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1 Some terms

Observational studies: (Cochran 1965) Studies of the
e¤ects caused by a treatment when ethical or prac-
tical issues prevent random assignment to treatment
or control, as in a randomized experiment.

Causality: (Neyman 1923 / Rubin 1974) The causal
e¤ect of a treatment on a unit compares the response
the unit would exhibit under treatment to the re-
sponse the unit would exhibit under control.

Sensitivity to unobserved bias: Absent random as-
signment, groups may look similar in terms of ob-
served covariates, but may di¤er in unobserved co-
variates. The degree to which causal conclusions
change as assumptions about unobserved covariates
are changed is the sensitivity of those conclusions to
unobserved bias. Less sensitivity is better.

Design sensitivity: The e¤ect of research design on
sensitivity to unobserved bias.



2 The basic question (which will be asked
repeatedly)

Bias is possible: In any observational study, bias is
possible, if not likely. So we adjust for observed co-
variates, and conduct a sensitivity analysis, indicat-
ing whether small or large unobserved biases would
alter the conclusions.

If we are fortunate, if there are no unobserved biases
in our study, then we would not know this from the
observable data.

In this fortunate situation, the best we can hope for
is to be able to report that our conclusions are in-
sensitive to small or moderate unobserved biases.

What aspects of the design of an observational study
will produce conclusions insensitive to small or mod-
erate unobserved biases when the fortunate situation
arises?



Outline

� Informal advice about design to address unobserved
biases. What people say.

� Informal application of this informal advice. Does
what people say seem correct in context?

� Sensitivity analysis. Are results less sensitive to un-
observed bias when the informal advice is followed?

� Aspects of design that a¤ect the power of a sensi-
tivity analysis.

� Design sensitivity. The ability of competing designs
to resist unobserved biases in large samples.



3 Informal Advice about Design

Fields: Several �elds conduct observational studies of
human populations, including economics, epidemi-
ology and medicine, sociology and public program
evaluation, psychology and psychiatry.

Advice for design: Diverse advice about design, stated
informally, suggests that design matters for unob-
served biases. Contrasts with uni�ed advice about
experimental design.

Informal advice (talk): May be, often is, good advice.
Di¤erences of opinion may be hard to resolve. Qual-
itative, not quantitative.

Formal advice (theorems): Di¤erences resolvable (in
principle). Quantitative appraisal.



4 Sources of some good, informal advice

Hill, A. B. (1965) Environment and disease: association
or causation? Proc Roy Soc Med.

Shadish, W. R., Cook, T. D. & Campbell, D. T. (2002).
Experimental and Quasi-Experimental Designs for Gener-
alized Causal Inference.

Meyer, B. D. (1995). Natural and quasi-experiments in
economics. J. Bus. Econ. Statist.

Rosenzweig, M. R. & Wolpin, K. I. (2000) Natural �nat-
ural experiments� in economics. J. Econ. Lit..

Angrist, J. D. & Krueger, A. B. (2001) Instrumental vari-
ables and the search for identi�cation. J. Econ. Perspec.

Hamermesh, D. S. (2000), �The craft of labormetrics,�
Industrial and Labor Relations Review



5 Some quoted advice (Dose)

In his President�s Address to the Royal Society of Medi-
cine, Sir Austin Bradford Hill (1965) asked:

Our observations reveal an association between
two variables, perfectly clear-cut and beyond what
we would care to attribute to the play of chance.
What aspects of that association should we es-
pecially consider before deciding that the most
likely interpretation of it is causation?

Hill�s causal criteria: Hill�s proposed nine considera-
tions including: �biological gradient or dose-response�
and �coherence.� In most epidemiology texts.

EG: Heavy smokers experience more lung cancer than
light smokers.

Does it work? Does a dose-response relationship strengthen
causal claims?



6 Disagreements about advice (Dose)

Rothman (1986, p18): �Some causal associations, how-
ever, show no apparent trend of e¤ect with dose; an
example is the association between DES and ade-
nocarcinoma of the vagina : : : Associations that do
show a dose-response trend are not necessarily causal;
confounding can result in such a trend between a
noncausal risk factor and disease if the confounding
factor itself demonstrates a biologic gradient in its
relation with disease.�

Weiss (1981, p. 488): Weiss (1981, p. 488): �: : :one
or more confounding factors can be related closely
enough to both exposure and disease to give rise to
[a dose response relationship] in the absence of cause
and e¤ect.�

Does it work? Does a dose-response relationship strengthen
causal claims? (Could it be a matter of degree? Can
the data guide us?)



7 More quoted advice (Coherence)

Cook & Shadish (1994, p. 565) �Successful prediction
of a complex pattern of multivariate results often
leaves few plausible alternative explanations.�

Trochim (1985, p. 580): �. . . with more pattern speci-
�city it is generally less likely that plausible alterna-
tive explanations for the observed e¤ect pattern will
be forthcoming.�

Multiple operationalism. Campbell (1988, p. 33):
�. . . great inferential strength is added when each
theoretical parameter is exempli�ed in two or more
ways, each mode being as independent as possible of
the other, as far as the theoretically irrelevant com-
ponents are concerned.�

Does it work? Does coherence or pattern speci�city or
multiple operationalism strengthen causal claims?



8 More quoted advice (Heterogeneity)

In 1864, in his System of Logic: Principles of Evidence
and Methods of Scienti�c Investigation, John Stuart Mill
proposed �four methods of experimental inquiry,�includ-
ing the �method of di¤erence:�

If an instance in which the phenomenon . . . oc-
curs and an instance in which it does not . . .
have every circumstance save one in common
. . . [then] the circumstance [in] which alone the
two instances di¤er is the . . . cause or a neces-
sary part of the cause (III,§8)

Mill wanted: A complete absence of heterogeneity, �have
every circumstance save one in common,�that is, on
treated and control units that are identical but for
the treatment.



9 Fisher disagreed with Mill

Mill wanted: �two instances . . . exactly similar in all
circumstances except the one�under study.

Fisher disagreed: In his Design of Experiments, dis-
cussing the �lady tasting tea,�Fisher (1935, 1949, p.
18) wrote: �It is not su¢ cient remedy to insist that
�all the cups must be exactly alike�in every respect
except that to be tested. For this is a totally im-
possible requirement . . . These are only examples of
the di¤erences probably present; it would be impos-
sible to present an exhaustive list of such possible
di¤erences . . . because [they] . . . are always strictly
innumerable. When any such cause is named, it
is usually perceived that, by increased labor and ex-
pense, it could be largely eliminated. Too frequently
it is assumed that such re�nements constitute im-
provements to the experiment . . . �

Driving out heterogeneity: Was Mill as wrong as Fisher
said he was?



10 Instrumental Variables

Instrument: Haphazard event that manipulates a treat-
ment without fully controlling it, and a¤ects the out-
come only indirectly by manipulating the treatment.
(Angrist�s 1990 use of the Vietnam War draft lottery
to study the e¤ects of military service on earnings.)

Useful but hard to �nd: Helps with causal inference,
but hard to �nd, and hard to know when you�ve
found one.

Valid: if IV assumptions are true.

Strong: if the manipulation is strong.

Question: Should we prefer a valid but weak instru-
ment over possibly somewhat biased but stronger
instrument?



11 Three examples (one theoretical), used
repeatedly

Slightly stylized examples: To focus attention on un-
observed biases, control of bias from observed covari-
ates is by forming matched pairs. Mill vs Fisher on
heterogeneity viewed through a simulated example.

Genetic toxicology example: Does cigarette smoking
cause chromosome damage? (Sierra-Torres, et al.
2004).

Labor economics/IV example: Did World War II mil-
itary service a¤ect the earnings of U.S Veterans?
Adapted from Angrist and Krueger (1994).

Informal view: The premise of the informal advice is
that there are things we can see in observable data
that are relevant to unobserved biases. Proceeding
informally, does that appear to be true?



12 Genetic toxicology example (Sierra-Torres, et
al 2004)

Study: 52 smokers, closely matched for age with 52
nonsmokers. (Gender was balanced, not matched.)

Dose of smoking: Pack-years = (packs of cigarettes
per day) � (# years smoked). Strongly correlated
with age.

2 Outcomes: For each person, drew a blood sample,
established a cell culture, harvested lymphocytes, and
for 100 metaphase cells, counted the number of chromatid-
type aberrations and the number of chromosome
type aberrations.

Aspects: Has both issues of dose-response and coher-
ence.



13 Figure showing types of aberrations

Chromatid is one strand of a pair of chromosomes.

Chromatid aberrations are typically more localized and
more common (and perhaps less serious), while chromo-
some aberrations re�ect larger, rarer damage (perhaps
more serious).



HUMAN CHROMOSOME ABERRATIONS 47 

FIG. 1. Aberrant chromosomes of cells from irradiated men. a, Cell with dicentric chromosome; 
b, cell with ring chromosome (and also a dicentric). 

of the irradiated individuals. Figure 1 shows representative cells with ring and 
dicentric chromosomes. 

Analyses were made of the karyotypes of cells from two of the "high-dose" cases 
("A" and "C"), and from one of the "low-dose" cases ("H"). Results are shown 
in Table 111. It is clear that many of the superficially normal cells from the "high- 
dose" cases are not, in fact, normal. Thus, the total frequency of cells with abnor- 
mal chromosomes is actually a t  least twice that listed in Table 11. Figure 2 shows 
several karyotypes with examples of inversions and deletions. No extensive analy- 
ses of karyotypes were attempted on control material, since no examples of varia- 
tion have been found in the many karyotypes of normal human subjects that have 
been constructed in the past. 

TABLE I11 
"MINOR" ABERRATIONS IN GROSSLY NORMAL CELLS FROM THREE IRRADIATED MEN 

Total 
Case Number of cells Deletions Inversionsa Translocations abnormal cells 

(%) 

a Chromosomes with an abnormal centromere position, indicating pericentric inversion 
with the break points unequally spaced from the centromere. 



14 Figure showing coherence & dose-response

Mention pattern speci�city, coherence, dose-response.

Incoherence would have hurt causal claims. Dose what
we see help?
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Chromatid-type Aberrations in Matched Pairs 
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15 Labor Economics Example (Adapted from
Angrist & Krueger 1994)

E¤ect of military service on earnings: Service in U.S.
military during World War II. Might think service re-
duces earnings, disrupting education or career. Might
think service increases earnings, VA programs, GI
Bill, labor market might favor veterans.

Outcome: Earnings in 1980 obtained from the U.S.
Census microdata (5% sample). (Census data have
limitations not addressed here or in Angrist & Krueger.
Concerns respondents. Demographic data recalled
retrospectively. Maximum recorded is US$75,000.)

A cohort of men: Born in 1926 Q3-Q4, age 18 in 1944,
age 54 in 1980. About 76% of this cohort served.
Look at 14,000 men. Vets earned $4,500 more.

Picture of Section Bias & IV



16 Selection bias picture
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17 Two matched cohorts

Cohort early: Born in 1924 Q3-Q4, age 18 in 1942,
age 56 in 1980. 78% served.

Cohort late: Born in 1928 Q3-Q4, age 18 in 1946, age
52 in 1980. 24% served.

Matched: 14,000 in each cohort. Matched for (i)
quarter of birth, (ii) race (white, black, other), (iii)
completed � 8 years of education, (iv) completed
� 7 years of education, (v) completed � 6 years of
education, (vi) Census region of birth, (vii) Census
division of birth, (viii) state of birth. 99% exactly
matched for (i) to (vi). 92% exactly matched.



18 IV Picture
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19 Mill vs Fisher on Heterogeneity: Theoretical
Illustration

� LM (larger sample size, more heterogeneous): Di �
iid

N
�
�; �2

�
with sample size 4I pairs.

� SL (smaller sample size, less heterogeneous): Di �
iid

N
�
�; �2

�
with sample size I pairs with � = �=2.

� Then the sample mean is D � N
�
�; �2=4I

�
in

both LM and SL.

� Consider Ashenfelter, O. & Rouse, C. (1998)�s study
of the earnings of identical twins with di¤erent edu-
cation. They wanted to remove unobserved biases
(which you can�t see), but perhaps they simply re-
duced heterogeneity (which you can see). Is that
progress towards causal inference?



Two Simulated Examples. LM has I = 400 di¤erences
Di �iid N

�
1
2; 1

�
. SL has I = 100 di¤erences

Di �iid N
�
1
2;
�
1
2

�2�
. The randomization inferences

are similar, but SL is less sensitive to unobserved bias.



Two Simulated Examples. LM has I = 400 di¤erences
Di �iid N

�
1
2; 1

�
. SL has I = 100 di¤erences

Di �iid N
�
1
2;
�
1
2

�2�
. The randomization inferences

are similar, but SL is less sensitive to unobserved bias.

LM SL
HL estimates b� 0:50 0:52

Wilcoxon 95% CI [b�L; b�H] [:40; :60] [:43; :62]



20 Simplest Situation: Matched Pairs

� I pairs, i = 1; : : : ; I, of two units, j = 1; 2, one
treated, one control, matched for observed covari-
ates, yielding I treated-minus-control di¤erences in
responses, Di, i = 1; : : : ; I.

� In the genetic toxicology example, 52 pairs, smoker,
nonsmoker, matched for age, andDi is 2-dimensional,
measuring the di¤erence in chromosome damage.

� In the labor economics example, two sets of 14,000
men, paired for race, early education, etc, and Di is
the di¤erence in earnings.

� In a randomized experiment, Di�s estimate the e¤ect
of the treatment and form the basis for randomiza-
tion inferences about e¤ects (Fisher�s 1935).

� In an observational study, Di�s might tend to be
positive even if the treatment had no e¤ect.



21 Notation 1

Covariates: Observed covariate x. Unobserved co-
variate u.

Matching: I pairs, i = 1; : : : ; I, of two subjects, j =
1; 2, matched for x, so xi1 = xi2 for each i, but
not for u, so typically ui1 6= ui2.

Treatment indicator: Zij = 1 if j received treat-
ment, Zij = 0 if j received control, so Zi1+Zi2 = 1
for i = 1; : : : ; I.

Responses: Potential responses,
�
rTij; rCij

�
, rTij un-

der treatment, Zij = 1, rCij under control, Zij =
0, so e¤ect is rTij � rCij; Neyman (1935) & Rubin
(1974).

Doses: May have doses levels of treatment,
�
vTij; vCij

�
.

EG, vTij = pack � years, vCij = 0. Without
doses, take vTij = 1, vCij = 0.



22 Paired Randomized Experiment

Conditioning: Write

F = f
�
rTij; rCij; vTij; vCij;xij; uij

�
;

i = 1; : : : ; I; j = 1; 2g

Z = fZi1 + Zi2 = 1; i = 1; : : : ; Ig ;

then F and Z are �xed by conditioning in Fisher�s
theory of randomization inference.

Randomization: Pr (Zi1 = 1 j Z; F) = 1
2, i = 1; : : : ; I,

with independent assignments in distinct pairs.

Observed responses, di¤erences: Rij observed isRij =
Zij rTij +

�
1� Zij

�
rCij, and the treated-minus-

control di¤erence in responses in pair i is Di =
(2Zi1 � 1) (Ri1 �Ri2).



23 Common E¤ect Models in a Paired
Randomized Experiment

Constant e¤ect: If the treatment e¤ect is constant,
� = rTij � rCij, then Rij = rCij + Zij � , and
Di = (2Zi1 � 1) (Ri1 �Ri2) = � + �i where �i =
(2Zi1 � 1) (rCi1 � rCi2).

E¤ect proportional to dose: If

rTij � rCij = �
�
vTij � vCij

�
;

which is constant e¤ect if vTij = 1, vCij = 0.



24 Wilcoxon�s Signed Rank Statistic

Wilcoxon�s Signed Rank Statistic: To testH0 : � =
�0 rank jDi � �0j from 1 to I; thenW�0, is the sum
of the ranks for which Di � �0 > 0, where ties are
assumed absent.

As a randomization test: If H0 : � = �0 is true,
randomization ensuresDi��0 = �i is rCi1�rCi2 or
rCi2� rCi1, each with probability 12, independently
in di¤erent pairs. Given Z; F , if H0 : � = �0 is
true, then W�0 is the sum of I independent random
variables taking values i or 0 each with probability
1
2, i = 1; : : : ; I.

Con�dence interval: A con�dence interval for � is
obtained by inverting the test.

HL estimate: Hodges-Lehmann (1963) or HL estimate
of � is (essentially) the value b� such that Wb� is as
close as possible to its null expectation, I (I + 1) =4.



25 Models and Power

So far, just randomization inference: The null dis-
tribution of W�0 is the same for all (untied) F . All
that was used for test, CI and estimate.

Power: The nonnull distribution of W�0 depends on
F or a model that generates F .

Common model for power: (rCi1 � rCi2) =� �iid F (�)
were � > 0 and F (�) is a continuous distribution
symmetric about zero, so that randomization ensures
�i=� �iid F (�).

Reference: Lehmann (1998, §3-§4).



26 Departures from Random Assignment

1. In the population prior to matching, treatment as-
signments were independent, with unknown proba-
bilities �ij = Pr

�
Zij = 1

��� F�

2. Two subjects with the same observed xij may di¤er
in unobserved uij and hence in their odds of receiv-
ing treatment by a factor of � � 1,

1

�
�
�ij (1� �ik)
�ik

�
1� �ij

� � �, 8 i; j; k (1)

3. Distribution of treatments within treated/control matched
pairs Pr (Zi1 = 1 j Z; F) is then obtained by con-
ditioning on Zi1 + Zi2 = 1.



27 Departures, continued

1=� �
n
�ij (1� �ik)

o
=
n
�ik

�
1� �ij

�o
� �, xij = xik

No unobserved bias: If � = 1, then xij = xik en-
sures �ij = �ik, i = 1; : : : ; I, whereupon

Pr (Zi1 = 1 j Z; F) = �i1= (�i1 + �i2) =
1

2
:

Uncertainty from unobserved bias: If � > 1 in (1),
then matching on x may fail to equalize the �ij in
pair i, and Pr (Zi1 = 1 j Z; F) is unknown.

Question answered by a sensitivity analysis: Bounds
on signi�cance levels, point estimates, con�dence in-
tervals for several values of �. How large must
� be before qualitatively di¤erent causal interpreta-
tions are possible?



28 Sensitivity Analysis Procedure

Two known distributions: For �xed � � 1, letW be
the sum of I independent random variables taking
value i with probability � = �= (1 + �) and value
0 with probability 1 � �, i = 1; : : : ; I; and let W
for the sum of I independent random variables tak-
ing value i with probability 1 � � and value 0 with
probability �.

Bounds: If

1

�
�
�ij (1� �ik)
�ik

�
1� �ij

� � �, 8 i; j; k
andH0 : � = �0 are true, then the following bounds
are sharp for each � � 1:

Pr
�
W � w

�
� Pr (W�0 � w j Z;F) � Pr

�
W � w

�

Cases: If � = 1, then equality; otherwise the bounds
become wider as � increases.



29 Procedure, continued

For each � � 1

Pr
�
W � w

�
� Pr (W�0 � w j Z;F) � Pr

�
W � w

�

Tests: For each � � 1, test H0 : � = �0 versus
HA : � > �0; then the upper bound on the one-
sided signi�cance level is at most 0.05 for all �ij if
W�0 � ew where 0:05 = Pr �W � ew�.

Estimates: Recall that � = �= (1 + �). Bounds on
the expectation of W�

(1� �) I (I + 1)
2

� E (W� j Z;F) �
� I (I + 1)

2

yield an interval of HL point estimates, [b�min; b�max].
With no unobserved bias, � = 1, �� = I (I + 1) =4,
and b�min = b�max is the usual HL estimate.



Two Simulated Examples. LM has I = 400 di¤erences
Di �iid N

�
1
2; 1

�
. SL has I = 100 di¤erences

Di �iid N
�
1
2;
�
1
2

�2�
. The randomization inferences

are similar, but SL is less sensitive to unobserved bias.

LM SL
HL estimates b� 0:50 0:52

Wilcoxon 95% CI [b�L; b�H] [:40; :60] [:43; :62]



Sensitivity Analysis for Testing

H0 : � = 0 vs HA : � > 0

Values are upper bounds on one-sided signi�cance levels.

LM SL
� = 1 10�14 10�14

� = 2 0:00037 0:00000032
� = 3 0:37 0:000088
� = 5 1:00 0:0078

HL Estimates

LM SL
� = 1 b� = b�min = b�max 0:50 0:52
� = 2 [b�min; b�max] [:19; :81] [:37; :67]



30 Power of a sensitivity analysis

� The sensitivity analysis reported a sharp upper bound
on the one-sided p � value testing H0 : � = 0 vs
HA : � > 0.

� The power of a sensitivity analysis is the probability,
under some alternative, that this upper bound is less
than 0.05.

� The alternative considered here is:

1. The treatment worked, with constant e¤ect � = 1
2.

(But of course, we don�t know this.)

2. We were fortunate, and there was no unobserved
bias, � = 1. (But of course, we don�t know this.)

3. Errors are Normal, Logistic or Cauchy. (But of
course, we don�t know this.)



Power of the Sensitivity Analysis: Normal Errors

(treatment e¤ect � = 1
2, no unobserved bias)

LM SL
I pairs 120 30
� 1 1

2
� = 1 1.00 1.00
� = 1:5 0.96 1.00
� = 2 0.60 0.96

Power of the Sensitivity Analysis: Logistic Errors

(treatment e¤ect � = 1
2, no unobserved bias)

LM SL
I pairs 120 30
� 1 1

2
� = 1 0.93 0.93
� = 1:5 0.31 0.61
� = 2 0.04 0.32



Power of the Sensitivity Analysis: Cauchy Errors

(treatment e¤ect � = 1
2, no unobserved bias)

LM SL
I pairs 200 50
� 1 1

2
� = 1 0.98 0.95
� = 1:5 0.32 0.60
� = 2 0.02 0.28



31 Limiting case, I !1

� As the number of pairs I !1, the only uncertainty
that remains is due to unobserved bias.

� In particular, for each � � 1, as I ! 1, the (ran-
dom) interval of HL estimates, [b�min; b�max] con-
verges in probability to a �xed interval [�min; �max].

� If � = 1, then �min = �max = � .

� If � > 1, then �min < �max, with � 2 [�min; �max].



32 Limiting case, I !1

Notation: �(�) and �(�) are standard Normal and
Cauchy cumulative distributions. Also, � = �= (1 + �).

Situation: Unknown to us, there actually is no unob-
served bias.

Question: For �xed � in the sensitivity analysis, how
does unit heterogeneity � a¤ect the limiting interval
[�min; �max]?

Proposition: If (Di � �) =�
iid� �(�) then

[�min; �max] = � �
���1 (�)p

2

If (Di � �) =�
iid� �(�) then

[�min; �max] = � � ���1 (�) :



33 Theoretical Point

LM:
Di � �
�

iid� F (�) ; i = 1; : : : ; 4I

SL:
Di � �
�=2

iid� F (�) ; i = 1; : : : ; I

In a randomized experiment: Not a big di¤erence.

In an observational study: SL much better � less
sensitive to unobserved biases.



34 Genetic Toxicology Example

� 52 pairs, matched for age, two measures of chro-
mosome damage. Two Wilcoxon statistics, W (1),
W (2), one based on chromatid aberrations, the other
on chromosome aberrations, testing the null hypoth-
esis of no e¤ect of smoking.

� Interval of possible signi�cance levels. Interval is a
single signi�cance level for � = 1. In this case, all
intervals include some very small signi�cance levels,
so only the upper endpoint of the interval is given.

� Chromatid Chromosome
1 2:5� 10�8 2:9� 10�5
2 0:00018 0.016

2.5 0.0011 0.052
5 0.043 0.478

5.3 0.053 0.529



35 Do Coherence and Doses Matter for
Sensitivity to Bias?

� When higher responses are anticipated for both of
two outcomes, signed ranks statisticsW (1) andW (2),
the coherent signed rank statistic is simply W (1) +

W (2). A version with doses weights the absolute
ranks by the ranks of the doses, akin to Spearman�s
rank correlation.

� The sensitivity analysis is similar.

� Does the does-response relationship and the coher-
ent pattern of responses reduce sensitivity to unob-
served bias?



36 Genetic Toxicology Example, Continued

� Chromatid Chromosome Coherent w/Doses
1 � 10�8 � 10�5 � 10�8 � 10�7
2 0:00018 0.016 0.00018 0.00052

2.5 0.0011 0.052 0.0010 0.0020
5 0.043 0.478 0.039 0.033

5.3 0.053 0.529 0.048 0.039
5.8 0.072 0.607 0.064 0.050

In this one example, coherence among responses and a
dose response relationship measurably reduced

sensitivity to unobserved biases.



37 Return to the Original Question

Question: Is what happened in the example to be ex-
pected in general?

The fortunate situation: Suppose that our study is ac-
tually not a¤ected by unobserved biases. In this
situation, what aspects of design would yield a high
degree of insensitivity to unobserved biases?

In the fortunate situation, the data (F and Z) are
generated by some process free of unobserved bi-
ases. If a sensitivity analysis were applied to data
from this process, what would happen?

In each sample, the sensitivity analysis would yield a
value of � such that the conclusions begin to change,
to become sensitive at that �. Varies with data and
I.



38 Design Sensitivity: A Parameter Describing a
Study Design

In large samples, the situation is simpler. The design
sensitivity is a parameter somewhat akin to Pitman
e¢ ciency. It compares competing methods/designs
for the same problem when the sample size is large.

In the fortunate situation in large samples, there is
a number, e�, called the design sensitivity, such that
the power of a sensitivity analysis tends, as I !1,
either to 1 for � < e� and to 0 for � > e�.

In words, no matter how large the study becomes, re-
sults will be sensitive to biases larger than e�, and for
su¢ ciently large samples, will be insensitive to biases
smaller than e�.



39 Intuition behind the mechanics

We have a statistic, say fW , suitably normalized, and
in the fortunate situation with no unobserved biases,p
I
�fW � �

�
=! !D N (0; 1), as I ! 1. For

Wilcoxon�s signed rank statistic, fW = 2W= fI (I + 1)g,
say.

Although we are in the fortunate situation, we don�t
know this from the data and perform a sensitivity
analysis.

In the absence of a treatment e¤ect, for a given �
in the sensitivity analysis, the largest possible distrib-
ution of fW (e.g.., the distribution of

p
I2W= fI (I + 1)g)

tends to N
�
��; !

2
�

�
.

Design sensitivity is found as the solution e� in � to
the equation � = ��. Depends only on limiting
expectations.



40 Example of mechanics: Wilcoxon�s Signed
Rank Statistic

In the fortunate situation, without unobserved biases,
additive e¤ect � , andH0 : � = �0 true,Di = �+�i,
with �i iid, continuous, symmetric about zero,

E (W�0) =
I (I � 1) Pr (�1 + �2 > 0)

2
+I Pr (�1 > 0) .

The upper bounding distribution of W in the sensi-
tivity analysis has

E
�
W
�
=

�

1 + �

I (I + 1)

2

Solve for design sensitivity: Divide by I2, let I !
1, and solve to get

e� = Pr (�1 + �2 > 0)

1� Pr (�1 + �2 > 0)



41 Return to question about dose-response and
coherence

I Matched sets: In each, one treated person with dose
matched vi matched to k untreated controls with
dose zero. Will consider k = 5.

p Coherent outcomes: Each having a linear regression
on dose, with the same slope � = 1

2, and symmetri-
cally correlated multivariate Normal errors, with vari-
ances 1 and intercorrelations �. Will consider p = 1
and p = 3 outcomes and correlations � = 0 and
� = 1

2.

Three dose levels: each with a third of treated sub-
jects. Will consider three possible patterns:

�
1
2; 1;

3
2

�
,

(1; 1; 1),
�
3
2;
3
2;
3
2

�
.

Statistic: Strati�ed coherent Wilcoxon rank sum weighted
by doses. (Details and other cases in 2004 paper.)



42 Case of k = 5 Controls Per Set

� Design sensitivity, e�: p outcomes with correlation
� = 0 or 12 for 3 dose patterns.

k = 5 � = 0 � = 1
2

Doses p�
1
2; 1;

3
2

�
1 3.0 3.0
3 6.4 3.8

(1; 1; 1) 1 2.6 2.6
3 5.1 3.2�

3
2;
3
2;
3
2

�
1 4.1 4.1
3 11.7 5.6

� e� varies. Coherence among p = 3 outcomes has a
big impact when � = 0, but smaller for � = 1

2. (No
gain for � = 1.)

� Dose response,
�
1
2; 1;

3
2

�
vs (1; 1; 1) helps a little,

but higher uniform doses
�
3
2;
3
2;
3
2

�
are much better.



43 Case of k = 2 Controls Per Set

� Value of the design sensitivity, e�.
� k = 2 controls, p coherent outcomes (p = 0 or
3) with symmetric intercorrelation � = 0 or 12 for 3
di¤erent dose patterns.

k = 2 � = 0 � = 1
2

Doses p�
1
2; 1;

3
2

�
1 2.4 2.4
3 4.2 2.9

(1; 1; 1) 1 2.2 2.2
3 3.6 2.5�

3
2;
3
2;
3
2

�
1 3.0 3.0
3 6.4 3.8

� Same pattern as k = 5, but e� is smaller.



44 Power of the sensitivity analysis

� Example, I = 200 matched sets, one treated and
k = 3 controls each, p Gaussian outcomes, intercor-
relation �, slope 12 with dose for all outcomes, pretty
much as before.

Power of the sensitivity analysis when performed with
� = 2

k = 3 � = 0 � = 1
2

Doses p�
1
2; 1;

3
2

�
1 0.54 0.54
3 1.00 0.92

(1; 1; 1) 1 0.28 0.28
3 1.00 0.73�

3
2;
3
2;
3
2

�
1 0.98 0.98
3 1.00 1.00

� Ranges from 0.28 to 1.00. Dose response, coherence
and larger doses all substantially boast power.



45 Recall Instrumental Variables Example

A cohort of men: Born in 1926 Q3-Q4, age 18 in 1944,
age 54 in 1980. About 76% of this cohort served in
WWII. Look at 14,000 men.

Cohort early: Born in 1924 Q3-Q4, age 18 in 1942,
age 56 in 1980. 78% served.

Cohort late: Born in 1928 Q3-Q4, age 18 in 1946, age
52 in 1980. 24% served.

Matched pairs: Two sets of 14,000 matched pairs.
1926-1924 pairs. 1928-1926 pairs.

Idea: Men who served in WWII are likely to be di¤erent
from those who did not. However, men born in 1926
are not likely to be very di¤erent than those born in
1928. Use birth year as an instrument for service.
Check on age trend with 1924



46 Table of Earnings

The 1926 Q3-Q4 cohort. Earnings in US$ in 1980 of
14,000 Men Born in the Second Half of 1926 by World
War II Veteran Status.

Count Lower Median Upper Trimean
WWII Vets 10,571 14,510 20,010 26,540 20,268

Others 3,429 10,010 15,510 22,010 15,760
Di¤erence 4,500 4,500 4,530 4,508

� A naive estimate of the e¤ects of WWII service on
earnings is a bene�t of $4,500.



47 Imagining Being Born 2 Years Later

Covariates: Observed covariate x, race, early educa-
tion, region of birth. Unobserved covariate u. I

pairs, i = 1; : : : ; I = 14; 000, of two men, j = 1; 2,
matched for x, not u.

Treatment indicator: Zij = 1 if j born in 1926,
Zij = 0 if j born in 1928, so Zi1 + Zi2 = 1 for
i = 1; : : : ; I.

Responses: Potential earnings in 1980,
�
rTij; rCij

�
,

rTij if born in 1926, Zij = 1, rCij if born in 1928,

Zij = 0. ObserveRij = ZijrTij+
�
1� Zij

�
rCij.

Doses: Doses of military service in WWII,
�
vTij; vCij

�
,

with vTij = 1 if would have served if born in 1926,
vTij = 0 otherwise, vCij = 1 if would have served
if born in 1928, vCij = 0 otherwise. Observe

Vij = ZijvTij +
�
1� Zij

�
vCij.



48 Permutation Inference for IV

E¤ect proportional to dose model: Embodies exclu-
sion restriction and says birth year a¤ects earning to
the extent that it alters military service.

rTij � rCij = �
�
vTij � vCij

�

If true, then

Rij��Vij = rTij��vTij = rCij��vCij = aij, say;

so if H0 : � = �0 were true, Rij � �0Vij = Rij �
�Vij would be the same whether you were born in
1926 or 1928.

Apply Wilcoxon�s signed rank test to: Rij � �0Vij
to obtain con�dence intervals and point estimates for
�. Based on assuming birth year is random, rather
than assume WWII military service is random. Do
sensitivity analysis as before.



Upper Bound on One-Sided p-value, 14,000 1928 vs
1926 Pairs, H0 : � = �0 vs H0 : � < �0.

� �0 = 0 �0 = 1; 000 �0 = 4; 500 �0 = 10; 000
1 0.001 0.001 0.001 0.001

1.2 1.000 0.860 0.001 0.001
1.5 1.000 1.000 0.027 0.001
1.6 1.000 1.000 0.904 0.001
2.2 1.000 1.000 1.000 0.016
2.3 1.000 1.000 1.000 0.476

If the instrument were valid: (� = 1) then con�dent
military service reduced earnings. [�$1; 445; �$500]
is 95% CI for �:

Even if the instrument were invalid: if we had left out
of the matching a variable u strongly associated with
earnings in 1980 and � = 1:5 times more common
among men born in 1928 than in 1926, we would still
reject the naive $4; 500 bene�t as too large with a
p < 0:027.



49 Weak Instrument

1924 vs 1926, parallel but very weak: In parallel, the
small di¤erence in WWII service between the 1924
and 1926 matched cohorts (78% vs 76%) creates a
very weak instrument, with a parallel analysis.

Even if perfectly valid (� = 1), the weak instrument
provides little information, with a 95% CI for e¤ect
� of [�$10; 130; $10; 750] in a population whose
median annual earnings were roughly $20,000.



50 Technical Details

D
�0
i = Zi1 f(Ri1 � �0 Vi1)� (Ri2 � �0 Vi2)g

+(1� Zi1) f(Ri2 � �0 Vi2)� (Ri1 � �0 Vi1)g
= (� � �0) fZi1 (vTi1 � vCi2) + (1� Zi1) (vTi2 � vCi1)g

+(2Zi1 � 1) (ai1 � ai2)
= (� � �0) Si + �i

where

Si = Zi1 (vTi1 � vCi2) + (1� Zi1) (vTi2 � vCi1)

and

�i = (2Zi1 � 1) (ai1 � ai2)

is � (ai1 � ai2) if H0 : � = �0 is true.



51 Design Sensitivity Under a Very Simple Model

Compliance: Population has �A �always takers�with
vTi1 = vCi2 = 1 who would serve whether born
in 1926 or 1928, �N �never takers� with vTi1 =
vCi2 = 0 who would not serve whether born in 1926
nor in 1928, and �C �compliers� with vTi1 = 1,
vCi2 = 0 who would serve only if born in 1926, not
if born in 1928. For simplicity of presentation, will
consider �A = �N , but calculations are equally easy
in all cases.

Matched Pair Errors: �i � iid Normal, Cauchy or lo-
gistic, centered at 0, with scale �, independent of
compliance. E¤ect size measured by Measured by
� = (�0 � �) =�.

Examples: (�A; �C; �N) = (0; 1; 0) is perfect com-
pliance. The 1926-1928 pairs look more like 50%
compliance, (�A; �C; �N) =

�
1
4;
1
2;
1
4

�
. A weak

instrument might have 10% compliance, (�A; �C; �N) =�
9
20;

2
20;

9
20

�
.



52 Recall Basic Question

� Suppose the instrument were valid. We would not
know this from the data.

� We would not know this from the data. So we would
appraise sensitivity of conclusions to unobserved bi-
ases in the instrument.

� The best we could hope to say is that the results are
insensitive to small or moderate biases.

� The power of the sensitivity analysis tends to zero
or one as � > e� or � < e� where e� is the design
sensitivity.



Design Sensitivity e� For Instruments with Varying
Strength. E¤ect size � = (�0 � �) =�

Compliance 100% 50% 20% 10%
�A; �C; �N 0; 1; 0 1

4;
1
2;
1
4

2
5;
1
5;
2
5

9
20;

2
20;

9
20

�i �
Normal 1 11.7 2.7 1.5 1.2
Normal 1

2 3.2 1.7 1.2 1.1
Cauchy 1 3.0 1.7 1.2 1.1
Cauchy 1

2 1.8 1.4 1.1 1.1
Logistic 1 3.9 1.9 1.3 1.1
Logistic 1

2 2.0 1.4 1.1 1.1

� Large e¤ect, perfect compliance, Normal errors: (�0 � �) =� =
1, (�A; �C; �N) = (0; 1; 0) yields e� = 11:7.

� In table, e� � 1:4 for a strong instrument: (�A; �C; �N) =�
1
4;
1
2;
1
4

�
.

� In table, weak instruments are always sensitive to
unobserved biases, (�A; �C; �N) =

�
9
20;

2
20;

9
20

�
.



53 Interpretation of IV Design Sensitivity Results

� Somewhat contextual. Strength of an instrument
and plausible biases depend upon context.

� Weak instruments are always sensitive to small bi-
ases. They may also carry limited information even
without bias.

� Strong instruments may or may not be insensitive to
small biases.

� A strong instrument may be preferable even when
small biases are possible.

� Comparing men born a few years apart.



54 Summary

� Literature on observational studies contains informal
advice, often good advice, about designs to strengthen
causal conclusions.

� Issues like dose-response, coherence, reducing het-
erogeneity, instrumental variables of various types.

� It is possible to formalize these considerations in
terms of design sensitivity. What aspects of de-
sign are expected to reduce sensitivity to unobserved
biases when a sensitivity analysis is preformed.

� Quantitative rather than qualitative.

� Greater precision about what advice says and when
it is likely to work.



55 A0: Speci�c Results

Heterogeneity: An important issue, strongly a¤ecting
design sensitivity.

Doses: Dose-response has a small e¤ect compared to
uniform at the average dose. Given the choice,
it would be better to make the doses uniform but
larger.

Coherence: In principle, could have a substantial im-
pact, but its importance depends strongly on inter-
correlation.

IV: Weak instruments are always sensitive to small bi-
ases. Strong instruments may resist small to mod-
erate biases. Strict validity may be overrated com-
pared to strength.



56 A1: 2 Years of Age and Earnings

� The 1926-1928 pairs di¤ered by 2 year of age and
76% of the 1926 men served in WWII, while 24% of
the 1928 men served. The IV argument attributes
the di¤erence in earnings to the di¤erence in service.
Could it be the di¤erence in age, not the di¤erence
in earnings?

� The 1926-1924 pairs di¤ered by 2 year of age and
76% of the 1926 men served in WWII, while 78% of
the 1924 men served. So the di¤erence in service is
small, but the di¤erence in age is the same.

� Using Wilcoxon�s signed rank statistic again, the 95%
con�dence interval for the typical di¤erence in an-
nual earnings, 1926-1924, was [�250; 240]. So
the change in age with no change in service was
associated with a very small, possible zero, shift in
earnings.



57 A2: Practical Illustrations

� In practice, can�t know for certain about unobserved
biases, but can use tactics that are likely to reduce
heterogeneity, perhaps at the expense of sample size.

� Tactics that attempt to reduce unobserved bias may
reduce heterogeneity.

� In both cases, we are trying to arrange things to
compare units that are similar in relevant ways we
have not observed.

� Can recognize and employ tactics aimed at this goal,
but can�t be certain whether they reduced unob-
served bias, heterogeneity, both or neither.



58 A3: Returns to Education

� Economic returns to additional education.

� Can�t just compare high school dropouts and college
graduates. They di¤ered in terms of parents wealth
and education, possibly genetic endowment.

� Would like to compare children of the same parents,
growing up at the same time in the same home with
the same genes.

� Ashenfelter & Rouse (1998) compared identical twins
with di¤ering educations, estimating a 9% increase
in earnings per year of additional education.



59 A4: Road Hazards

� What permanent road hazards increase risk of fatal
collisions with roadside objects? Road hazards are
a small part of the total picture. Also important:

Driver: Driver�s skill, aggressiveness, risk tolerance, so-
briety.

Weather: Ice, snow, rain, fog, ambient light.

Safety equipment: Brakes, tires, traction control, sta-
bility control, air bags, use of seat belts.

Related: Sobriety more common at noon than mid-
night, so sobriety and ambient light related. In rain
or snow, drive on highway to work, but not on dirt
road to picnic area or hiking trail, so weather and
roadside hazards vary together.



60 A5: Road Hazards: a case-crossover study

� Would like to compare di¤erent road hazards with
the same driver, in the same state of sobriety, in
the same car, in the same weather, with the same
ambient light, with seat belts in the same state of
use. Is this possible?

� Wright and Robertson (1976) examined 300 fatal
accidents involving a collision with a roadside object
(trees, embankments, ditches, etc.) in Georgia 1974-
1975.

� Compared these to 300 non-accidents involving the
same driver, car, weather, light, etc. There were 1
mile back along the road, a location passed by the
driver minutes before the crash.

� Crash sites had a substantial excess of roads curving
more than six degrees with downhill gradients greater
than 2%.



61 A6: Minimum Wage Laws

� Do minimum wage laws reduce employment?

� Traditional to study this using states and/or time-
periods with di¤erent minimum wage laws. But
businesses vary between states, and business condi-
tions vary with time.

� Would like to compare nearly identical businesses in
states with di¤erent minimum wage laws. How does
one �nd nearly identical businesses?

� Card and Krueger (1994) looked at changes, after-
minus-before, in employment in NJ and PA when NJ
increased its minimum wage by 19% in 1992. They
looked at fast food restaurants, comparing Burger
Kings to Burger Kings, Wendy�s to Wendy�s, etc.
Found no sign of reduced employment..



62 A7: Motorcycle helmets

� To what extent do helmets reduce risk of death in
motorcycle crashes?

� Crashes vary: speeds, forces, tra¢ c density, other
vehicles, etc.

� Would like to compare two people, on the same type
of motorcycle, riding at the same speed, on the same
road, in the same tra¢ c, crashing into the same ob-
ject. Is this possible?

� It is when two people ride the same motorcycle, one
with, the other without a helmet. Norvell and Cum-
mings (2002) looked at such crashes, estimating a
40% reduction in fatality risk associated with helmet
use.




