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Abstract. Talk is based on a paper of the same title in Biometrics 2011; 67:1017-1027. R soft-
ware and a worked example are at: http://www-stat.wharton.upenn.edu/~rosenbap/software.htm

1. Notation; Review

1.1. Treatment effects and treatment assignments. There are I pairs, i = 1, . . . , I, of two
subjects, j = 1, 2, one treated, Zij = 1, the other control, Zij = 0, with Zi1 + Zi2 = 1, matched
for observed covariates, so xi1 = xi2 but possibly differing in term of an unmeasured covariate,
ui1 6= ui2. Following Neyman (1923) and Rubin (1973), each subject ij has two potential responses,
rTij if assigned to treatment, Zij = 1, or rCij if assigned to control, Zij = 0, so the observed
response from ij is Rij = Zij rTij +(1− Zij) rCij , and the effect of the treatment, rTij−rCij , on ij
is not observed for any subject. Fisher’s (1935) sharp null hypothesis of no treatment effect asserts
H0 : rTij = rCij , for i = 1, . . . , I, j = 1, 2. Write F = {(rTij , rCij ,xij , uij) , i = 1, . . . , I, j = 1, 2}.
If the treatment has an additive effect, rTij − rCij = τ for all ij, then the ith treated-minus-control
difference in observed responses, Yi = (Zi1 − Zi2) (Ri1 −Ri2), is

(1.1) Yi = (Zi1 − Zi2) (rCi1 + Zi1τ − rCi2 − Zi2τ) = τ + εi where εi = (Zi1 − Zi2) (rCi1 − rCi2)

Write Ω for the set of possible values of Z = (Z11, Z12, . . . , ZI2)
T , so z ∈ Ω if z = (z11, z12, . . . , zI2)

T

with zij = 0 or zij = 1 and zi1 + zi2 = 1 for every i. Finally, write Z for the event Z ∈ Ω.

1.2. General signed rank statistics testing no effect in a randomized experiment. In a
randomized paired experiment, one subject in each pair is picked at random to receive treatment, the
other receiving control, with independent assignments in distinct pairs, so Pr (Zij = 1 | F , Z) = 1

2

for all ij, and Pr (Z = z | F , Z) = 2−I for each z ∈ Ω. If Fisher’s sharp null hypothesis H0 of
no effect were true, then Yi = YCi = (Zi1 − Zi2) (rCi1 − rCi2). Let qi ≥ 0 be a function of the
|Yi|’s with the property that qi = 0 if |Yi| = 0. Let sgn (y) = 1 or 0 for, respectively y > 0

or y ≤ 0. A general signed rank statistic is of the form T =
∑I

i=1 sgn (Yi) qi. Wilcoxon’s
signed rank statistic takes qi equal to the rank of |Yi| when |Yi| > 0. The sign test takes qi = 1
when |Yi| > 0. Randomization creates the null distribution Pr (T | F , Z) of T . Under H0,
the absolute difference |Yi| = |YCi| = |rCi1 − rCi2| is fixed by conditioning on F , so qi is also
fixed, and sgn (Yi) = 1 or 0 each with equal probability 1

2 if |Yi| > 0, or sgn (Yi) = 0 if |Yi| =
0; therefore, Pr (T | F , Z) is the distribution of the sum of the I independent discrete random
variables sgn {(Zi1 − Zi2) (rCi1 − rCi2)} qi, taking values qi or 0 with equal probabilities, with
E (T | F , Z) =

∑
qi/2 and var (T | F , Z) =

∑
q2
i /4.
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1.3. Sensitivity analysis in an observational study. A sensitivity analysis asks about the
magnitude of departure from Pr (Zij = 1 | F , Z) = 1

2 that would need to be present to alter the
qualitative conclusions of a study. A simple model for sensitivity analysis begins by assuming
that in the population prior to matching, subjects have independent treatment assignments with
unknown probabilities, πij = Pr (Zij = 1 | F), such that two subjects, say ij and ij′, with the same
observed covariates, xij = xij′ , may differ in their odds of treatment by at most a factor of Γ ≥ 1,

(1.2)
1

Γ
≤ πij (1− πij′)
πij′ (1− πij)

≤ Γ whenever xij = xij′ ,

and then restricts the distribution of Z to Ω by conditioning on the event Z; see Rosenbaum (1987;
2002, §4). This is the same as assuming

(1.3) Pr (Z = z | F , Z) =
exp

(
γ zTu

)∑
b∈Ω exp (γ bTu)

=
∏I

i=1

exp (γ zi1 ui1 + γ zi2 ui2)

exp (γ ui1) + exp (γ ui2)
, u ∈ [0, 1]

2I ,

for z ∈ Ω, where γ = log (Γ) ≥ 0, so the I terms in the product in (1.3), namely Pr (Zij = 1 | F , Z) =
exp (γ uij) / {exp (γ ui1) + exp (γ ui2)}, are bounded below by 1/ (1 + Γ) and above by Γ/ (1 + Γ);
see Rosenbaum (2002, §4.2) for the easy steps demonstrating equivalence and for generalizations
beyond matched pairs. For Γ = 1 and γ = 0, in (1.2) πij = πij′ whenever xij = xij′ and (1.3)

equals the randomization distribution, Pr (Z = z | F , Z) = 2−I . Let TΓ be the sum of I indepen-
dent random variables where the ith random variable takes the value qi with probability Γ/ (1 + Γ)
and the value 0 with probability 1/ (1 + Γ), and let TΓ be defined in the same way except with the
roles of Γ/ (1 + Γ) and 1/ (1 + Γ) interchanged. It is straightforward to show (Rosenbaum 1987;
2002, §4) that, under Fisher’s H0 and (1.3), the null distribution of T satisfies

(1.4) Pr
(
TΓ ≥ k

∣∣ F , Z) ≤ Pr (T ≥ k | F , Z) ≤ Pr
(
TΓ ≥ k

∣∣∣ F , Z) for all u ∈ [0, 1]
2I ,

and the bounds are sharp, being attained for particular u ∈ [0, 1]
2I , so the bounds cannot be

improved without further information about u. Under mild conditions on the score function qi, as

I →∞, the probability Pr
(
TΓ ≥ k

∣∣∣ F , Z) may be approximated using a Normal approximation
to the distribution of TΓ with E

(
TΓ

∣∣∣ F , Z) = Γ
1+Γ

∑I
i=1 qi and var

(
TΓ

∣∣∣ F , Z) = Γ
(1+Γ)2

∑I
i=1 q

2
i

with an analogous approximation for TΓ.

2. Power of a sensitivity analysis; design sensitivity

For each fixed Γ ≥ 1, (1.4) yields an upper bound on the one-sided significance level. For
fixed Γ ≥ 1, the power of an α level sensitivity analysis is the probability that this upper bound
will be less than or equal to α; see Rosenbaum (2004, 2010b). For Γ = 1, this is the power
of a randomization test. Power is computed under some model for the generation of F and Z.
In the ‘favorable situation’ there is a treatment effect and no bias from unmeasured covariates,
and it is in this situation that we hope to report insensitivity to unmeasured bias. The power
computed in the favorable situation is the probability that this hope will be realized. In the
favorable situation, Z is randomized, Zi1−Zi2 = ±1 with equal conditional probabilities of 1

2 given
(F ,Z), and F is produced under some model for treatment effects. In the discussion here, the
Yi in (1.1) are independent and identically distributed with a distribution G (·) with density g (·);
e.g., Yi ∼ N (τ , 1). Not knowing that we are in the favorable situation, we perform a sensitivity
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analysis that we hope will report a high degree of insensitivity when the favorable situation does
arise. Symmetry about τ is one convenient alternative hypothesis, but it is not essential.
For a given test statistic and model for generating F , there is a value Γ̃ called the design

sensitivity such that, as I →∞, the power of the sensitivity analysis tends to 1 if performed with
Γ < Γ̃ and to 0 if performed with Γ > Γ̃. That is, in infinitely large sample sizes, this test statistic
can distinguish this model for F from all biases smaller than Γ̃ but not from some biases larger
than Γ̃.

Table 1. Simulated power of a one-sided 0.05 level sensitivity analysis conducted
with Γ = 3, I = 250 pairs, and Yi = τ + εi where errors are standard Normal,
standard logistic or t-distributed with 4 degrees of freedom.

Errors Normal Logistic t with 4 df
Statistic τ = 1/2 τ = 1 τ = 1
Wilcoxon 0.08 0.40 0.43
(5,4,5) 0.34 0.67 0.65
(8,7,8) 0.63 0.74 0.57
(20,14,20) 0.53 0.74 0.65
(20,16,19) 0.52 0.69 0.61

3. A new U-statistic

Fix an integerm with 1 ≤ m ≤ I, writeK for the set containing the
(
I
m

)
sequences I = 〈i1, . . . , im〉

of m distinct integers 1 ≤ i1 < · · · < im ≤ I, and write YI = 〈Yi1 , . . . , Yim〉. A U-statistic (Ho-
effding 1948) has the form

T =

(
I

m

)−1 ∑
I∈K

h (YI)

where the kernel, h (·), is a symmetric function of itsm arguments 〈Yi1 , . . . , Yim〉. For I = 〈i1, . . . , im〉 ∈
K, sort Yi1 , . . . , Yim , into increasing order by their absolute values, 0 <

∣∣Y[I,1]

∣∣ < · · · < ∣∣Y[I,m]

∣∣.
Fix two integers m, m with 1 ≤ m ≤ m ≤ m. In the new u-statistic, h (YI) is the number of
positive differences among Y[I,m], . . . , Y[I,m], so h (YI) is an integer in {0, 1, . . . ,m−m+ 1}. If
m = m = m = 1, then h (YI) = sgn (Yi1) = sgn

(
Y[I,1]

)
and T is the sign statistic, whereas if

m = m = m = 2, then h (YI) = sgn
(
Y[I,2]

)
, and T is the U-statistic that closely approximates

Wilcoxon’s signed rank statistic. If m = m = m, then h (YI) = sgn
(
Y[I,m]

)
and T is Stephen-

son’s (1981) statistic which has excellent power when only a subset of treated subjects respond to
treatment; see Conover and Salsburg (1988) and Rosenbaum (2007; 2010a, §16). With m = 8,
the statistic (m,m,m) = (8, 7, 8) has h (YI) = sgn

(
Y[I,7]

)
+ sgn

(
Y[I,8]

)
with values 0, 1, 2. This

U-statistic is also a signed rank statistic with qi =
(
I
m

)−1∑m
`=m

(
ai−1
`−1

)(
I−ai
m−`

)
where ai is the rank

of |Yi| .

3.1. A formula for the design sensitivity. Assume Yi are iid from some distribution G (·) and
there is no unobserved bias, Pr (Zij | F , Z) = 1

2 . Let θ = E {h (YI)}.
Proposition: Under these assumptions, the design sensitivity of the U-statistic (m,m,m) is

Γ̃ = θ/ (m−m+ 1− θ) .
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Table 2. Design sensitivities Γ̃ with Yi = τ+εi where errors are standard Normal,
standard logistic or t-distributed with 3 or 4 df.

Errors Normal Logistic t with 4 df t with 3 df
Statistic τ = 1/2 τ = 1 τ = 1 τ = 1
Wilcoxon 3.2 3.9 6.8 6.0
(5,4,5) 3.9 4.7 8.4 6.8
(8,7,8) 5.1 5.5 9.1 6.8
(20,14,20) 4.6 5.3 9.4 7.3
(20,16,19) 4.9 5.6 10.1 7.8
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