Some Counterclaims Undermine Themselves in Observational Studies

(J. Am. Statist. Assoc. 2015, 110, 1389-1398)

Paul R. Rosenbaum

October 2018
Claims and counterclaims

- A type of reasoning that occurs in science, in mathematics, in law, and in philosophy, but not statistics (except in certain proofs).
A type of reasoning that occurs in science, in mathematics, in law, and in philosophy, but not statistics (except in certain proofs).

My goal is to exhibit a statistical version of this type of reasoning, in particular in observational studies.
A type of reasoning that occurs in science, in mathematics, in law, and in philosophy, but not statistics (except in certain proofs).

My goal is to exhibit a statistical version of this type of reasoning, in particular in observational studies.

This reasoning tries to advance a claim that a theory T is true by showing that various alternatives to T (counterclaims) are implausible or unpalatable.
A type of reasoning that occurs in science, in mathematics, in law, and in philosophy, but not statistics (except in certain proofs).

My goal is to exhibit a statistical version of this type of reasoning, in particular in observational studies.

This reasoning tries to advance a claim that a theory T is true by showing that various alternatives to T (counterclaims) are implausible or unpalatable.

If I am prosecuting A for murder, I might observe that the victim encountered only A, B and C on the day of his death, and it is not plausible that B or C murdered the victim.
A type of reasoning that occurs in science, in mathematics, in law, and in philosophy, but not statistics (except in certain proofs).

My goal is to exhibit a statistical version of this type of reasoning, in particular in observational studies.

This reasoning tries to advance a claim that a theory \mathcal{T} is true by showing that various alternatives to \mathcal{T} (counterclaims) are implausible or unpalatable.

If I am prosecuting A for murder, I might observe that the victim encountered only A, B and C on the day of his death, and it is not plausible that B or C murdered the victim.

Proof by contradiction: I argue for \mathcal{T} by showing that $\sim \mathcal{T}$ leads to a contradiction. The supposition that $\sim \mathcal{T}$ undermines itself.
Typically, consideration of counterclaims falls well short of a proof by contradiction.
Claims and counterclaims: some remarks

- Typically, consideration of counterclaims falls well short of a proof by contradiction.
- Rather, a successful analysis may show that the most plausible alternatives to T run into difficulties of one kind or another.
Claims and counterclaims: some remarks

- Typically, consideration of counterclaims falls well short of a proof by contradiction.
- Rather, a successful analysis may show that the most plausible alternatives to \mathcal{T} run into difficulties of one kind or another.
- A claim \mathcal{T} and counterclaims to \mathcal{T} may be offered by different people, say an investigator and a critic.
Claims and counterclaims: some remarks

- Typically, consideration of counterclaims falls well short of a proof by contradiction.
- Rather, a successful analysis may show that the most plausible alternatives to \mathcal{T} run into difficulties of one kind or another.
- A claim \mathcal{T} and counterclaims to \mathcal{T} may be offered by different people, say an investigator and a critic.
- Or an investigator may anticipate certain counterclaims to \mathcal{T} and try to strengthen the case for \mathcal{T} by refuting or rendering implausible various counterclaims to \mathcal{T}.
Claims and counterclaims in observational studies

- Typically, in observational studies an investigator puts forth a claim that a certain difference in outcomes in treated and control groups is an effect caused by the treatment.
Claims and counterclaims in observational studies

- Typically, in observational studies an investigator puts forth a claim that a certain difference in outcomes in treated and control groups is an effect caused by the treatment.
- A typical counterclaim explains the difference in outcomes not as an effect of the treatment but as some way nonrandom treatment assignment has created a biased comparison.
Typically, in observational studies an investigator puts forth a claim that a certain difference in outcomes in treated and control groups is an effect caused by the treatment.

A typical counterclaim explains the difference in outcomes not as an effect of the treatment but as some way nonrandom treatment assignment has created a biased comparison.

The typical counterclaim says that
Typically, in observational studies an investigator puts forth a claim that a certain difference in outcomes in treated and control groups is an effect caused by the treatment.

A typical counterclaim explains the difference in outcomes not as an effect of the treatment but as some way nonrandom treatment assignment has created a biased comparison.

The typical counterclaim says that

1. treated and control subjects look comparable after matching (or other adjustments),
Claims and counterclaims in observational studies

- Typically, in observational studies an investigator puts forth a claim that a certain difference in outcomes in treated and control groups is an effect caused by the treatment.

- A typical counterclaim explains the difference in outcomes not as an effect of the treatment but as some way nonrandom treatment assignment has created a biased comparison.

- The typical counterclaim says that
 1. treated and control subjects look comparable after matching (or other adjustments),
 2. but appearances deceive, and the groups differed prior to treatment to a sufficient degree and in such a way as to create the false appearance of an effect.
Claims and counterclaims in observational studies

- Typically, in observational studies an investigator puts forth a claim that a certain difference in outcomes in treated and control groups is an effect caused by the treatment.

- A typical counterclaim explains the difference in outcomes not as an effect of the treatment but as some way nonrandom treatment assignment has created a biased comparison.

- The typical counterclaim says that
 1. treated and control subjects look comparable after matching (or other adjustments),
 2. but appearances deceive, and the groups differed prior to treatment to a sufficient degree and in such a way as to create the false appearance of an effect.

- Could empirical evaluation of such a counterclaim show that it fails as a counterclaim? That it does not make the original claim less plausible.
An observational study is conducted.
An observational study is conducted.

The investigator adjusts for observed covariates, then performs a sensitivity analysis and acknowledges that the observed difference in outcomes could be explained by a bias in treatment assignment of a certain magnitude, Γ.

A critic (or the investigator anticipating a critic) raises a specific counterclaim. The investigator shows that, if one were to suppose the counterclaim to be true, it would be appropriate to perform an additional, otherwise inappropriate analysis, with the finding the results are insensitive to a bias of magnitude $\Gamma_0 > \Gamma$. In this sense, the counterclaim undermines itself. It fails in its role as a counterclaim.
General structure

- An observational study is conducted.
- The investigator adjusts for observed covariates, then performs a sensitivity analysis and acknowledges that the observed difference in outcomes could be explained by a bias in treatment assignment of a certain magnitude, Γ.
- A critic (or the investigator anticipating a critic) raises a specific counterclaim.
An observational study is conducted.

The investigator adjusts for observed covariates, then performs a sensitivity analysis and acknowledges that the observed difference in outcomes could be explained by a bias in treatment assignment of a certain magnitude, Γ.

A critic (or the investigator anticipating a critic) raises a specific counterclaim.

The investigator shows that, if one were to suppose the counterclaim to be true, it would be appropriate to perform an additional, otherwise inappropriate analysis, with the finding the results are insensitive to a bias of magnitude $\Gamma' > \Gamma$.
An observational study is conducted.

The investigator adjusts for observed covariates, then performs a sensitivity analysis and acknowledges that the observed difference in outcomes could be explained by a bias in treatment assignment of a certain magnitude, Γ.

A critic (or the investigator anticipating a critic) raises a specific counterclaim.

The investigator shows that, if one were to suppose the counterclaim to be true, it would be appropriate to perform an additional, otherwise inappropriate analysis, with the finding the results are insensitive to a bias of magnitude $\Gamma' > \Gamma$.

In this sense, the counterclaim undermines itself. It fails in its role as a counterclaim.
Outline of talk

- A preliminary fact: In most circumstances, you should adjust for covariates, not for outcomes.
A preliminary fact: In most circumstances, you should adjust for covariates, not for outcomes.

An observational study of seatbelts in car crashes. (Includes a review of sensitivity analysis.)
A preliminary fact: In most circumstances, you should adjust for covariates, not for outcomes.

An observational study of seatbelts in car crashes. (Includes a review of sensitivity analysis.)

A counterclaim: “Seatbelts have no effect on what happens during a crash — rather, the pattern we see is entirely created by frail individuals declining to wear seatbelts.”
A preliminary fact: In most circumstances, you should adjust for covariates, not for outcomes.

An observational study of seatbelts in car crashes. (Includes a review of sensitivity analysis.)

A counterclaim: “Seatbelts have no effect on what happens during a crash — rather, the pattern we see is entirely created by frail individuals declining to wear seatbelts.”

The counterclaim denies that certain aspects of the crash are affected outcomes, hence licenses their use as covariates.
A preliminary fact: In most circumstances, you should adjust for covariates, not for outcomes.

An observational study of seatbelts in car crashes. (Includes a review of sensitivity analysis.)

A counterclaim: “Seatbelts have no effect on what happens during a crash — rather, the pattern we see is entirely created by frail individuals declining to wear seatbelts.”

The counterclaim denies that certain aspects of the crash are affected outcomes, hence licenses their use as covariates.

Licenses focusing on a segment of the data defined, in a certain way, by outcomes.
A preliminary fact: In most circumstances, you should adjust for covariates, not for outcomes.

An observational study of seatbelts in car crashes. (Includes a review of sensitivity analysis.)

A counterclaim: “Seatbelts have no effect on what happens during a crash — rather, the pattern we see is entirely created by frail individuals declining to wear seatbelts.”

The counterclaim denies that certain aspects of the crash are affected outcomes, hence licenses their use as covariates.

Licenses focusing on a segment of the data defined, in a certain way, by outcomes.

Is what we saw in the example expected under simple models for treatment effects? (Design sensitivity and power of a sensitivity analysis.)
A preliminary fact: adjustments for outcomes

- A well-known and uncontroversial fact about adjustments in observational studies. The talk could seem puzzling to someone encountering the fact for the first time.
A preliminary fact: adjustments for outcomes

- A well-known and uncontroversial fact about adjustments in observational studies. The talk could seem puzzling to someone encountering the fact for the first time.

- A covariate is a variable describing a person prior to treatment assignment, hence a variable unaffected by the treatment the person later receives.
A preliminary fact: adjustments for outcomes

- A well-known and uncontroversial fact about adjustments in observational studies. The talk could seem puzzling to someone encountering the fact for the first time.
- A covariate is a variable describing a person prior to treatment assignment, hence a variable unaffected by the treatment the person later receives.
- In most contexts, age is a covariate.
A preliminary fact: adjustments for outcomes

- A well-known and uncontroversial fact about adjustments in observational studies. The talk could seem puzzling to someone encountering the fact for the first time.
- A covariate is a variable describing a person prior to treatment assignment, hence a variable unaffected by the treatment the person later receives.
- In most contexts, age is a covariate.
- If you were studying the effects an antihypertensive drug on the risk of stroke:
A preliminary fact: adjustments for outcomes

- A well-known and uncontroversial fact about adjustments in observational studies. The talk could seem puzzling to someone encountering the fact for the first time.
- A covariate is a variable describing a person prior to treatment assignment, hence a variable unaffected by the treatment the person later receives.
- In most contexts, age is a covariate.
- If you were studying the effects an antihypertensive drug on the risk of stroke:
 1. pretreatment blood pressure is a covariate, but
A preliminary fact: adjustments for outcomes

- A well-known and uncontroversial fact about adjustments in observational studies. The talk could seem puzzling to someone encountering the fact for the first time.
- A covariate is a variable describing a person prior to treatment assignment, hence a variable unaffected by the treatment the person later receives.
- In most contexts, age is a covariate.
- If you were studying the effects an antihypertensive drug on the risk of stroke:
 1. pretreatment blood pressure is a covariate, but
 2. posttreatment blood pressure is not (it’s an outcome).
A preliminary fact: adjustments for outcomes

- A well-known and uncontroversial fact about adjustments in observational studies. The talk could seem puzzling to someone encountering the fact for the first time.
- A covariate is a variable describing a person prior to treatment assignment, hence a variable unaffected by the treatment the person later receives.
- In most contexts, age is a covariate.
- If you were studying the effects an antihypertensive drug on the risk of stroke:
 1. pretreatment blood pressure is a covariate, but
 2. posttreatment blood pressure is not (it's an outcome).
- The preliminary fact: adjusting for an outcome can bias an otherwise unbiased estimate of a treatment effect.
Continued: We do not typically adjust for outcomes when estimating treatment effects

- If you were studying the effects an antihypertensive drug on the risk of stroke:
Continued: We do not typically adjust for outcomes when estimating treatment effects

- If you were studying the effects an antihypertensive drug on the risk of stroke:

 1 pretreatment blood pressure is a covariate, but
Continued: We do not typically adjust for outcomes when estimating treatment effects

- If you were studying the effects an antihypertensive drug on the risk of stroke:
 1. pretreatment blood pressure is a covariate, but
 2. posttreatment blood pressure is not (it’s an outcome)
Continued: We do not typically adjust for outcomes when estimating treatment effects

- If you were studying the effects an antihypertensive drug on the risk of stroke:

 1. pretreatment blood pressure is a covariate, but
 2. posttreatment blood pressure is not (it’s an outcome)

- It would be reasonable to want to compare treated and control individuals with the same blood pressure prior to treatment in studying the risk of stroke.
Continued: We do not typically adjust for outcomes when estimating treatment effects

- If you were studying the effects an antihypertensive drug on the risk of stroke:
 1. pretreatment blood pressure is a covariate, but
 2. posttreatment blood pressure is not (it’s an outcome)

- It would be reasonable to want to compare treated and control individuals with the same blood pressure prior to treatment in studying the risk of stroke.

- If you adjusted for posttreatment blood pressure, then you might remove the genuine effect of the antihypertensive drug.
Continued: We do not typically adjust for outcomes when estimating treatment effects

- If you were studying the effects an antihypertensive drug on the risk of stroke:
 1. pretreatment blood pressure is a covariate, but
 2. posttreatment blood pressure is not (it’s an outcome)

- It would be reasonable to want to compare treated and control individuals with the same blood pressure prior to treatment in studying the risk of stroke.

- If you adjusted for posttreatment blood pressure, then you might remove the genuine effect of the antihypertensive drug.

- If the drug worked by lowering your blood pressure so that you had the same low risk of stroke as a person with naturally low blood pressure, that might be a large effect, and you might mistakenly remove it.
Do safety belts reduce injuries and deaths?
Do safety belts reduce injuries and deaths?

Patterned after a clever study by Evans (1986), but using more recent data (2010-2011).
Running example: Safety belts in motor vehicle accidents

- Do safety belts reduce injuries and deaths?
- Patterned after a clever study by Evans (1986), but using more recent data (2010-2011).
- The US Fatality Analysis Reporting System (FARS) records information about vehicle accidents with at least one fatality.
Running example: Safety belts in motor vehicle accidents

- Do safety belts reduce injuries and deaths?
- Patterned after a clever study by Evans (1986), but using more recent data (2010-2011).
- The US Fatality Analysis Reporting System (FARS) records information about vehicle accidents with at least one fatality.
- The system records information about injuries and deaths, safety belt use, direction of impact, ejection from vehicle, and is connected to detailed information about vehicles.

Rosenbaum

Counterclaims
Do safety belts reduce injuries and deaths?

Patterned after a clever study by Evans (1986), but using more recent data (2010-2011).

The US Fatality Analysis Reporting System (FARS) records information about vehicle accidents with at least one fatality.

The system records information about injuries and deaths, safety belt use, direction of impact, ejection from vehicle, and is connected to detailed information about vehicles.

The system has little information about events leading up to the crash: speeds, distances between vehicles, road traction, driver performance, condition of brakes, etc, all of which affect the forces involved in the crash.
Basic problem: Cautious drivers wear safety belts

- Wearing safety belts is a precaution.
Basic problem: Cautious drivers wear safety belts

- Wearing safety belts is a precaution.
- Does a person take a single precaution?
Basic problem: Cautious drivers wear safety belts

- Wearing safety belts is a precaution.
- Does a person take a single precaution?
- If people who wear safety belts drive more slowly, at a greater distance from the car ahead, etc, then people who wear safety belts may be involved in less severe crashes.
Basic problem: Cautious drivers wear safety belts

- Wearing safety belts is a precaution.
- Does a person take a single precaution?
- If people who wear safety belts drive more slowly, at a greater distance from the car ahead, etc, then people who wear safety belts may be involved in less severe crashes.
- If there are fewer deaths and less severe injuries when people wear safety belts, part of this may not be an effect caused by the belts, but rather the aggregate effect of a cautious manner of driving.
Basic problem: Cautious drivers wear safety belts

- Wearing safety belts is a precaution.
- Does a person take a single precaution?
- If people who wear safety belts drive more slowly, at a greater distance from the car ahead, etc, then people who wear safety belts may be involved in less severe crashes.
- If there are fewer deaths and less severe injuries when people wear safety belts, part of this may not be an effect caused by the belts, but rather the aggregate effect of a cautious manner of driving.
- What can be done?
Some visible biases in the portion of the data we will examine

- The make of the car predicts belt use.
Some visible biases in the portion of the data we will examine

- The make of the car predicts belt use.
 - 6522 people in a Ford, 29.0% of whom are unbelted.
Some visible biases in the portion of the data we will examine

- The make of the car predicts belt use.
 1. 6522 people in a Ford, 29.0% of whom are unbelted.
 2. 2852 people in a Toyota, 20% of whom are unbelted.
Some visible biases in the portion of the data we will examine

- The make of the car predicts belt use.
 1. 6522 people in a Ford, 29.0% of whom are unbelted.
 2. 2852 people in a Toyota, 20% of whom are unbelted.
 3. People in Volvos and Mercedes are more likely to be belted than people in Fords.

People aged 18–30 are twice as likely as older individuals to be unbelted (odds ratio 2.1). Unbelted individuals were on average 9 years younger than belted individuals.
Some visible biases in the portion of the data we will examine

- The make of the car predicts belt use.
 1. 6522 people in a Ford, 29.0% of whom are unbelted.
 2. 2852 people in a Toyota, 20% of whom are unbelted.
 3. People in Volvos and Mercedes are more likely to be belted than people in Fords.

- People aged 18–30 are twice as likely as older individuals to be unbelted (odds ratio 2.1). Unbelted individuals were on average 9 years younger than belted individuals.
Evans (1986) compared two people in the same crash, driver and passenger, seated in the front seat of the same car.
Evan’s solution

- Evans (1986) compared two people in the same crash, driver and passenger, seated in the front seat of the same car.
- The key comparison, one belted, the other unbelted, is a sliver of the FARS system, because it is atypical for driver and passenger to differ in their belt use.
Evan’s solution

- Evans (1986) compared two people in the same crash, driver and passenger, seated in the front seat of the same car.
- The key comparison, one belted, the other unbelted, is a sliver of the FARS system, because it is atypical for driver and passenger to differ in their belt use.
- In Evan’s comparison, many unmeasured factors are controlled: same vehicle in same crash, driver and passenger traveled at the same speed, at the same distance from the car ahead, with the same road traction.
Evans’s solution

- Evans (1986) compared two people in the same crash, driver and passenger, seated in the front seat of the same car.
- The key comparison, one belted, the other unbelted, is a sliver of the FARS system, because it is atypical for driver and passenger to differ in their belt use.
- In Evan’s comparison, many unmeasured factors are controlled: same vehicle in same crash, driver and passenger traveled at the same speed, at the same distance from the car ahead, with the same road traction.
- The risks in the driver’s seat may differ from those in the passenger’s seat, but we see both cases.
A modern version of Evan’s comparison

- Data from FARS 2010 and 2011.
A modern version of Evan’s comparison

- Data from FARS 2010 and 2011.
- Pairs of adults, \(\geq 18 \) years old, one in the driver’s seat, one in the right front passenger seat.
Data from FARS 2010 and 2011.

Pairs of adults, \(\geq 18 \) years old, one in the driver’s seat, one in the right front passenger seat.

Each individual was either unbelted (n) or a lap-shoulder belt (ls). Other situations are excluded.
A modern version of Evan’s comparison

- Data from FARS 2010 and 2011.
- Pairs of adults, ≥ 18 years old, one in the driver’s seat, one in the right front passenger seat.
- Each individual was either unbelted (n) or a lap-shoulder belt (ls). Other situations are excluded.
- All data refer to (driver, passenger). So (n, ls) means the driver was unbelted, the passenger was belted.
A modern version of Evan’s comparison

- Data from FARS 2010 and 2011.
- Pairs of adults, ≥ 18 years old, one in the driver’s seat, one in the right front passenger seat.
- Each individual was either unbelted (n) or a lap-shoulder belt (ls). Other situations are excluded.
- All data refer to (driver, passenger). So (n, ls) means the driver was unbelted, the passenger was belted.
- There are really 4 parallel studies, one of (ls, ls), one of (n, ls), one of (ls, n) and one of (n, n).
A modern version of Evan’s comparison

- Data from FARS 2010 and 2011.
- Pairs of adults, ≥ 18 years old, one in the driver’s seat, one in the right front passenger seat.
- Each individual was either unbelted (n) or a lap-shoulder belt (ls). Other situations are excluded.
- All data refer to (driver, passenger). So (n, ls) means the driver was unbelted, the passenger was belted.
- There are really 4 parallel studies, one of (ls, ls), one of (n, ls), one of (ls, n) and one of (n, n).
- Notation will describe any one of the 4 studies, so the notation is recycled.
Each person has an injury score.
Injury scores

- Each person has an injury score.
 - 0 = no injury

\[Y_i = \text{driver} - \text{passenger} \]

4 to 4. So a 4 means the driver was not injured but the passenger died.
Each person has an injury score.

- 0 = no injury
- 1 = possible injury
Injury scores

- Each person has an injury score.
 - 0 = no injury
 - 1 = possible injury
 - 2 = nonincapacitating injury

\[Y_i = \text{driver - passenger difference in injury scores}, \]

So a 4 means the driver was not injured but the passenger died.
Injury scores

Each person has an injury score.

- 0 = no injury
- 1 = possible injury
- 2 = nonincapacitating injury
- 3 = incapacitating injury
- 4 = death

\[Y_i = \text{driver - passenger difference in injury scores,} \]

So a 4 means the driver was not injured but the passenger died.
Each person has an injury score.

- 0 = no injury
- 1 = possible injury
- 2 = nonincapacitating injury
- 3 = incapacitating injury
- 4 = death
Injury scores

- Each person has an injury score.
 - 0 = no injury
 - 1 = possible injury
 - 2 = nonincapacitating injury
 - 3 = incapacitating injury
 - 4 = death

- \(Y_i = \text{driver} - \text{passenger} \) difference in injury scores, from -4 to 4. So a -4 means the driver was not injured but the passenger died.
Figure 1: Pair differences in injury scores, driver-minus-passenger, for a driver and a passenger in the same car in FARS 2010-2011, by restraint use. A positive difference indicates the driver suffered more severe injuries than the passenger.
Summary so far:

- In the same car in the same crash, injury scores Y_i are not very different for diver and passenger when belt status is the same.
In the same car in the same crash, injury scores \(Y_i \) are not very different for diver and passenger when belt status is the same.

However, injury scores are lower for belted individuals when only one person is belted.
Summary so far:

- In the same car in the same crash, injury scores Y_i are not very different for diver and passenger when belt status is the same.
- However, injury scores are lower for belted individuals when only one person is belted.
- Can’t explain this pattern with the vehicle, its speed, brake quality, driver caution, etc.

What about age? In the front seat of the same car, the mean age (driver-minus-passenger) differences are small:

- (ls, ls) is 0.36 years
- (n, n) is 0.59 years
- (ls, n) is 0.98 years
- (n, ls) is 1.34 years.

Rosenbaum Counterclaims
In the same car in the same crash, injury scores Y_i are not very different for diver and passenger when belt status is the same.

However, injury scores are lower for belted individuals when only one person is belted.

Can’t explain this pattern with the vehicle, its speed, brake quality, driver caution, etc.

What about age? In the front seat of the same car, the mean age (driver-minus-passenger) differences are small:
In the same car in the same crash, injury scores Y_i are not very different for diver and passenger when belt status is the same. However, injury scores are lower for belted individuals when only one person is belted. Can’t explain this pattern with the vehicle, its speed, brake quality, driver caution, etc.

What about age? In the front seat of the same car, the mean age (driver-minus-passenger) differences are small:

1. (ls, ls) is 0.36 years
Summary so far:

- In the same car in the same crash, injury scores Y_i are not very different for diver and passenger when belt status is the same.
- However, injury scores are lower for belted individuals when only one person is belted.
- Can't explain this pattern with the vehicle, its speed, brake quality, driver caution, etc.
- What about age? In the front seat of the same car, the mean age (driver-minus-passenger) differences are small:
 1. (ls, ls) is 0.36 years
 2. (n, n) is 0.59 years
Summary so far:

- In the same car in the same crash, injury scores Y_i are not very different for diver and passenger when belt status is the same.
- However, injury scores are lower for belted individuals when only one person is belted.
- Can’t explain this pattern with the vehicle, its speed, brake quality, driver caution, etc.
- What about age? In the front seat of the same car, the mean age (driver-minus-passenger) differences are small:
 1. (ls, ls) is 0.36 years
 2. (n, n) is 0.59 years
 3. (ls, n) is −0.98 years
Summary so far:

- In the same car in the same crash, injury scores Y_i are not very different for diver and passenger when belt status is the same.
- However, injury scores are lower for belted individuals when only one person is belted.
- Can’t explain this pattern with the vehicle, its speed, brake quality, driver caution, etc.
- What about age? In the front seat of the same car, the mean age (driver-minus-passenger) differences are small:
 - (ls, ls) is 0.36 years
 - (n, n) is 0.59 years
 - (ls, n) is −0.98 years
 - (n, ls) is 1.34 years.
I matched sets, \(i \in \{1, \ldots, I\} = \mathcal{I} \), where set \(i \in \mathcal{I} \) contains subjects \(\mathcal{J}_i = \{1, \ldots, J_i\} \), so \(ij \) is a person. (In the example, \(J_i = 2 \) and \(\mathcal{J}_i = \{1, 2\} \) for all \(i \).)
Notation for any one of our 4 studies (e.g., (ls, n), etc.)

- I matched sets, $i \in \{1, \ldots, I\} = \mathcal{I}$, where set $i \in \mathcal{I}$ contains subjects $\mathcal{J}_i = \{1, \ldots, J_i\}$, so ij is a person. (In the example, $J_i = 2$ and $\mathcal{J}_i = \{1, 2\}$ for all i.)

- Set i contains one treated with $Z_{ij} = 1$, the rest untreated controls with $Z_{ij} = 0$, so $1 = \sum_{j \in \mathcal{J}_i} Z_{ij}$ for each i.

Write $Z = (Z_{11}, Z_{12}, \ldots, Z_{IJ})^T$ for the vector of dimension $n = \sum_{i \in \mathcal{I}} J_i$.

Let Z be the set containing the $\prod_{i \in \mathcal{I}} J_i$ possible values of Z, so $z \in Z$ if z is of dimension n with $z_{ij} = 0$ or $z_{ij} = 1$ and $1 = \sum_{j \in \mathcal{J}_i} z_{ij}$ for each i.

Conditioning on $Z \in Z$ is abbreviated as conditioning on Z. Denote by $|A|$ the number of elements in a finite set A so that, for instance, $|\mathcal{J}_i| = J_i$ and $|Z| = \prod_{i \in \mathcal{I}} J_i$.

Rosenbaum
Counterclaims
Notation for any one of our 4 studies (e.g., (ls, n), etc.)

- \(I \) matched sets, \(i \in \{1, \ldots, I\} = \mathcal{I} \), where set \(i \in \mathcal{I} \) contains subjects \(\mathcal{J}_i = \{1, \ldots, J_i\} \), so \(ij \) is a person. (In the example, \(J_i = 2 \) and \(\mathcal{J}_i = \{1, 2\} \) for all \(i \).)

- Set \(i \) contains one treated with \(Z_{ij} = 1 \), the rest untreated controls with \(Z_{ij} = 0 \), so \(1 = \sum_{j \in \mathcal{J}_i} Z_{ij} \) for each \(i \).

- Write \(\mathbf{Z} = (Z_{11}, Z_{12}, \ldots Z_{IJ})^T \) for the vector of dimension \(n = \sum_{i \in \mathcal{I}} J_i \).
Notation for any one of our 4 studies (e.g., (ls, n), etc.)

- I matched sets, $i \in \{1, \ldots, I\} = I$, where set $i \in I$ contains subjects $J_i = \{1, \ldots, J_i\}$, so ij is a person. (In the example, $J_i = 2$ and $J_i = \{1, 2\}$ for all i.)

- Set i contains one treated with $Z_{ij} = 1$, the rest untreated controls with $Z_{ij} = 0$, so $1 = \sum_{j \in J_i} Z_{ij}$ for each i.

- Write $Z = (Z_{11}, Z_{12}, \ldots, Z_{IJ})^T$ for the vector of dimension $n = \sum_{i \in I} J_i$.

- Let Z be the set containing the $\prod_{i \in I} J_i$ possible values of Z, so $z \in Z$ if z is of dimension n with $z_{ij} = 0$ or $z_{ij} = 1$ and $1 = \sum_{j \in J_i} z_{ij}$ for each i. Conditioning on $Z \in Z$ is abbreviated as conditioning on Z.
Notation for any one of our 4 studies (e.g., (ls, n), etc.)

- I matched sets, $i \in \{1, \ldots, I\} = \mathcal{I}$, where set $i \in \mathcal{I}$ contains subjects $\mathcal{J}_i = \{1, \ldots, J_i\}$, so ij is a person. (In the example, $J_i = 2$ and $\mathcal{J}_i = \{1, 2\}$ for all i.)

- Set i contains one treated with $Z_{ij} = 1$, the rest untreated controls with $Z_{ij} = 0$, so $1 = \sum_{j \in \mathcal{J}_i} Z_{ij}$ for each i.

- Write $\mathbf{Z} = (Z_{11}, Z_{12}, \ldots, Z_{IJ})^T$ for the vector of dimension $n = \sum_{i \in \mathcal{I}} J_i$

- Let \mathcal{Z} be the set containing the $\prod_{i \in \mathcal{I}} J_i$ possible values of \mathbf{Z}, so $\mathbf{z} \in \mathcal{Z}$ if \mathbf{z} is of dimension n with $z_{ij} = 0$ or $z_{ij} = 1$ and $1 = \sum_{j \in \mathcal{J}_i} z_{ij}$ for each i. Conditioning on $\mathbf{Z} \in \mathcal{Z}$ is abbreviated as conditioning on \mathcal{Z}.

- Denote by $|\mathcal{A}|$ the number of elements in a finite set \mathcal{A} so that, for instance, $|\mathcal{J}_i| = J_i$ and $|\mathcal{Z}| = \prod_{i \in \mathcal{I}} J_i$.

Rosenbaum

Counterclaims
Each subject is described by a measured covariate x_{ij} and there is concern about an unmeasured covariate u_{ij}.
Each subject is described by a measured covariate x_{ij} and there is concern about an unmeasured covariate u_{ij}.

Matching has controlled the measured covariate, so that $x_{ij} = x_{ik} = x_i$, say, for each i, j, k.

Example: u_{ij} is a measure of the frailty of individual ij, and there is concern that frail individuals are less likely to wear safety belts and more likely to suffer severe injuries or death.
Covariates

- Each subject is described by a measured covariate x_{ij} and there is concern about an unmeasured covariate u_{ij}.
- Matching has controlled the measured covariate, so that $x_{ij} = x_{ik} = x_i$, say, for each i, j, k.
- In the example, x_i describes the vehicle and the crash.
Covariates

- Each subject is described by a measured covariate x_{ij} and there is concern about an unmeasured covariate u_{ij}.
- Matching has controlled the measured covariate, so that $x_{ij} = x_{ik} = x_i$, say, for each i, j, k.
- In the example, x_i describes the vehicle and the crash.
- Quite possibly $u_{ij} \neq u_{ik}$ for many i, j, k.

Rosenbaum

Counterclaims
Each subject is described by a measured covariate x_{ij} and there is concern about an unmeasured covariate u_{ij}.

Matching has controlled the measured covariate, so that $x_{ij} = x_{ik} = x_i$, say, for each i, j, k.

In the example, x_i describes the vehicle and the crash.

Quite possibly $u_{ij} \neq u_{ik}$ for many i, j, k.

Example: u_{ij} is a measure of the frailty of individual ij, and there is concern that frail individuals are less likely to wear safety belts and more likely to suffer severe injuries or death.
Subject \(ij \) has two potential injury scores, \(r_{Tij} \) if assigned to treatment or \(r_{Cij} \) if assigned to control, so the observed response of \(ij \) is \(R_{ij} = Z_{ij} r_{Tij} + (1 - Z_{ij}) r_{Cij} \), and the effect of the treatment on \(ij \), namely \(r_{Tij} - r_{Cij} \) is not observed; see Neyman (1923) and Rubin (1974).
Subject ij has two potential injury scores, r_{Tij} if assigned to treatment or r_{Cij} if assigned to control, so the observed response of ij is $R_{ij} = Z_{ij} r_{Tij} + (1 - Z_{ij}) r_{Cij}$, and the effect of the treatment on ij, namely $r_{Tij} - r_{Cij}$ is not observed; see Neyman (1923) and Rubin (1974).

Fisher’s (1935) sharp null hypothesis of no treatment effect asserts $H_0 : r_{Tij} = r_{Cij}$ for all ij.

Rosenbaum

Counterclaims
Subject ij has two potential injury scores, r_{Tij} if assigned to treatment or r_{Cij} if assigned to control, so the observed response of ij is $R_{ij} = Z_{ij} r_{Tij} + (1 - Z_{ij}) r_{Cij}$, and the effect of the treatment on ij, namely $r_{Tij} - r_{Cij}$ is not observed; see Neyman (1923) and Rubin (1974).

Fisher’s (1935) sharp null hypothesis of no treatment effect asserts $H_0 : r_{Tij} = r_{Cij}$ for all ij.

Write R, r_C, r_T, and u for the n dimensional vectors.
Subject ij has two potential injury scores, r_{Tij} if assigned to treatment or r_{Cij} if assigned to control, so the observed response of ij is $R_{ij} = Z_{ij} r_{Tij} + (1 - Z_{ij}) r_{Cij}$, and the effect of the treatment on ij, namely $r_{Tij} - r_{Cij}$ is not observed; see Neyman (1923) and Rubin (1974).

Fisher’s (1935) sharp null hypothesis of no treatment effect asserts $H_0 : r_{Tij} = r_{Cij}$ for all ij.

Write R, r_C, r_T, and u for the n dimensional vectors.

Each subject has a K-dimensional row vector of secondary outcomes, s_{Tij} or s_{Cij}, with observed value $S_{ij} = Z_{ij} s_{Tij} + (1 - Z_{ij}) s_{Cij}$, and associated $n \times K$ matrices S, s_C and s_T.
Outcomes (in each of our 4 parallel studies, e.g., (ls, n).)

- Subject ij has two potential injury scores, r_{Tij} if assigned to treatment or r_{Cij} if assigned to control, so the observed response of ij is $R_{ij} = Z_{ij} r_{Tij} + (1 - Z_{ij}) r_{Cij}$, and the effect of the treatment on ij, namely $r_{Tij} - r_{Cij}$ is not observed; see Neyman (1923) and Rubin (1974).

- Fisher’s (1935) sharp null hypothesis of no treatment effect asserts $H_0: r_{Tij} = r_{Cij}$ for all ij.

- Write \mathbf{R}, \mathbf{r}_C, \mathbf{r}_T, and \mathbf{u} for the n dimensional vectors.

- Each subject has a K-dimensional row vector of secondary outcomes, \mathbf{s}_{Tij} or \mathbf{s}_{Cij}, with observed value $\mathbf{S}_{ij} = Z_{ij} \mathbf{s}_{Tij} + (1 - Z_{ij}) \mathbf{s}_{Cij}$, and associated $n \times K$ matrices \mathbf{S}, \mathbf{s}_C and \mathbf{s}_T.

- Treated-minus-control pair difference $Y_i = (Z_{i1} - Z_{i2}) (R_{i1} - R_{i2})$ in outcomes.
Write
\[\mathcal{F} = \{(r_{Tij}, r_{Cij}, s_{Tij}, s_{Cij}, x_{ij}, u_{ij}), \ i = 1, \ldots, I, \ j = 1, \ldots, J_i \}. \]
Write
\[F = \{(r_{Tij}, r_{Cij}, s_{Tij}, s_{Cij}, x_{ij}, u_{ij}), i = 1, \ldots, I, j = 1, \ldots, J_i\}. \]

The subscripts \(ij \) are unique but noninformative identifiers, perhaps randomly assigned, and all information about individual \(ij \) is in observed or unobserved variables that describe \(ij \).
Randomization inference (in each of our 4 parallel studies, e.g., (ls, n).)

- If this were a randomized experiment, then we would, independently, assign treatment at random to one person in each matched set, so

\[
\Pr(Z = z \mid \mathcal{F}, \mathcal{Z}) = \prod_{i \in \mathcal{I}} J_i^{-1} = |\mathcal{Z}|^{-1} \text{ for each } z \in \mathcal{Z}.
\]
Randomization inference (in each of our 4 parallel studies, e.g., (ls, n).)

- If this were a randomized experiment, then we would, independently, assign treatment at random to one person in each matched set, so

 \[\Pr(Z = z \mid \mathcal{F}, \mathcal{Z}) = \prod_{i \in \mathcal{I}} J_i^{-1} = |\mathcal{Z}|^{-1} \text{ for each } z \in \mathcal{Z}. \]

- A test statistic \(t(Z, R) \).
Randomization inference (in each of our 4 parallel studies, e.g., (ls, n).)

- If this were a randomized experiment, then we would, independently, assign treatment at random to one person in each matched set, so

$$\Pr(\mathbf{Z} = \mathbf{z} \mid \mathcal{F}, \mathcal{Z}) = \prod_{i \in \mathcal{I}} J_i^{-1} = |\mathcal{Z}|^{-1} \text{ for each } \mathbf{z} \in \mathcal{Z}.$$

- A test statistic $t(\mathbf{Z}, \mathbf{R})$.

- In a randomized experiment, under Fisher's hypothesis of no effect, $H_0: r_{Tij} = r_{Cij}$ for all ij, the distribution of $t(\mathbf{Z}, \mathbf{R})$ is its permutation

$$\Pr \{ t(\mathbf{Z}, \mathbf{r}_C) \geq k \mid \mathcal{F}, \mathcal{Z} \} = \frac{|\{ \mathbf{z} \in \mathcal{Z} : t(\mathbf{z}, \mathbf{r}_C) \geq k \}|}{|\mathcal{Z}|},$$

because
Randomization inference (in each of our 4 parallel studies, e.g., (ls, n).)

- If this were a randomized experiment, then we would, independently, assign treatment at random to one person in each matched set, so

\[
\Pr(Z = z \mid F, Z) = \prod_{i \in \mathcal{I}} J_i^{-1} = |Z|^{-1} \text{ for each } z \in Z.
\]

- A test statistic \(t(Z, R)\).

- In a randomized experiment, under Fisher’s hypothesis of no effect, \(H_0: r_{Tij} = r_{Cij}\) for all \(ij\), the distribution of \(t(Z, R)\) is its permutation

\[
\Pr\{t(Z, r_C) \geq k \mid F, Z\} = \frac{|\{z \in Z : t(z, r_C) \geq k\}|}{|Z|}, \text{ because}
\]

1. \(R = r_C\) when \(H_0\) is true,
Randomization inference (in each of our 4 parallel studies, e.g., (ls, n)).

- If this were a randomized experiment, then we would, independently, assign treatment at random to one person in each matched set, so

\[\Pr(Z = z \mid \mathcal{F}, \mathcal{Z}) = \prod_{i \in \mathcal{I}} J_i^{-1} = |\mathcal{Z}|^{-1} \text{ for each } z \in \mathcal{Z}. \]

- A test statistic \(t(Z, R) \).

- In a randomized experiment, under Fisher’s hypothesis of no effect, \(H_0 : r_{Tij} = r_{Cij} \) for all \(ij \), the distribution of \(t(Z, R) \) is its permutation

\[\Pr\{t(Z, r_C) \geq k \mid \mathcal{F}, \mathcal{Z}\} = \frac{|\{z \in \mathcal{Z} : t(z, r_C) \geq k\}|}{|\mathcal{Z}|}, \text{ because} \]

1. \(R = r_C \) when \(H_0 \) is true,
2. \(r_C \) is fixed by conditioning on \(\mathcal{F} \), and
Randomization inference (in each of our 4 parallel studies, e.g., (ls, n).)

- If this were a randomized experiment, then we would, independently, assign treatment at random to one person in each matched set, so

 \[
 \Pr(Z = z \mid \mathcal{F}, \mathcal{Z}) = \prod_{i \in \mathcal{I}} J_i^{-1} = |\mathcal{Z}|^{-1} \text{ for each } z \in \mathcal{Z}.
 \]

- A test statistic \(t(Z, R) \).

- In a randomized experiment, under Fisher’s hypothesis of no effect, \(H_0 : r_{Tij} = r_{Cij} \) for all \(ij \), the distribution of \(t(Z, R) \) is its permutation

 \[
 \Pr\{t(Z, r_C) \geq k \mid \mathcal{F}, \mathcal{Z}\} = \frac{|\{z \in \mathcal{Z} : t(z, r_C) \geq k\}|}{|\mathcal{Z}|}, \text{ because}
 \]

 1. \(R = r_C \) when \(H_0 \) is true,
 2. \(r_C \) is fixed by conditioning on \(\mathcal{F} \), and
 3. \(Z \) is uniform on \(\mathcal{Z} \) in a randomized experiment.
Huber-Maritz M-tests $t(Z, R) = \sum_{i=1}^{l} \psi(Y_i/s)$ where s is the 95% quantile of $|Y_i|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.
Huber-Maritz M-tests $t(\mathbf{Z}, \mathbf{R}) = \sum_{i=1}^{l} \psi(Y_i/s)$ where s is the 95% quantile of $|Y_i|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.

$\psi_t(y) = y$ yields the permutational t-test
Test statistics

- Huber-Maritz M-tests $t(Z, R) = \sum_{i=1}^{I} \psi \left(\frac{Y_i}{s} \right)$ where s is the 95% quantile of $|Y_i|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.

1. $\psi_t(y) = y$ yields the permutational t-test
2. $\psi_{hu}(y) = \text{sign}(y) \min(|y|, 1)$ (Huber’s scores, similar to a trimmed mean).
Huber-Maritz M-tests $t(Z, R) = \sum_{i=1}^{l} \psi(Y_{i}/s)$ where s is the 95% quantile of $|Y_{i}|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.

1. $\psi_{t}(y) = y$ yields the permutational t-test
2. $\psi_{hu}(y) = \text{sign}(y) \min(|y|, 1)$ (Huber’s scores, similar to a trimmed mean).
3. $\psi_{in}(y) = \text{sign}(y) \max\left\{ 0, \min(|y|, 1) - \frac{1}{4} \right\}$
Huber-Maritz M-tests $t(\mathbf{Z}, \mathbf{R}) = \sum_{i=1}^{I} \psi(Y_i / s)$ where s is the 95% quantile of $|Y_i|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.
Randomization distribution of Huber-Maritz M-tests

- Huber-Maritz M-tests $t(Z, R) = \sum_{i=1}^{l} \psi(Y_i/s)$ where s is the 95% quantile of $|Y_i|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.

- Under $H_0 : r_{Tij} = r_{Cij} \forall ij$, the difference in injury scores is $Y_i = (Z_{i1} - Z_{i2})(R_{i1} - R_{i2}) = (Z_{i1} - Z_{i2})(r_{Ci1} - r_{Ci2}) = \pm (r_{Ci1} - r_{Ci2})$.

Rosenbaum | Counterclaims
Huber-Maritz M-tests $t(\mathbf{Z}, \mathbf{R}) = \sum_{i=1}^{I} \psi(Y_i/s)$ where s is the 95% quantile of $|Y_i|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.

Under $H_0: r_{Tij} = r_{Cij}$ \forall ij, the difference in injury scores is $Y_i = (Z_{i1} - Z_{i2})(R_{i1} - R_{i2}) = (Z_{i1} - Z_{i2})(r_{Ci1} - r_{Ci2}) = \pm (r_{Ci1} - r_{Ci2})$.

So under H_0, $|Y_i| = |r_{Ci1} - r_{Ci2}|$ is fixed by conditioning on \mathcal{F}, so s is also fixed.
Randomization distribution of Huber-Maritz M-tests

- Huber-Maritz M-tests $t(Z, R) = \sum_{i=1}^{l} \psi(Y_i / s)$ where s is the 95% quantile of $|Y_i|$, and $\psi(\cdot)$ is an odd function, $\psi(y) = -\psi(-y)$.

- Under $H_0: r_{Tij} = r_{Cij} \forall ij$, the difference in injury scores is $Y_i = (Z_{i1} - Z_{i2})(R_{i1} - R_{i2}) = (Z_{i1} - Z_{i2})(r_{Ci1} - r_{Ci2}) = \pm(r_{Ci1} - r_{Ci2})$.

- So under H_0, $|Y_i| = |r_{Ci1} - r_{Ci2}|$ is fixed by conditioning on \mathcal{F}, so s is also fixed.

- Hence, in a randomized experiment under H_0, $t(Z, R) = \sum_{i=1}^{l} \psi(Y_i / s)$ is the sum of l independent random variables taking the values $\pm \psi(|Y_i| / s) = \pm \psi(|r_{Ci1} - r_{Ci2}| / s)$ with equal probabilities $1/2$.
Randomization distribution of Huber-Maritz M-tests

- Huber-Maritz M-tests $t (Z, R) = \sum_{i=1}^{l} \psi \left(\frac{Y_i}{s} \right)$ where s is the 95% quantile of $|Y_i|$, and $\psi (\cdot)$ is an odd function, $\psi (y) = -\psi (-y)$.

- Under $H_0 : r_{Tij} = r_{Cij} \forall ij$, the difference in injury scores is $Y_i = (Z_{i1} - Z_{i2}) (R_{i1} - R_{i2}) = (Z_{i1} - Z_{i2}) (r_{Ci1} - r_{Ci2}) = \pm (r_{Ci1} - r_{Ci2})$.

- So under H_0, $|Y_i| = |r_{Ci1} - r_{Ci2}|$ is fixed by conditioning on \mathcal{F}, so s is also fixed.

- Hence, in a randomized experiment under H_0, $t (Z, R) = \sum_{i=1}^{l} \psi \left(\frac{Y_i}{s} \right)$ is the sum of l independent random variables taking the values $\pm \psi \left(\frac{|Y_i|}{s} \right) = \pm \psi \left(\frac{|r_{Ci1} - r_{Ci2}|}{s} \right)$ with equal probabilities $1/2$.

- I.e., the null distribution of $\sum_{i=1}^{l} \psi \left(\frac{Y_i}{s} \right)$ has a simple form.
Table: Randomization tests of no effect in 4 comparisons. n = no restraint. ls = lap-shoulder belt.

<table>
<thead>
<tr>
<th>Restraint Group</th>
<th>Restraint Use: (driver(passenger))</th>
<th>Same Use</th>
<th>Different Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ls.ls n.n</td>
<td>ls.n n.ls</td>
<td></td>
</tr>
<tr>
<td>Number of Pairs</td>
<td>10996 3274</td>
<td>1412 1198</td>
<td></td>
</tr>
<tr>
<td>Mean Y_i</td>
<td>-0.059 0.061</td>
<td>-1.076 1.000</td>
<td></td>
</tr>
<tr>
<td>Standard error of mean</td>
<td>0.013 0.027</td>
<td>0.042 0.044</td>
<td></td>
</tr>
<tr>
<td>Standard deviation of Y_i</td>
<td>1.335 1.571</td>
<td>1.565 1.513</td>
<td></td>
</tr>
<tr>
<td>Randomization tests</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Huber Scores</td>
<td>P-values 0.0000 0.0241</td>
<td>0.0000 0.0000</td>
<td></td>
</tr>
<tr>
<td>Inner Trimmed Scores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-values</td>
<td>0.0000 0.0374</td>
<td>0.0000 0.0000</td>
<td></td>
</tr>
</tbody>
</table>
Sensitivity to nonrandomized treatment assignment

- Model says that, in the population prior to matching, treatment assignments are independent and two subjects with the same observed covariates may differ in their odds of treatment, $Z_{ij} = 1$, by at most a factor of Γ; then, the distribution of Z is returned to \mathcal{Z} by conditioning on $Z \in \mathcal{Z}$.

Rosenbaum

Counterclaims
Sensitivity to nonrandomized treatment assignment

- Model says that, in the population prior to matching, treatment assignments are independent and two subjects with the same observed covariates may differ in their odds of treatment, \(Z_{ij} = 1 \), by at most a factor of \(\Gamma \); then, the distribution of \(Z \) is returned to \(Z \) by conditioning on \(Z \in Z \).

- Equivalent to assuming that there is an unobserved covariate \(u_{ij} \) with \(0 \leq u_{ij} \leq 1 \) such that

\[
\Pr(Z = z \mid \mathcal{F}, Z) = \prod_{i \in I} \frac{\exp(\gamma \sum_{j \in J_i} z_{ij} u_{ij})}{\sum_{j \in J_i} \exp(\gamma u_{ij})} = \frac{\exp(\gamma z^T u)}{\sum_{b \in Z} \exp(\gamma b^T u)},
\]

for each \(z \in Z \), where \(\gamma = \log(\Gamma) \geq 0 \); see Rosenbaum (2002, §4.2). For \(\Gamma = 1 \), \(\gamma = \log(\Gamma) = 0 \), this is the randomization distribution.
Model says that, in the population prior to matching, treatment assignments are independent and two subjects with the same observed covariates may differ in their odds of treatment, \(Z_{ij} = 1 \), by at most a factor of \(\Gamma \); then, the distribution of \(Z \) is returned to \(Z \) by conditioning on \(Z \in Z \).

Equivalent to assuming that there is an unobserved covariate \(u_{ij} \) with \(0 \leq u_{ij} \leq 1 \) such that

\[
\Pr (Z = z \mid \mathcal{F}, Z) = \prod_{i \in I} \frac{\exp (\gamma \sum_{j \in J_i} z_{ij} u_{ij})}{\sum_{j \in J_i} \exp (\gamma u_{ij})} = \frac{\exp (\gamma z^T u)}{\sum_{b \in Z} \exp (\gamma b^T u)},
\]

for each \(z \in Z \), where \(\gamma = \log (\Gamma) \geq 0 \); see Rosenbaum (2002, §4.2). For \(\Gamma = 1 \), \(\gamma = \log (\Gamma) = 0 \), this is the randomization distribution.

Distribution of \(t(Z, R) \) under \(H_0 \) is unknown for \(\Gamma > 1 \) but the degree of departure from random assignment is controlled by the value of \(\Gamma \).
Sensitivity analysis computes bounds on inference quantities for several values of Γ, for instance, bounds on P-values, point estimates, confidence intervals.
Sensitivity analysis, continued

- Sensitivity analysis computes bounds on inference quantities for several values of Γ, for instance, bounds on P-values, point estimates, confidence intervals.

- In the paired case under H_0, the upper bounds on the distribution of $t(Z, R) = \sum_{i=1}^{I} \psi(Y_i/s)$ is the sum of I independent random variables taking the value $\psi(|Y_i|/s)$ with probability $\Gamma/(1+\Gamma)$, and value $-\psi(|Y_i|/s)$ with probability $1/(1+\Gamma)$.
Sensitivity analysis, continued

- Sensitivity analysis computes bounds on inference quantities for several values of \(\Gamma \), for instance, bounds on \(P \)-values, point estimates, confidence intervals.

- In the paired case under \(H_0 \), the upper bounds on the distribution of \(t(Z, R) = \sum_{i=1}^{l} \psi(Y_i/s) \) is the sum of \(l \) independent random variables taking the value \(\psi(\lvert Y_i \rvert / s) \) with probability \(\Gamma / (1 + \Gamma) \), and value \(-\psi(\lvert Y_i \rvert / s) \) with probability \(1 / (1 + \Gamma) \).

- Similar for the lower bound, but with the two probabilities interchanged.
Sensitivity analysis, continued

- Sensitivity analysis computes bounds on inference quantities for several values of Γ, for instance, bounds on P-values, point estimates, confidence intervals.

- In the paired case under H_0, the upper bounds on the distribution of $t(Z, R) = \sum_{i=1}^{I} \psi(Y_i/s)$ is the sum of I independent random variables taking the value $\psi(|Y_i|/s)$ with probability $\Gamma/(1+\Gamma)$, and value $-\psi(|Y_i|/s)$ with probability $1/(1+\Gamma)$.

- Similar for the lower bound, but with the two probabilities interchanged.

- Implementation for M-statistics in the `senm` and `senmCI` functions of the `sensitivitymult` R package.
Table: Upper bounds on P-values testing H_0.

<table>
<thead>
<tr>
<th>Restraint Group</th>
<th>Same Use</th>
<th>Different Use</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ls.ls n.n</td>
<td>ls.n n.ls</td>
</tr>
<tr>
<td>Γ</td>
<td>Huber Scores without Inner Trimming</td>
<td>Inner Trimmed Scores</td>
</tr>
<tr>
<td>1</td>
<td>0.0000 0.0241</td>
<td>0.0000 0.0000</td>
</tr>
<tr>
<td>1.2</td>
<td>1.0000 1.0000</td>
<td>0.0000 0.0000</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>0.0000 0.0027</td>
</tr>
<tr>
<td>5</td>
<td>0.0211 0.4673</td>
<td>0.1808 1.0000</td>
</tr>
<tr>
<td>5.5</td>
<td></td>
<td>0.0160 0.5058</td>
</tr>
</tbody>
</table>
A counterclaim

- Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.
Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.

We will see that this counterclaim undermines itself.
A counterclaim

- Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.
- We will see that this counterclaim undermines itself.
- If this counterclaim were true, it would justify an analysis that is more insensitive to unmeasured bias than the analysis just performed.
Suppose it were true that: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*
A counterclaim analysis

- Suppose it were true that: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

- Were this true, it would justify an analysis confined to a segment of the data, not all of the pairs but just some of them.
A counterclaim analysis

- Suppose it were true that: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

- Were this true, it would justify an analysis confined to a segment of the data, not all of the pairs but just some of them.

- Specifically, were this true, I would be justified in confining attention to crashes in which exactly one person was ejected from the vehicle.
A counterclaim analysis

- Suppose it were true that: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

- Were this true, it would justify an analysis confined to a segment of the data, not all of the pairs but just some of them.

- Specifically, were this true, I would be justified in confining attention to crashes in which exactly one person was ejected from the vehicle.

- Notice that I have not specified *who* was ejected, just that exactly one person was ejected.
A counterclaim analysis

- Suppose it were true that: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

-Were this true, it would justify an analysis confined to a segment of the data, not all of the pairs but just some of them.

- Specifically, were this true, I would be justified in confining attention to crashes in which exactly one person was ejected from the vehicle.

- Notice that I have not specified *who* was ejected, just that exactly one person was ejected.

- Will show the analysis, then explain why this analysis is licensed by the counterclaim.
Figure 2: Pair differences in injury scores, driver-minus-passenger, for a driver and a passenger in the same car in FARS 2010-2011, by restraint use, when precisely one individual was ejected from the vehicle, either partially ejected or totally ejected. A positive difference indicates the driver suffered more severe injuries than the passenger.
Table: Renalysis using only 2048 pairs in which exactly one person was ejected from the vehicle.

<table>
<thead>
<tr>
<th>Restraint Group</th>
<th>Restraint Use: (driver.passenger)</th>
<th>Same Use</th>
<th>Different Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Restraint Group</td>
<td>ls.ls</td>
<td>n.n</td>
<td>ls.n</td>
</tr>
<tr>
<td>Number of Pairs</td>
<td>222</td>
<td>782</td>
<td>522</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.023</td>
<td>0.141</td>
<td>-1.540</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.117</td>
<td>0.069</td>
<td>0.064</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.748</td>
<td>1.938</td>
<td>1.455</td>
</tr>
</tbody>
</table>
Crashes with one ejection: Sensitivity analysis

Table: Values are upper bounds on P-values.

<table>
<thead>
<tr>
<th>Restraint Group</th>
<th>Same Use</th>
<th>Different Use</th>
<th>Huber Scores without Inner Trimming</th>
<th>Inner Trimmed Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>Γ (ls.ls)</td>
<td>ls.ls</td>
<td>n.n</td>
<td>ls.n</td>
<td>n.ls</td>
</tr>
<tr>
<td>1</td>
<td>0.7436</td>
<td>0.0428</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>1.2</td>
<td>1.0000</td>
<td>1.0000</td>
<td>0.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>0.0388</td>
<td>0.0009</td>
</tr>
<tr>
<td>11</td>
<td></td>
<td></td>
<td>0.2783</td>
<td>0.0149</td>
</tr>
</tbody>
</table>

Rosenbaum Counterclaims
Segments of the data

- A segment consists of some of the individuals in the study.
A segment consists of some of the individuals in the study.

A segment of data \(\{ J_i, i \in I \} \) is \(\{ J'_i, i \in I \} \) where \(J'_i \subseteq J_i \) for each \(i \in I \).
A segment consists of some of the individuals in the study.

A segment of data \(\{ J_i, i \in I \} \) is \(\{ J'_i, i \in I \} \) where \(J'_i \subseteq J_i \) for each \(i \in I \).

Example: if there are \(n = 9 \) subjects in matched triples, \(J_1 = \{1, 2, 3\} \), \(J_2 = \{1, 2, 3\} \), \(J_3 = \{1, 2, 3\} \), then one segment is \(J'_1 = \{2, 3\} \), \(J'_2 = \emptyset \), \(J'_3 = \{1, 2, 3\} \).
Segments of the data

- A segment consists of some of the individuals in the study.
- A segment of data \(\{ \mathcal{J}_i, i \in \mathcal{I} \} \) is \(\{ \mathcal{J}'_i, i \in \mathcal{I} \} \) where \(\mathcal{J}'_i \subseteq \mathcal{J}_i \) for each \(i \in \mathcal{I} \).
- Example: if there are \(n = 9 \) subjects in matched triples, \(\mathcal{J}_1 = \{1, 2, 3\} \), \(\mathcal{J}_2 = \{1, 2, 3\} \), \(\mathcal{J}_3 = \{1, 2, 3\} \), then one segment is \(\mathcal{J}'_1 = \{2, 3\} \), \(\mathcal{J}'_2 = \emptyset \), \(\mathcal{J}'_3 = \{1, 2, 3\} \).
- Let \(\mathcal{S} \) be the set whose \(2^n \) elements are the \(2^n \) possible segments.
Nondegenerate parts of a segment

For a segment $\{\mathcal{J}_i', i \in I\}$, write m_i for the random variable that counts the number of treated subjects in \mathcal{J}_i', so $m_i = 0$ if $\mathcal{J}_i' = \emptyset$ and otherwise $m_i = \sum_{j \in \mathcal{J}_i'} Z_{ij}$, so $m_i = 0$ or $m_i = 1$. Write $\mathbf{m} = (m_1, \ldots, m_I)$.
Nondegenerate parts of a segment

- For a segment $\{J'_i, \ i \in \mathcal{I}\}$, write m_i for the random variable that counts the number of treated subjects in J'_i, so $m_i = 0$ if $J'_i = \emptyset$ and otherwise $m_i = \sum_{j \in J'_i} Z_{ij}$, so $m_i = 0$ or $m_i = 1$. Write $\mathbf{m} = (m_1, \ldots, m_I)$.

- The contribution from J'_i in segment $\{J'_i, \ i \in \mathcal{I}\}$ will be degenerate and uninteresting unless $m_i = 1 < |J'_i|$, that is, unless J'_i contains the treated subject and at least one control from matched set J_i.
Nondegenerate parts of a segment

For a segment \(\{J'_i, i \in I\} \), write \(m_i \) for the random variable that counts the number of treated subjects in \(J'_i \), so \(m_i = 0 \) if \(J'_i = \emptyset \) and otherwise \(m_i = \sum_{j \in J'_i} Z_{ij} \), so \(m_i = 0 \) or \(m_i = 1 \). Write \(\mathbf{m} = (m_1, \ldots, m_I) \).

The contribution from \(J'_i \) in segment \(\{J'_i, i \in I\} \) will be degenerate and uninteresting unless \(m_i = 1 < |J'_i| \), that is, unless \(J'_i \) contains the treated subject and at least one control from matched set \(J_i \).

For matched pairs, \(|J_i| = J_i = 2 \) for all \(i \), nondegenerate part of a segment is a subset of the matched pairs.
Nondegenerate parts of a segment

- For a segment \(\{ J_i', i \in I \} \), write \(m_i \) for the random variable that counts the number of treated subjects in \(J_i' \), so \(m_i = 0 \) if \(J_i' = \emptyset \) and otherwise \(m_i = \sum_{j \in J_i'} Z_{ij} \), so \(m_i = 0 \) or \(m_i = 1 \). Write \(\mathbf{m} = (m_1, \ldots, m_I) \).

- The contribution from \(J_i' \) in segment \(\{ J_i', i \in I \} \) will be degenerate and uninteresting unless \(m_i = 1 < |J_i'| \), that is, unless \(J_i' \) contains the treated subject and at least one control from matched set \(J_i \).

- For matched pairs, \(|J_i| = J_i = 2 \) for all \(i \), nondegenerate part of a segment is a subset of the matched pairs.

- For matched sets with \(|J_i| = J_i > 2 \), a segment \(\{ J_i', i \in I \} \) may have nondegenerate parts \(J_i' \) with \(m_i = 1 < |J_i'| < |J_i| \) containing the treated subject from \(J_i \) and some but not all of the controls from \(J_i \).
For a segment \(\{ J_i', i \in I \} \), add a prime to a quantity to denote the value of a quantity confined to the segment.
Notation for a segment

- For a segment \(\{ J'_i, i \in I \} \), add a prime to a quantity to denote the value of a quantity confined to the segment.
- For instance, write \(Z'_i \) or \(R'_i \) for the vectors of dimension \(n' = \sum_{i \in I} |J'_i| \) containing, in the lexical order, the \(Z_{ij} \) or \(R_{ij} \) for \(j \in J'_i, i \in I \).
Notation for a segment

- For a segment \(\{ \mathcal{J}_i', i \in \mathcal{I} \} \), add a prime to a quantity to denote the value of a quantity confined to the segment.

- For instance, write \(Z' \) or \(R' \) for the vectors of dimension \(n' = \sum_{i \in \mathcal{I}} |\mathcal{J}_i'| \) containing, in the lexical order, the \(Z_{ij} \) or \(R_{ij} \) for \(j \in \mathcal{J}_i', i \in \mathcal{I} \).

- Write \(\mathcal{Z}'_m \) for the set of possible values of \(Z' \), that is, the set of vectors \(z' \) of dimension \(n' \) with 1 or 0 coordinates such that \(m_i = \sum_{j \in \mathcal{J}_i'} z_{ij} \).
Notation for a segment

- For a segment $\{\mathcal{J}_i', i \in \mathcal{I}\}$, add a prime to a quantity to denote the value of a quantity confined to the segment.

- For instance, write \mathbf{Z}' or \mathbf{R}' for the vectors of dimension $n' = \sum_{i \in \mathcal{I}} |\mathcal{J}_i'|$ containing, in the lexical order, the Z_{ij} or R_{ij} for $j \in \mathcal{J}_i', i \in \mathcal{I}$.

- Write \mathcal{Z}_m' for the set of possible values of \mathbf{Z}', that is, the set of vectors \mathbf{z}' of dimension n' with 1 or 0 coordinates such that $m_i = \sum_{j \in \mathcal{J}_i'} z_{ij}$.

- In parallel, write r'_C, \mathbf{S}', etc.
Notation for a segment

- For a segment \(\{ \mathcal{J}_i', i \in \mathcal{I} \} \), add a prime to a quantity to denote the value of a quantity confined to the segment.

- For instance, write \(\mathbf{Z}' \) or \(\mathbf{R}' \) for the vectors of dimension \(n' = \sum_{i \in \mathcal{I}} |\mathcal{J}_i'| \) containing, in the lexical order, the \(Z_{ij} \) or \(R_{ij} \) for \(j \in \mathcal{J}_i', i \in \mathcal{I} \).

- Write \(\mathcal{Z}'_m \) for the set of possible values of \(\mathbf{Z}' \), that is, the set of vectors \(\mathbf{z}' \) of dimension \(n' \) with 1 or 0 coordinates such that \(m_i = \sum_{j \in \mathcal{J}_i'} z_{ij} \).

- In parallel, write \(\mathbf{r}'_C, \mathbf{S}', \) etc.

- As before, conditioning on the event \(\mathbf{Z}' \in \mathcal{Z}'_m \) is abbreviated as conditioning on \(\mathcal{Z}'_m \), and generally the conditioning will be on \((\mathcal{Z}, \mathcal{Z}'_m, m) \) jointly.
There is a $n \times M$ matrix W describing with row w_{ij} describing subject ij. Write \mathcal{W} for the set of possible values for W.

Definition

The phrase “W determines the segment” means that there is a known function $S(W)$ that receives W and returns a segment from \mathcal{S}, that is, $S : \mathcal{W} \rightarrow \mathcal{S}$.
Using a matrix of data to determine a segment

- There is a $n \times M$ matrix W describing with row w_{ij} describing subject ij. Write \mathcal{W} for the set of possible values for W.

Definition

The phrase “W determines the segment” means that there is a known function $S(W)$ that receives W and returns a segment from \mathcal{S}, that is, $S : \mathcal{W} \rightarrow \mathcal{S}$.

- For instance, the values in W might pick out some of the pairs, or some of the people in matched sets.
There is a $n \times M$ matrix \mathbf{W} describing with row w_{ij} describing subject ij. Write \mathcal{W} for the set of possible values for \mathbf{W}.

Definition

The phrase “\mathbf{W} determines the segment” means that there is a known function $S(\mathbf{W})$ that receives \mathbf{W} and returns a segment from \mathcal{S}, that is, $S : \mathcal{W} \rightarrow \mathcal{S}$.

For instance, the values in \mathbf{W} might pick out some of the pairs, or some of the people in matched sets.

Unless \mathbf{W} includes \mathbf{Z}, a segment determined by \mathbf{W} cannot make use of the identity of the treated subject.
A basic question about analysis of a segment

When can we select a segment \(\{ J_i', i \in I \} \) using \(W \), yet appropriately analyze this segment as if were an unselected data set?
A basic question about analysis of a segment

When can we select a segment \(\{ \mathcal{J}'_i, i \in \mathcal{I} \} \) using \(W \), yet appropriately analyze this segment as if were an unselected data set?

Proposition If the sensitivity model governs treatment assignment, if a segment \(S(W) = \{ \mathcal{J}'_i, i \in \mathcal{I} \} \) is determined by \(W \), and if \(W \) is fixed by conditioning on \(\mathcal{F} \), then

\[
\Pr (\mathbf{Z}' = \mathbf{z}' | \mathcal{F}, \mathbf{Z}, \mathbf{Z}'_m, \mathbf{m}) = \frac{\prod_{i \in \mathcal{I} : |\mathcal{J}'_i| > 0} \exp \left(\gamma \sum_{j \in \mathcal{J}'_i} z'_{ij} u_{ij} \right)}{\sum_{j \in \mathcal{J}'_i} \exp \left(\gamma u_{ij} \right)}.
\]
Counterclaims that deny effects on supplementary responses

Proposition If the sensitivity model governs treatment assignment, if a segment \(S(W) = \{J_i', i \in I\} \) is determined by \(W \), and if \(W \) is fixed by conditioning on \(F \), then

\[
\Pr(Z' = z' \mid F, Z, Z'_m, m) = \prod_{i \in I: J'_i > 0} \frac{\exp\left(\gamma \sum_{j \in J'_i} z'_{ij} u_{ij}\right)}{\sum_{j \in J_i'} \exp\left(\gamma u_{ij}\right)}.
\]

(1)
Counterclaims that deny effects on supplementary responses

- **Proposition**: If the sensitivity model governs treatment assignment, if a segment $S(W) = \{J'_i, i \in \mathcal{I}\}$ is determined by W, and if W is fixed by conditioning on F, then

$$\Pr(Z' = z' \mid F, Z, Z'_m, m) = \prod_{i \in \mathcal{I} : |J'_i| > 0} \frac{\exp\left(\gamma \sum_{j \in J'_i} z'_{ij} u_{ij}\right)}{\sum_{j \in J'_i} \exp\left(\gamma u_{ij}\right)}.$$

(1)

- **Corollary**: If the sensitivity model governs treatment assignment, if a segment $S(S) = \{J'_i, i \in \mathcal{I}\}$ is determined by the observed value of the supplementary responses S, and if the supplementary responses are unaffected by the treatment, $s_{Tij} = s_{Cij}$ for all ij, then the distribution of treatment assignments in the segment is given by (1).
Back to the counterclaim analysis involving ejections

- Let $S_{ij} = 1$ if ij is observed in a crash one exactly one ejection, $S_{ij} = 0$ otherwise.
Back to the counterclaim analysis involving ejections

- Let $S_{ij} = 1$ if ij is observed in a crash one exactly one ejection, $S_{ij} = 0$ otherwise.
- Obviously $S_{i1} = S_{i2}$ because $i1$ and $i2$ are in the same crash.
Back to the counterclaim analysis involving ejections

- Let $S_{ij} = 1$ if ij is observed in a crash one exactly one ejection, $S_{ij} = 0$ otherwise.
- Obviously $S_{i1} = S_{i2}$ because $i1$ and $i2$ are in the same crash.
- The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*
Let $S_{ij} = 1$ if ij is observed in a crash one exactly one ejection, $S_{ij} = 0$ otherwise.

Obviously $S_{i1} = S_{i2}$ because $i1$ and $i2$ are in the same crash.

The counterclaim says: Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.

In particular, the counterclaim says that changing ij’s treatment would not change whether ij is ejected, that $S_{ij} = sT_{ij} = sC_{ij}$.
Back to the counterclaim analysis involving ejections

- Let $S_{ij} = 1$ if ij is observed in a crash one exactly one ejection, $S_{ij} = 0$ otherwise.
- Obviously $S_{i1} = S_{i2}$ because $i1$ and $i2$ are in the same crash.
- The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*
- In particular, the counterclaim says that changing ij’s treatment would not change whether ij is ejected, that $S_{ij} = s_{Tij} = s_{Cij}$.
- By the corollary, this licenses an analysis focused on the segment of crashes with one ejection.
Let $S_{ij} = 1$ if ij is observed in a crash one exactly one ejection, $S_{ij} = 0$ otherwise.

Obviously $S_{i1} = S_{i2}$ because $i1$ and $i2$ are in the same crash.

The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

In particular, the counterclaim says that changing ij’s treatment would not change whether ij is ejected, that $S_{ij} = s_{Tij} = s_{Cij}$.

By the corollary, this licenses an analysis focused on the segment of crashes with one ejection.

Expressed informally, the counterclaim said the unbelted individual was injured because he was frail, but switching treatment assignments (i.e., belting him) would have changed the identity of the belted subject but would have changed no safety outcomes.
So a counterclaim undermines itself. What next?

The counterclaim says: _Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts._

Rosenbaum Counterclaims
So a counterclaim undermines itself. What next?

- The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

- The counterclaim analysis says this counterclaim is hollow: to believe it is to justify an analysis that is insensitive to larger biases than the analysis that did not presume the counterclaim.
So a counterclaim undermines itself. What next?

- The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

- The counterclaim analysis says this counterclaim is hollow: to believe it is to justify an analysis that is insensitive to larger biases than the analysis that did not presume the counterclaim.

- The critic could narrow the counterclaim to say: “yes, yes, safety belts do prevent people from being ejected from vehicles, but preventing ejections doesn’t prevent injuries.”
So a counterclaim undermines itself. What next?

- The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

- The counterclaim analysis says this counterclaim is hollow: to believe it is to justify an analysis that is insensitive to larger biases than the analysis that did not presume the counterclaim.

- The critic could narrow the counterclaim to say: “yes, yes, safety belts do prevent people from being ejected from vehicles, but preventing ejections doesn’t prevent injuries.”

- Depending upon the context, this concession acknowledging that the treatment does cause an effect on \((s_{Tij}, s_{Cij})\) while denying an effect on \((r_{Tij}, r_{Cij})\) may be a large concession.
The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*
Another counterclaim analysis

- The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

- Another supplementary outcome is of direction of initial impact.
The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

Another supplementary outcome is of direction of initial impact.

Will look at crashes in which there was one ejection and the initial impact was not from the side. (That is, the initial impact was front or rear or unknown.)
The counterclaim says: *Seatbelts have no safety related effects, no effect on what happens during the accident. All we are seeing is a pattern produced by the type of person who wears safety belts.*

Another supplementary outcome is of direction of initial impact.

Will look at crashes in which there was one ejection and the initial impact was not from the side. (That is, the initial impact was front or rear or unknown.)

Might be the case that an important source of variation in injury is whether you are seated on the side of the initial impact.
Figure 3: Pair differences in injury scores, driver-minus-passenger, for a driver and a passenger in the same car in FARS 2010-2011, by restraint use, for all vehicle pairs, for vehicles not known to have an initial collision from the side, for vehicles with exactly one ejection, and for vehicles not known to have an initial collision from the side with exactly one ejection. A positive difference indicates the driver suffered more severe injuries than the passenger.
One ejection, not a side hit: Descriptive statistics

Table: Renalysis of differences in injury scores using only 1383 pairs in which exactly one person was ejected from a vehicle whose initial impact was not from the side. n = no restraint. ls = lap-shoulder belt.

<table>
<thead>
<tr>
<th>Restraint Group</th>
<th>Restraint Use: (driver.passenger)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Same Use</td>
<td>Different Use</td>
</tr>
<tr>
<td>Restraint Group</td>
<td>ls.ls n.n</td>
<td>ls.n n.ls</td>
</tr>
<tr>
<td>Number of Pairs</td>
<td>153 510</td>
<td>363 357</td>
</tr>
<tr>
<td>Mean</td>
<td>-0.072 0.133</td>
<td>-1.628 1.588</td>
</tr>
<tr>
<td>Standard error</td>
<td>0.145 0.087</td>
<td>0.071 0.067</td>
</tr>
<tr>
<td>Standard deviation</td>
<td>1.789 1.961</td>
<td>1.345 1.259</td>
</tr>
</tbody>
</table>
One ejection, not a side hit: Sensitivity analysis

Table: Upper bounds on P-values.

<table>
<thead>
<tr>
<th>Restraint Group</th>
<th>ls.ls</th>
<th>n.n</th>
<th>ls.n</th>
<th>n.ls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pairs</td>
<td>153</td>
<td>510</td>
<td>363</td>
<td>357</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Γ</th>
<th>Huber Scores without Inner Trimming</th>
<th>Inner Trimmed Scores</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.6182 0.1251 0.0000 0.0000</td>
<td>0.8788 0.1729 0.0000 0.0000</td>
</tr>
<tr>
<td>1.2</td>
<td>1.0000 1.0000 0.0000 0.0000</td>
<td>1.0000 0.9732 0.0000 0.0000</td>
</tr>
<tr>
<td>11</td>
<td>0.0291 0.0291</td>
<td>0.0129 0.0439</td>
</tr>
<tr>
<td>12</td>
<td>0.0610 0.0614</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>0.2722 0.2774</td>
<td></td>
</tr>
</tbody>
</table>
Design sensitivities under a simple model

- Design sensitivity Γ is the limiting sensitivity to unmeasured bias as the sample size $I \to \infty$.
Design sensitivity under a simple model

- Design sensitivity $\tilde{\Gamma}$ is the limiting sensitivity to unmeasured bias as the sample size $I \to \infty$.
- Design sensitivity $\tilde{\Gamma}$ depends on the process that generated the data (sampling model) and on the methods of analysis.
Design sensitivities under a simple model

- Design sensitivity $\tilde{\Gamma}$ is the limiting sensitivity to unmeasured bias as the sample size $I \to \infty$.
- Design sensitivity $\tilde{\Gamma}$ depends on the process that generated the data (sampling model) and on the methods of analysis.
- Design sensitivity $\tilde{\Gamma}$ is computed under a simple model with a treatment effect and no unmeasured bias.
Design sensitivities under a simple model

- Design sensitivity $\tilde{\Gamma}$ is the limiting sensitivity to unmeasured bias as the sample size $I \rightarrow \infty$.

- Design sensitivity $\tilde{\Gamma}$ depends on the process that generated the data (sampling model) and on the methods of analysis.

- Design sensitivity $\tilde{\Gamma}$ is computed under a simple model with a treatment effect and no unmeasured bias.

- Design sensitivity $\tilde{\Gamma}$ is a measure of our ability to distinguish two sharply distinct situations: (i) biased treatment assignment with no treatment effect, H_0, and (ii) a genuine treatment effect (H_0 is false) and no unmeasured bias (random assignment of treatments).
Simple model for injury and ejection, part 1

- \((s_{Tij}, s_{Cij})\) denotes ejection outcome in each of the four parallel studies (e.g., \((n, ls)\)).
Simple model for injury and ejection, part 1

- \((s_{Tij}, s_{Cij})\) denotes ejection outcome in each of the four parallel studies (e.g., \((n, ls)\)).

- \((s_{Tij}, s_{Cij}) = (1, 1)\) means ejected under both conditions, \((s_{Tij}, s_{Cij}) = (1, 0)\) means ejected only if Treated (say unbelted), \((s_{Tij}, s_{Cij}) = (0, 0)\) means not ejected in both conditions, which occur with probabilities \(\pi_{11}, \pi_{10}, \pi_{00}\), respectively, \(1 = \pi_{11} + \pi_{10} + \pi_{00}\) and \((s_{Tij}, s_{Cij}) = (0, 1)\) does not occur.
Simple model for injury and ejection, part 1

- \((s_{Tij}, s_{Cij})\) denotes ejection outcome in each of the four parallel studies (e.g., \((n, ls)\)).

- \((s_{Tij}, s_{Cij}) = (1, 1)\) means ejected under both conditions, \((s_{Tij}, s_{Cij}) = (1, 0)\) means ejected only if Treated (say unbelted), \((s_{Tij}, s_{Cij}) = (0, 0)\) means not ejected in both conditions, which occur with probabilities \(\pi_{11}, \pi_{10}, \pi_{00}\), respectively, \(1 = \pi_{11} + \pi_{10} + \pi_{00}\) and \((s_{Tij}, s_{Cij}) = (0, 1)\) does not occur.

- Injury model

\[
r_{Tij} = r_{Cij} + \tau + \beta (s_{Tij} - s_{Cij})
\]

so \(r_{Tij} - r_{Cij} = \tau\) if the treatment does not affect whether you are ejected, or \(r_{Tij} - r_{Cij} = \tau + \beta\) if the treatment (e.g., being unbelted) causes you to be ejected, \((s_{Tij}, s_{Cij}) = (1, 0)\).
Injury model

\[r_{Tij} = r_{Cij} + \tau + \beta (s_{Tij} - s_{Cij}) \]

so \(r_{Tij} - r_{Cij} = \tau \) if the treatment does not affect whether you are ejected, or \(r_{Tij} - r_{Cij} = \tau + \beta \) if the treatment (e.g., being unbelted) causes you to be ejected, \((s_{Tij}, s_{Cij}) = (1, 0)\).
Simple model for injury and ejection, part 2

- Injury model

\[r_{Tij} = r_{Cij} + \tau + \beta (s_{Tij} - s_{Cij}) \]

so \(r_{Tij} - r_{Cij} = \tau \) if the treatment does not affect whether you are ejected, or \(r_{Tij} - r_{Cij} = \tau + \beta \) if the treatment (e.g., being unbelted) causes you to be ejected, \((s_{Tij}, s_{Cij}) = (1, 0)\).

- Then

\[Y_i = \tau + \beta \delta_i + \varepsilon_i, \text{ where } \delta_i = Z_{i1} (s_{Ti1} - s_{Ci1}) + Z_{i2} (s_{Ti2} - s_{Ci2}) \]

\[\varepsilon_i = (Z_{i1} - Z_{i2}) (r_{Ci1} - r_{Ci1}) \]
Injury model

\[r_{Tij} = r_{Cij} + \tau + \beta (s_{Tij} - s_{Cij}) \]

so \(r_{Tij} - r_{Cij} = \tau \) if the treatment does not affect whether you are ejected, or \(r_{Tij} - r_{Cij} = \tau + \beta \) if the treatment (e.g., being unbelted) causes you to be ejected, \((s_{Tij}, s_{Cij}) = (1, 0)\).

Then

\[Y_i = \tau + \beta \delta_i + \varepsilon_i, \text{ where } \delta_i = Z_{i1} (s_{Ti1} - s_{Ci1}) + Z_{i2} (s_{Ti2} - s_{Ci2}) \]

\[\varepsilon_i = (Z_{i1} - Z_{i2}) (r_{Ci1} - r_{Ci1}) \]

Will look at this for \(\varepsilon_i \sim N(0, 1) \), and randomized treatment assignment, \(\text{Pr}(Z = z \mid \mathcal{F}, \mathcal{Z}) = 2^{-l} \) for each \(z \in \mathcal{Z} \).

Results are similar with logistic errors.
Injury model

\[
 r_{Tij} = r_{Cij} + \tau + \beta (s_{Tij} - s_{Cij})
\]

so \(r_{Tij} - r_{Cij} = \tau\) if the treatment does not affect whether you are ejected, or \(r_{Tij} - r_{Cij} = \tau + \beta\) if the treatment (e.g., being unbelted) causes you to be ejected, \((s_{Tij}, s_{Cij}) = (1, 0)\).

Then

\[
 Y_i = \tau + \beta \delta_i + \varepsilon_i, \text{ where } \delta_i = Z_{i1} (s_{T1} - s_{C1}) + Z_{i2} (s_{T2} - s_{C2})
\]

\[
 \varepsilon_i = (Z_{i1} - Z_{i2}) (r_{C1} - r_{C1})
\]

Will look at this for \(\varepsilon_i \sim N(0, 1)\), and randomized treatment assignment, \(\text{Pr}(Z = z | \mathcal{F}, \mathcal{Z}) = 2^{-l}\) for each \(z \in \mathcal{Z}\).

Results are similar with logistic errors.

Will set \(\beta = (\frac{1}{2} - \tau) / \pi_{10}\) so that \(E(Y_i) = \frac{1}{2}\) in all cases.
Table: Design sensitivities using all pairs (All), the segment (Seg), and its complement (Comp), without or with inner trimming. The largest design sensitivities in each row are in **bold**.

<table>
<thead>
<tr>
<th>τ</th>
<th>All</th>
<th>Seg</th>
<th>Comp</th>
<th>All</th>
<th>Seg</th>
<th>Comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.7</td>
<td>3.3</td>
<td>2.2</td>
<td>3.8</td>
<td>4.9</td>
<td>2.8</td>
</tr>
<tr>
<td>1/4</td>
<td>3.2</td>
<td>3.6</td>
<td>2.8</td>
<td>4.4</td>
<td>5.1</td>
<td>3.7</td>
</tr>
<tr>
<td>1/2</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>4.7</td>
<td>4.7</td>
<td>4.7</td>
</tr>
</tbody>
</table>

\[
(\pi_{11}, \pi_{10}, \pi_{00}) = (1/3, 1/3, 1/3)
\]

<table>
<thead>
<tr>
<th>τ</th>
<th>All</th>
<th>Seg</th>
<th>Comp</th>
<th>All</th>
<th>Seg</th>
<th>Comp</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.0</td>
<td>3.8</td>
<td>2.1</td>
<td>4.0</td>
<td>5.3</td>
<td>2.5</td>
</tr>
<tr>
<td>1/4</td>
<td>3.3</td>
<td>3.8</td>
<td>2.7</td>
<td>4.5</td>
<td>5.3</td>
<td>3.5</td>
</tr>
<tr>
<td>1/2</td>
<td>3.5</td>
<td>3.5</td>
<td>3.5</td>
<td>4.8</td>
<td>4.8</td>
<td>4.8</td>
</tr>
</tbody>
</table>

\[
(\pi_{11}, \pi_{10}, \pi_{00}) = (1/4, 1/2, 1/4)
\]
Combining the segment and its complement

- Could test in the segment and its complement, obtaining two bounds on P-values.

 Truncated product of P-values is the product of those P-values κ; see Zaykin et al. (2002).

 Becomes Fisher's method for combining P-values when $\kappa = 1$.

 Hsu et al. (2013) evaluate the truncated product in sensitivity analyses, finding $\kappa = 0.2$ is better than $\kappa = 1$.

Rosenbaum Counterclaims
Combining the segment and its complement

- Could test in the segment and its complement, obtaining two bounds on P-values.
- Truncated product of P-values is the product of those P-values $\leq \kappa$; see Zaykin et al. (2002).
Combining the segment and its complement

- Could test in the segment and its complement, obtaining two bounds on P-values.
- Truncated product of P-values is the product of those P-values $\leq \kappa$; see Zaykin et al. (2002).
- Becomes Fisher’s method for combining P-values when $\kappa = 1$.
Combining the segment and its complement

- Could test in the segment and its complement, obtaining two bounds on P-values.
- Truncated product of P-values is the product of those P-values $\leq \kappa$; see Zaykin et al. (2002).
- Becomes Fisher's method for combining P-values when $\kappa = 1$.
- Hsu et al. (2013) evaluate the truncated product in sensitivity analyses, finding $\kappa = 0.2$ is better than $\kappa = 1$.
Simulated power of a 0.05-level sensitivity analysis

Table: Power of a 0.05-level sensitivity analysis at $\Gamma = 4$, using all $I = 2000$ pairs (All), the segment (Seg), its complement (Comp), and the truncated product (Tprod), $\kappa = 0.2$, based on both the segment and its complement, using inner trimming. I_{Seg} is the expected number of pairs in the segment.

<table>
<thead>
<tr>
<th>Distribution</th>
<th>τ</th>
<th>I_{Seg}</th>
<th>All</th>
<th>Seg</th>
<th>Comp</th>
<th>Tprod</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>π_1, π_10, π_00</td>
<td>π_11, π_10, π_00</td>
<td>All</td>
<td>Seg</td>
</tr>
<tr>
<td>Normal</td>
<td>0</td>
<td>1111</td>
<td>0.01</td>
<td>0.48</td>
<td>0.00</td>
<td>0.22</td>
</tr>
<tr>
<td>Normal</td>
<td>1/4</td>
<td>1111</td>
<td>0.24</td>
<td>0.62</td>
<td>0.01</td>
<td>0.38</td>
</tr>
<tr>
<td>Normal</td>
<td>1/2</td>
<td>1111</td>
<td>0.61</td>
<td>0.40</td>
<td>0.33</td>
<td>0.55</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>π_1, π_10, π_00</td>
<td>π_11, π_10, π_00</td>
<td>All</td>
<td>Seg</td>
</tr>
<tr>
<td>Normal</td>
<td>0</td>
<td>1250</td>
<td>0.04</td>
<td>0.82</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Normal</td>
<td>1/4</td>
<td>1250</td>
<td>0.39</td>
<td>0.80</td>
<td>0.00</td>
<td>0.60</td>
</tr>
<tr>
<td>Normal</td>
<td>1/2</td>
<td>1250</td>
<td>0.60</td>
<td>0.43</td>
<td>0.29</td>
<td>0.54</td>
</tr>
</tbody>
</table>
A counterclaim undermines itself if supposing the counterclaim to be true licenses an additional analysis that results in greater insensitivity to unmeasured biases than the analysis that does not suppose the counterclaim to be true.
A counterclaim undermines itself if supposing the counterclaim to be true licenses an additional analysis that results in greater insensitivity to unmeasured biases than the analysis that does not suppose the counterclaim to be true.

Such a counterclaim fails in its role as a counterclaim. Supposing it to be true would only strengthen the evidence in support of the original claim.

Summary
A counterclaim undermines itself if supposing the counterclaim to be true licenses an additional analysis that results in greater insensitivity to unmeasured biases than the analysis that does not suppose the counterclaim to be true.

Such a counterclaim fails in its role as a counterclaim. Supposing it to be true would only strengthen the evidence in support of the original claim.

An investigator may examine potential counterclaims before they are raised by critics.
A counterclaim undermines itself if supposing the counterclaim to be true licenses an additional analysis that results in greater insensitivity to unmeasured biases than the analysis that does not suppose the counterclaim to be true.

Such a counterclaim fails in its role as a counterclaim. Supposing it to be true would only strengthen the evidence in support of the original claim.

An investigator may examine potential counterclaims before they are raised by critics.

Design sensitivities and simulated powers of sensitivity analyses suggest that what occurred in the example is expected under certain simple models for an effect without bias.
Proof of the proposition

The segment \(\{ \mathcal{J}_i', i \in \mathcal{I} \} \) is fixed by conditioning on \(\mathcal{F} \); moreover, the set \(\mathcal{Z}_m' \) is a fixed set as a consequence of conditioning on \(\mathcal{Z} \) and \(m \). It suffices to consider a single set \(i \). If \(\mathcal{J}_i' \) is degenerate, then it contributes a 1 factor to distribution in the segment. Otherwise, for \(|\mathcal{J}_i'| \geq 2 \) and \(m_i = 1 \), the conditional probability that \(Z_{ij} = z_{ij}' \) for \(j \in \mathcal{J}_i' \) given \(\mathcal{F}, \mathcal{Z}, \mathcal{Z}_m', m \) is the ratio of \(\exp \left(\gamma \sum_{j \in \mathcal{J}_i} z_{ij}' u_{ij} \right) / \sum_{j \in \mathcal{J}_i} \exp (\gamma u_{ij}) \) to the sum of similar terms over \(j \in \mathcal{J}_i' \), namely

\[
\frac{\exp \left(\gamma \sum_{j \in \mathcal{J}_i} z_{ij}' u_{ij} \right) / \sum_{j \in \mathcal{J}_i} \exp (\gamma u_{ij})}{\sum_{j \in \mathcal{J}_i'} \left\{ \exp (\gamma u_{ij}) / \sum_{j \in \mathcal{J}_i} \exp (\gamma u_{ij}) \right\}} = \frac{\exp \left(\gamma \sum_{j \in \mathcal{J}_i} z_{ij}' u_{ij} \right)}{\sum_{j \in \mathcal{J}_i'} \exp (\gamma u_{ij})}
\]

as in the statement of the proposition.