator has variance $2 \sigma^{2} / M$. With I 1-to-3 blocks, estimator has variance $(1+1 / 3) \sigma^{2} / I$. As far as the standard error goes, M pairs is about the same as I 1-to-3 blocks if $I=(1+1 / 3) M / 2$. For $M=406$ pairs, take $I=2 M / 3 \doteq 271$ blocks.

Fair Comparison, Pairs Versus Blocks

Table: Bounds on P-values for the hypothesis of no effect. Last P-value ≤ 0.05 is in bold.

	406 1-to-1 Pairs				271 1-to-3 Blocks			
Γ	Wilcoxon	Quade	U868	U878	Wilcoxon	Quade	U868	U878
1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
2	0.006	0.000	0.000	0.000	0.000	0.000	0.000	0.000
3.5	0.994	0.233	0.013	0.003	0.044	0.001	0.000	0.000
4	1.000	0.584	0.064	0.015	0.224	0.008	0.001	0.001
4.5	1.000	0.851	0.182	0.046	0.532	0.045	0.007	0.004
5	1.000	0.963	0.359	0.106	0.799	0.143	0.024	0.014
5.5	1.000	0.993	0.552	0.198	0.937	0.310	0.063	0.034
6	1.000	0.999	0.720	0.311	0.985	0.511	0.131	0.069

Can We Understand This Theoretically?

- Suppose that we have some model that generated the data, I blocks of size J, one treated individual per block. Let $I \rightarrow \infty$.

Can We Understand This Theoretically?

- Suppose that we have some model that generated the data, I blocks of size J, one treated individual per block. Let $I \rightarrow \infty$.
- When letting $I \rightarrow \infty$, quantities gain a subscript I : T becomes T_{I}, for example.

Can We Understand This Theoretically?

- Suppose that we have some model that generated the data, I blocks of size J, one treated individual per block. Let $I \rightarrow \infty$.
- When letting $I \rightarrow \infty$, quantities gain a subscript I : T becomes T_{I}, for example.
- A basic block model with continuous \& bivariate exchangeable errors $\left(\varepsilon_{T i j}, \varepsilon_{C_{i j}}\right)$

$$
r_{T i j}=\mu+\beta_{i}+\tau+\varepsilon_{T i j}, \quad r_{C i j}=\mu+\beta_{i}+\varepsilon_{C i j}, \quad r_{T i j}-r_{C i j}=\tau+\varepsilon_{T i j}-\varepsilon_{C i j}
$$

Can We Understand This Theoretically?

- Suppose that we have some model that generated the data, I blocks of size J, one treated individual per block. Let $I \rightarrow \infty$.
- When letting $I \rightarrow \infty$, quantities gain a subscript I : T becomes T_{I}, for example.
- A basic block model with continuous \& bivariate exchangeable errors $\left(\varepsilon_{T i j}, \varepsilon_{C_{i j}}\right)$

$$
r_{T i j}=\mu+\beta_{i}+\tau+\varepsilon_{T i j}, \quad r_{C i j}=\mu+\beta_{i}+\varepsilon_{C i j}, \quad r_{T i j}-r_{C i j}=\tau+\varepsilon_{T i j}-\varepsilon_{C i j}
$$

- Treated-minus-control pair difference in block i is $r_{T i j}-r_{C i j^{\prime}}=\tau+\varepsilon_{T i j}-\varepsilon_{C i j^{\prime}}$ is symmetric about τ. Numerical work takes $1=\sqrt{\operatorname{var}\left(\varepsilon_{T i j}-\varepsilon_{C i j^{\prime}}\right)}$ and $\tau=1 / 2$.

Can We Understand This Theoretically?

- Suppose that we have some model that generated the data, I blocks of size J, one treated individual per block. Let $I \rightarrow \infty$.
- When letting $I \rightarrow \infty$, quantities gain a subscript I : T becomes T_{I}, for example.
- A basic block model with continuous \& bivariate exchangeable errors $\left(\varepsilon_{T i j}, \varepsilon_{C_{i j}}\right)$

$$
r_{T i j}=\mu+\beta_{i}+\tau+\varepsilon_{T i j}, \quad r_{C i j}=\mu+\beta_{i}+\varepsilon_{C i j}, \quad r_{T i j}-r_{C i j}=\tau+\varepsilon_{T i j}-\varepsilon_{C i j}
$$

- Treated-minus-control pair difference in block i is $r_{T i j}-r_{C i j^{\prime}}=\tau+\varepsilon_{T i j}-\varepsilon_{C i j^{\prime}}$ is symmetric about τ. Numerical work takes $1=\sqrt{\operatorname{var}\left(\varepsilon_{T i j}-\varepsilon_{C i j^{\prime}}\right)}$ and $\tau=1 / 2$.
- Imagine the study is unaffected by unmeasured bias (i.e., ignorable given \mathbf{x}), so that $1 / J=\theta_{i j}=\operatorname{Pr}\left(Z_{i j}=1 \mid r_{T i j}, r_{C i j}, \mathbf{x}_{i j}, \sum Z_{i k}=1\right), \forall i, j$.

Can We Understand This Theoretically?

- Suppose that we have some model that generated the data, I blocks of size J, one treated individual per block. Let $I \rightarrow \infty$.
- When letting $I \rightarrow \infty$, quantities gain a subscript I : T becomes T_{I}, for example.
- A basic block model with continuous \& bivariate exchangeable errors $\left(\varepsilon_{T i j}, \varepsilon_{C_{i j}}\right)$

$$
r_{T i j}=\mu+\beta_{i}+\tau+\varepsilon_{T i j}, \quad r_{C i j}=\mu+\beta_{i}+\varepsilon_{C i j}, \quad r_{T i j}-r_{C i j}=\tau+\varepsilon_{T i j}-\varepsilon_{C i j}
$$

- Treated-minus-control pair difference in block i is $r_{T i j}-r_{C i j^{\prime}}=\tau+\varepsilon_{T i j}-\varepsilon_{C i j^{\prime}}$ is symmetric about τ. Numerical work takes $1=\sqrt{\operatorname{var}\left(\varepsilon_{T i j}-\varepsilon_{C i j^{\prime}}\right)}$ and $\tau=1 / 2$.
- Imagine the study is unaffected by unmeasured bias (i.e., ignorable given \mathbf{x}), so that $1 / J=\theta_{i j}=\operatorname{Pr}\left(Z_{i j}=1 \mid r_{T i j}, r_{C i j}, \mathbf{x}_{i j}, \sum Z_{i k}=1\right), \forall i, j$.
- If $\tau \neq 0$, then it is in precisely this sort of case (a so-called favorable situation) that you hope to report insensitivity to unmeasured biases. Will you?

Design Sensitivity and Bahadur Efficiency Under a Favorable Model

- Test H_{0} of no effect when the bias of at most Γ. (Either $r_{T i j}=r_{C i j}$ or $\tau=0$).

Design Sensitivity and Bahadur Efficiency Under a Favorable Model

- Test H_{0} of no effect when the bias of at most Γ. (Either $r_{T i j}=r_{C i j}$ or $\tau=0$).
- Fix the power, say power $\omega=0.9$. With I blocks, determine the level, $\alpha_{\Gamma I}$ that yields power ω with I blocks. Perhaps, power $\omega=0.9$ occurs with level $\alpha_{\Gamma I}=0.1$ for $I=100$ blocks, and for $\alpha_{\Gamma I}=0.01$ for $I=406$ blocks, etc.

Design Sensitivity and Bahadur Efficiency Under a Favorable Model

- Test H_{0} of no effect when the bias of at most Γ. (Either $r_{T i j}=r_{C i j}$ or $\tau=0$).
- Fix the power, say power $\omega=0.9$. With I blocks, determine the level, $\alpha_{\Gamma I}$ that yields power ω with I blocks. Perhaps, power $\omega=0.9$ occurs with level $\alpha_{\Gamma I}=0.1$ for $I=100$ blocks, and for $\alpha_{\Gamma I}=0.01$ for $I=406$ blocks, etc.
- Want $\alpha_{\Gamma I} \rightarrow 0$ as fast as possible as $I \rightarrow \infty$. Ultimately, ω does not matter.

Design Sensitivity and Bahadur Efficiency Under a Favorable Model

- Test H_{0} of no effect when the bias of at most Γ. (Either $r_{T i j}=r_{C i j}$ or $\tau=0$).
- Fix the power, say power $\omega=0.9$. With I blocks, determine the level, $\alpha_{\Gamma I}$ that yields power ω with I blocks. Perhaps, power $\omega=0.9$ occurs with level $\alpha_{\Gamma I}=0.1$ for $I=100$ blocks, and for $\alpha_{\Gamma I}=0.01$ for $I=406$ blocks, etc.
- Want $\alpha_{\Gamma I} \rightarrow 0$ as fast as possible as $I \rightarrow \infty$. Ultimately, ω does not matter.
- There is (typically) a number, $\widetilde{\Gamma}$ called the design sensitivity, such that, as $I \rightarrow \infty$:

$$
\alpha_{\Gamma I} \rightarrow 0 \text { for } \Gamma<\widetilde{\Gamma}, \quad \alpha_{\Gamma I} \rightarrow 1 \text { for } \Gamma>\widetilde{\Gamma} .
$$

Design Sensitivity and Bahadur Efficiency Under a Favorable Model

- Test H_{0} of no effect when the bias of at most Γ. (Either $r_{T i j}=r_{C i j}$ or $\tau=0$).
- Fix the power, say power $\omega=0.9$. With I blocks, determine the level, $\alpha_{\Gamma I}$ that yields power ω with I blocks. Perhaps, power $\omega=0.9$ occurs with level $\alpha_{\Gamma I}=0.1$ for $I=100$ blocks, and for $\alpha_{\Gamma I}=0.01$ for $I=406$ blocks, etc.
- Want $\alpha_{\Gamma I} \rightarrow 0$ as fast as possible as $I \rightarrow \infty$. Ultimately, ω does not matter.
- There is (typically) a number, $\widetilde{\Gamma}$ called the design sensitivity, such that, as $I \rightarrow \infty$:

$$
\alpha_{\Gamma I} \rightarrow 0 \text { for } \Gamma<\widetilde{\Gamma}, \quad \alpha_{\Gamma I} \rightarrow 1 \text { for } \Gamma>\widetilde{\Gamma}
$$

- If $\Gamma<\widetilde{\Gamma}$ there is (typically) a Bahadur slope $\rho_{\Gamma} / 2>0$ such that

$$
\rho_{\Gamma}=-\lim _{I \rightarrow \infty} \frac{\log \left(\alpha_{\Gamma I}\right)}{I} \quad \text { so that } \quad \alpha_{\Gamma I} \approx \exp \left(-I \rho_{\Gamma}\right) \text { as } I \rightarrow \infty .
$$

Design Sensitivity and Bahadur Efficiency Under a Favorable Model

- Test H_{0} of no effect when the bias of at most Γ. (Either $r_{T i j}=r_{C i j}$ or $\tau=0$).
- Fix the power, say power $\omega=0.9$. With I blocks, determine the level, $\alpha_{\Gamma I}$ that yields power ω with I blocks. Perhaps, power $\omega=0.9$ occurs with level $\alpha_{\Gamma I}=0.1$ for $I=100$ blocks, and for $\alpha_{\Gamma I}=0.01$ for $I=406$ blocks, etc.
- Want $\alpha_{\Gamma I} \rightarrow 0$ as fast as possible as $I \rightarrow \infty$. Ultimately, ω does not matter.
- There is (typically) a number, $\widetilde{\Gamma}$ called the design sensitivity, such that, as $I \rightarrow \infty$:

$$
\alpha_{\Gamma I} \rightarrow 0 \text { for } \Gamma<\widetilde{\Gamma}, \quad \alpha_{\Gamma I} \rightarrow 1 \text { for } \Gamma>\widetilde{\Gamma} .
$$

- If $\Gamma<\widetilde{\Gamma}$ there is (typically) a Bahadur slope $\rho_{\Gamma} / 2>0$ such that

$$
\rho_{\Gamma}=-\lim _{I \rightarrow \infty} \frac{\log \left(\alpha_{\Gamma I}\right)}{I} \quad \text { so that } \quad \alpha_{\Gamma I} \approx \exp \left(-I \rho_{\Gamma}\right) \text { as } I \rightarrow \infty .
$$

- The ratio of two Bahadur slopes is the Bahadur (1960) relative efficiency. Better than Pitman efficiency for observational studies because Pitman lets $\tau \rightarrow 0$ as $I \rightarrow \infty$.

Some Design Sensitivities

What you saw in the example happens in the limit as $I \rightarrow \infty$ for the block model with Normal errors.

Table: Design sensitivity $\widetilde{\Gamma}$ with Normal errors and $\tau=1 / 2$ of the standard deviation of a treated-minus-control pair difference. The best result in each situation is in bold.

		Wilcoxon	Quade	U868	U878
$J=2$	Pairs	2.2	3.2	4.2	5.1
$J=4$	1-to-3 Blocks	3.5	4.4	5.2	5.7

\square Remember: For $J=2$, the blocked Wilcoxon statistic is the sign test and Quade's statistic is Wilcoxon's signed rank test.
Results for (i) $\tau=1 / 3$, (ii) errors with t-distributions with 5 degrees of freedom, and (iii) heterogeneous treatment effects, $\tau=1 / 3$ or $2 / 3$ with probability $1 / 2$, are in R. (2024, JASA).

Table: Efficiency at $\Gamma=2$. Comparing Block Sizes $J=2$ to $J=4$ in a sensitivity analysis. Top half is pure block size. Bottom half is block size plus change in test statistic.

Sensitivity Analysis Performed with $\Gamma=2$				
	$\tau=1 / 2$	$\tau=1 / 3$		
J	Normal	t_{5}	Normal	t_{5}
	U868 compared to U868		at $J=2$	
2	1.00	1.00	1.00	1.00
3	1.37	1.23	2.14	1.66
4	1.83	1.63	3.07	2.29
	U868 compared to SRS at $J=2$			
2	1.58	1.26	8.08	3.05
3	2.16	1.55	17.26	5.07
4	2.89	2.04	24.81	6.98

Figure: In 1-to-2 blocks of size $J=3$, the curves show the expected within block rank $-1,2$, or $3-$ conditionally given the within block range. Horizontal lines show maximum expectation with a bias of Γ and no treatment effect.

HDL Cholesterol (200 blocks)

D=daily, C=control

Methylmercury (200 blocks)

Figure: 200 blocks with methylmercury data. \sqrt{y} scale on right. Control groups are merged.

Unaffected Outcomes

- What should we make of the evidence from methylmercury of biased treatment assignment evident, $\boldsymbol{\theta} \neq \overline{\boldsymbol{\theta}}$, where $\bar{\theta}_{i j}=1 / J, \forall i, j$ and $B_{1}=\{\overline{\boldsymbol{\theta}}\}$?

Unaffected Outcomes

- What should we make of the evidence from methylmercury of biased treatment assignment evident, $\boldsymbol{\theta} \neq \overline{\boldsymbol{\theta}}$, where $\bar{\theta}_{i j}=1 / J, \forall i, j$ and $B_{1}=\{\overline{\boldsymbol{\theta}}\}$?
- To avoid many possible combinations, will do two-sided, o.05-level Quade's tests for both effect and bias. (This is intended to be simple and not distracting, rather than optimal (e.g., see Table 3 in R 2023 Stat. Sci.).

Unaffected Outcomes

- What should we make of the evidence from methylmercury of biased treatment assignment evident, $\boldsymbol{\theta} \neq \overline{\boldsymbol{\theta}}$, where $\bar{\theta}_{i j}=1 / J, \forall i, j$ and $B_{1}=\{\overline{\boldsymbol{\theta}}\}$?
- To avoid many possible combinations, will do two-sided, o.05-level Quade's tests for both effect and bias. (This is intended to be simple and not distracting, rather than optimal (e.g., see Table 3 in R 2023 Stat. Sci.).
- Using the 200 blocks with methylmercury levels (rather than all 406 blocks), rejection of no effect on HDL cholesterol level becomes sensitive at $\Gamma=3.614$. No $\boldsymbol{\theta} \in B_{3.614}$ would lead to a P-value above 0.05 .

Unaffected Outcomes

- What should we make of the evidence from methylmercury of biased treatment assignment evident, $\boldsymbol{\theta} \neq \overline{\boldsymbol{\theta}}$, where $\bar{\theta}_{i j}=1 / J, \forall i, j$ and $B_{1}=\{\overline{\boldsymbol{\theta}}\}$?
- To avoid many possible combinations, will do two-sided, o.05-level Quade's tests for both effect and bias. (This is intended to be simple and not distracting, rather than optimal (e.g., see Table 3 in R 2023 Stat. Sci.).
- Using the 200 blocks with methylmercury levels (rather than all 406 blocks), rejection of no effect on HDL cholesterol level becomes sensitive at $\Gamma=3.614$. No $\boldsymbol{\theta} \in B_{3.614}$ would lead to a P-value above 0.05 .
- In parallel, using the same people in the same blocks, no $\boldsymbol{\theta} \in B_{1.993}$ is plausible if alcohol does not affect methylmercury levels, having been rejected in a 0.05 level test.

Unaffected Outcomes

- What should we make of the evidence from methylmercury of biased treatment assignment evident, $\boldsymbol{\theta} \neq \overline{\boldsymbol{\theta}}$, where $\bar{\theta}_{i j}=1 / J, \forall i, j$ and $B_{1}=\{\overline{\boldsymbol{\theta}}\}$?
- To avoid many possible combinations, will do two-sided, o.05-level Quade's tests for both effect and bias. (This is intended to be simple and not distracting, rather than optimal (e.g., see Table 3 in R 2023 Stat. Sci.).
- Using the 200 blocks with methylmercury levels (rather than all 406 blocks), rejection of no effect on HDL cholesterol level becomes sensitive at $\Gamma=3.614$. No $\boldsymbol{\theta} \in B_{3.614}$ would lead to a P-value above 0.05 .
- In parallel, using the same people in the same blocks, no $\theta \in B_{1.993}$ is plausible if alcohol does not affect methylmercury levels, having been rejected in a 0.05 level test.
- The sensitivity analysis for HDL cholesterol doesn't require amendment, but it does leave us wondering about $\boldsymbol{\theta} \in B_{3.614}-B_{1.993}$; i.e., in $B_{3.614}$ but not in $B_{1.993}$.

Gaps Between Tests for Bias and Sensitivity Analyses

- Part of the boundary of $B_{3.614}$ is troublesome, because there is a $\boldsymbol{\theta} \in B_{3.615}$ that would lead us to accept no effect of alcohol on HDL cholesterol. Call these troublesome boundary points \mathcal{J}. What does methylmercury say about the troublesome boundary points \mathcal{J} ?

Gaps Between Tests for Bias and Sensitivity Analyses

- Part of the boundary of $B_{3.614}$ is troublesome, because there is a $\boldsymbol{\theta} \in B_{3.615}$ that would lead us to accept no effect of alcohol on HDL cholesterol. Call these troublesome boundary points \mathcal{J}. What does methylmercury say about the troublesome boundary points \mathcal{J} ?
- We would like to say: "no $\theta \in \mathcal{J}$ is plausible." That would mean that the HDL cholesterol comparison isn't sensitive at $\Gamma=3.614$ after all, but only to a larger Γ. If this were true, say that there is no gap between the test for bias using methylmercury and the sensitivity analysis for HDL cholesterol.

Gaps Between Tests for Bias and Sensitivity Analyses

- Part of the boundary of $B_{3.614}$ is troublesome, because there is a $\boldsymbol{\theta} \in B_{3.615}$ that would lead us to accept no effect of alcohol on HDL cholesterol. Call these troublesome boundary points \mathcal{J}. What does methylmercury say about the troublesome boundary points \mathcal{J} ?
- We would like to say: "no $\theta \in \mathcal{J}$ is plausible." That would mean that the HDL cholesterol comparison isn't sensitive at $\Gamma=3.614$ after all, but only to a larger Γ. If this were true, say that there is no gap between the test for bias using methylmercury and the sensitivity analysis for HDL cholesterol.
- We can test each of the troublesome $\theta \in \mathcal{J}$ using the methylmercury data. When we do this, the maximum P-value testing $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ for $\boldsymbol{\theta}_{0} \in \mathcal{J}$ is 1.17×10^{-7}.

Gaps Between Tests for Bias and Sensitivity Analyses

- Part of the boundary of $B_{3.614}$ is troublesome, because there is a $\boldsymbol{\theta} \in B_{3.615}$ that would lead us to accept no effect of alcohol on HDL cholesterol. Call these troublesome boundary points \mathcal{J}. What does methylmercury say about the troublesome boundary points \mathcal{J} ?
- We would like to say: "no $\theta \in \mathcal{J}$ is plausible." That would mean that the HDL cholesterol comparison isn't sensitive at $\Gamma=3.614$ after all, but only to a larger Γ. If this were true, say that there is no gap between the test for bias using methylmercury and the sensitivity analysis for HDL cholesterol.
- We can test each of the troublesome $\theta \in \mathcal{J}$ using the methylmercury data. When we do this, the maximum P-value testing $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ for $\boldsymbol{\theta}_{0} \in \mathcal{J}$ is 1.17×10^{-7}.
- The troublesome biases $\boldsymbol{\theta} \in \mathcal{J}$ are not plausible; so, there is no gap, and Γ must be larger than $\Gamma=3.614$ to explain the higher HDL cholesterol levels of light daily drinkers. The evident bias in methylmercury strengthened the causal claim.

Confidence Set for $\boldsymbol{\theta}$; Informed Sensitivity Analyses

- What if we tested all $\boldsymbol{\theta}$'s? Let Θ be the set of all $\boldsymbol{\theta}_{0}$'s such that: (i) $1=\sum_{j=1}^{J} \theta_{0 i j}$, (ii) $0 \leq \theta_{0 i j} \leq 1$, and (iii) the test using methylmercury does not reject $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ at the 0.05 level. An infinite set of IJ dimensional $\boldsymbol{\theta}_{0}$'s.

Confidence Set for $\boldsymbol{\theta}$; Informed Sensitivity Analyses

- What if we tested all $\boldsymbol{\theta}$'s? Let Θ be the set of all $\boldsymbol{\theta}_{0}$'s such that: (i) $1=\sum_{j=1}^{J} \theta_{0 i \mathrm{i}}$, (ii) $0 \leq \theta_{0 i j} \leq 1$, and (iii) the test using methylmercury does not reject $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ at the 0.05 level. An infinite set of $I J$ dimensional $\boldsymbol{\theta}_{0}$'s.
- A sensitivity analysis is informed by a test for bias if it is confined to $\boldsymbol{\theta} \in B_{\Gamma} \cap \Theta$:

$$
\begin{aligned}
& \qquad P_{\Gamma}^{\prime}=\max _{\boldsymbol{\theta} \in B_{\Gamma} \cap \Theta} \sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}} \\
& \text { instead of } \quad P_{\Gamma}=\max _{\boldsymbol{\theta} \in B_{\Gamma}} \sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}
\end{aligned}
$$

Confidence Set for $\boldsymbol{\theta}$; Informed Sensitivity Analyses

- What if we tested all $\boldsymbol{\theta}$'s? Let Θ be the set of all $\boldsymbol{\theta}_{0}$'s such that: (i) $1=\sum_{j=1}^{J} \theta_{0 i j}$, (ii) $0 \leq \theta_{0 i j} \leq 1$, and (iii) the test using methylmercury does not reject $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ at the 0.05 level. An infinite set of $I J$ dimensional $\boldsymbol{\theta}_{0}$'s.
- A sensitivity analysis is informed by a test for bias if it is confined to $\boldsymbol{\theta} \in B_{\Gamma} \cap \Theta$:

$$
\begin{aligned}
& \qquad P_{\Gamma}^{\prime}=\max _{\boldsymbol{\theta} \in B_{\Gamma} \cap \Theta} \sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}} \\
& \text { instead of } \quad P_{\Gamma}=\max _{\boldsymbol{\theta} \in B_{\Gamma}} \sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}
\end{aligned}
$$

- Always, $P_{\Gamma}^{\prime} \leq P_{\Gamma}$. For HDL cholesterol, $P_{3.614}=0.05=P_{3.82}^{\prime}$.

Confidence Set for $\boldsymbol{\theta}$; Informed Sensitivity Analyses

- What if we tested all $\boldsymbol{\theta}$'s? Let Θ be the set of all $\boldsymbol{\theta}_{0}$'s such that: (i) $1=\sum_{j=1}^{J} \theta_{0 i j}$, (ii) $0 \leq \theta_{0 i j} \leq 1$, and (iii) the test using methylmercury does not reject $H_{0}: \boldsymbol{\theta}=\boldsymbol{\theta}_{0}$ at the 0.05 level. An infinite set of $I J$ dimensional $\boldsymbol{\theta}_{0}$'s.
- A sensitivity analysis is informed by a test for bias if it is confined to $\boldsymbol{\theta} \in B_{\Gamma} \cap \Theta$:

$$
\begin{aligned}
& \qquad P_{\Gamma}^{\prime}=\max _{\boldsymbol{\theta} \in B_{\Gamma} \cap \Theta} \sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}} \\
& \text { instead of } \quad P_{\Gamma}=\max _{\boldsymbol{\theta} \in B_{\Gamma}} \sum_{\mathbf{z} \in \mathcal{Z}}\left[\sum_{i} \varphi\left(w_{i}\right) \sum_{j} z_{i j} q_{i j} \geq t\right] \prod_{i} \prod_{j} \theta_{i j}^{z_{i j}}
\end{aligned}
$$

- Always, $P_{\Gamma}^{\prime} \leq P_{\Gamma}$. For HDL cholesterol, $P_{3.614}=0.05=P_{3.82}^{\prime}$.
- $\Gamma=3.614$ is $(\Lambda, \Delta)=(6,8.7)$, while $\Gamma=3.82$ is $(\Lambda, \Delta)=(6,10.1)$.

HDL Cholesterol (200 blocks)

Methylmercury (200 blocks)

Figure: Summary: $\boldsymbol{\theta} \neq \overline{\boldsymbol{\theta}}$ from right. The smallest Γ explaining the right is too small to explain the left. The smallest Γ that explains both sides is larger than the smallest Γ that explains the left.

Summary

- Unmeasured biases are present in observational studies, but they may not be debilitating.

Summary

- Unmeasured biases are present in observational studies, but they may not be debilitating.
- Statistical theory can aid in avoiding mistakes that exaggerate the sensitivity to unmeasured biases. Large mistakes are possible in design and analysis.

Summary

- Unmeasured biases are present in observational studies, but they may not be debilitating.
- Statistical theory can aid in avoiding mistakes that exaggerate the sensitivity to unmeasured biases. Large mistakes are possible in design and analysis.
- Design sensitivity and Bahadur efficiency of a sensitivity analysis are two tools that guide design and analysis.

Summary

- Unmeasured biases are present in observational studies, but they may not be debilitating.
- Statistical theory can aid in avoiding mistakes that exaggerate the sensitivity to unmeasured biases. Large mistakes are possible in design and analysis.
- Design sensitivity and Bahadur efficiency of a sensitivity analysis are two tools that guide design and analysis.
- Evidence of biased treatment assignment may increase insensitivity to unmeasured bias.

Proof of Ignorability Given ζ

- Essentially the same as the corresponding result for the propensity score $e(\mathbf{x})$.

Proof of Ignorability Given ζ

- Essentially the same as the corresponding result for the propensity score $e(\mathbf{x})$.
- Must show: $\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \zeta)$.

Proof of Ignorability Given ζ

- Essentially the same as the corresponding result for the propensity score $e(\mathbf{x})$.
- Must show: $\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \zeta)$.
- ζ is by definition $\zeta=\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)$, so the task is to show $\zeta=\operatorname{Pr}(Z=1 \mid \zeta)$.

Proof of Ignorability Given ζ

- Essentially the same as the corresponding result for the propensity score $e(\mathbf{x})$.
- Must show: $\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \zeta)$.
- ζ is by definition $\zeta=\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)$, so the task is to show $\zeta=\operatorname{Pr}(Z=1 \mid \zeta)$.
- Also, $\zeta=\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)$ is a function of $\left(\mathbf{x}, r_{T}, r_{C}\right)$, so

$$
\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}, \zeta\right)
$$

Proof of Ignorability Given ζ

- Essentially the same as the corresponding result for the propensity score $e(\mathbf{x})$.
- Must show: $\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}(Z=1 \mid \zeta)$.
- ζ is by definition $\zeta=\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)$, so the task is to show $\zeta=\operatorname{Pr}(Z=1 \mid \zeta)$.
- Also, $\zeta=\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)$ is a function of $\left(\mathbf{x}, r_{T}, r_{C}\right)$, so

$$
\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right)=\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}, \zeta\right)
$$

- Trivially,

$$
\begin{aligned}
& \operatorname{Pr}(Z=1 \mid \zeta)=\mathrm{E}\left\{\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}, \zeta\right) \mid \zeta\right\} \\
& =\mathrm{E}\left\{\operatorname{Pr}\left(Z=1 \mid \mathbf{x}, r_{T}, r_{C}\right) \mid \zeta\right\}=\mathrm{E}(\zeta \mid \zeta)=\zeta,
\end{aligned}
$$

as required to complete the proof.

R Code from weightedRank

ef2C(hdl3, gamma=4, upsilon $=3.75$) \$pvals
TreatedVSControl1 0.11069568
Control2vsOthers 0.11173143
Combined 0.04667447
p1=dwgtRank(hdl3[,1:2], gamma=4,m=8, m1=7, m2=8)\$pval
p2=dwgtRank(hdl3[, 3:1], gamma=3.75, alternative="less", m=8,m1=8,m2=8, range $=$ FALSE, scores $=c(1,2,5)) \$$ pval
c ($\mathrm{p} 1, \mathrm{p} 2$)
0.11069570 .1117314
sensitivitymv: :truncatedP (c (p1,p2))
0.04667447

Bahadur Efficiencies for Pairs, $J=2$

Table: Efficiency of a sensitivity analysis at Γ vs. U868 with Normal errors and $\tau=1 / 2$ of the standard deviation of a treated-minus-control pair difference. The best result is in bold.

	Normal Errors, Paired Data, $J=2$				
		Wilcoxon	Quade	U868	U878
Γ	$\widetilde{\Gamma}$	2.2	3.2	4.2	5.1
1		0.72	1.05	1.00	0.92
1.5		0.36	0.86	1.00	1.00
2		0.06	0.63	1.00	1.11
3		0.00	0.05	1.00	1.70
4		0.00	0.00	1.00	15.56

\square By definition, efficiency of U868 is 1.00.
\square Quade=Wilcoxon's signed rank best at $\Gamma=1$, but not at $\Gamma=1.5$.

Bahadur Efficiencies for 1-to-3 Blocks, $J=4$

Table: Efficiency relative to U868 with Normal errors and $\tau=1 / 2$ of the standard deviation of a treated-minus-control pair difference. The best result is in bold.

	Normal Errors, 1-to-3 Blocks, $J=4$				
		Wilcoxon	Quade	U868	U878
Γ	$\widetilde{\Gamma}$	3.5	4.4	5.2	5.7
1		1.08	1.21	1.00	0.85
1.5		0.83	1.11	1.00	0.89
2		0.58	1.01	1.00	0.93
3		0.15	0.76	1.00	1.04
4		0.00	0.23	1.00	1.41

\square Quade's statistic does well for $\Gamma \leq 2$ but falls behind for $\Gamma \geq 3$.

