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Abstract

Two R packages for sensitivity analysis in observational studies are described. Pack-
age sensitivitymw is for matched pairs with one treated subject and one control, or
matched sets with one treated subject and a fixed number, K ≥ 2, of controls. Package
sensitivitymv is for matched sets with variable numbers of controls. The packages offer
conventional statistics, such as the permutational t-test and M -statistics using Huber’s
weights, but they also offer less familiar test statistics that have higher power in sensi-
tivity analyses. The packages provide several tools useful in sensitivity analyses, such
as an aid, amplify, to the interpretation of the value of the sensitivity parameter, and a
device for combining evidence from several independent sensitivity analyses, truncatedP,
for instance, several evidence factors or several subgroups.

Keywords: M -test; observational study; permutational t-test; randomization inference;
sensitivity analysis.

1. Introduction

1.1 R Packages sensivitymv and sensitivitymw

The two R packages sensivitymv and sensitivitymw perform sensitivity analyses for obser-
vational studies with matched pairs or matched sets containing multiple controls. Package
sensitivitymw is for matched pairs or matching with a fixed number of controls, for in-
stance matching each treated subject to two controls. In contrast, package sensivitymv is
for matched sets with variable numbers of controls, perhaps some treatment-control pairs
together with some triples containing a treated subject and two controls. Also, the pack-
ages contain several data sets and several additional functions useful in sensitivity analysis.
The packages overlap considerably, but package sensitivitymw is faster with additional
features for matched pairs and for matching with a fixed number of controls. Both packages
are available at CRAN and contain documentation.

My purpose here is to present a gentle introduction to these R packages, with pointers
to articles for technical detail and pointers to the software documentation for additional
options.

c⃝2015 Paul R. Rosenbaum.
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1.2 Scope of the current discussion

In an observational study, a sensitivity analysis replaces qualitative claims about whether
unmeasured biases are present with an objective quantitative statement about the magni-
tude of bias that would need to be present to change the conclusions. In this sense, a
sensitivity analysis speaks to the assertion “it might be bias” in much the same way that
a P -value speaks to the assertion “it might be bad luck”. If someone asserted that the
higher responses in the treated group in a randomized experiment “might be bad luck,” an
unlucky randomization with no treatment effect, then a P -value does not deny the logical
possibility of bad luck, but objectively measures the quantity of bad luck that would need
to be present to alter the impression that the treatment did have an effect. In parallel, a
sensitivity analysis measures the magnitude of bias from nonrandom treatment assignment
that would need to be present to alter the conclusions of an observational study.

A sensitivity analysis is one tool useful in the large task of designing and interpreting an
observational study. The discussion here is rather narrowly focused on carrying out such
a sensitivity analysis in R.

1.3 What do the packages do?

In an observational study, treated and control subjects may be matched to be similar in
terms of observed or measured covariates, but people who look similar in terms of measured
covariates may still differ in terms of unmeasured covariates. The packages perform a sen-
sitivity analysis asking about the magnitude of bias from nonrandom treatment assignment
that would need to be present to alter the qualitative conclusions of a naive analysis that
presumes matching for observed covariates removes all bias.

In a matched randomized experiment, each subject in a matched set has the same chance
of being assigned to treatment or control because randomization has ensured that this is
so. Without randomization, two people who look similar may differ in their chances of
receiving treatment because they differ in terms of an unmeasured covariate not controlled
by matching for measured covariates. The sensitivity analysis assumes that one subject in a
matched set may be Γ ≥ 1 times more likely than another to receive treatment because they
differ in terms of unobserved covariates. If Γ = 1, then subjects who look the same are the
same: matched subjects have equal chances of treatment, as in a randomized experiment.
For Γ = 1, the sensitivity analysis reports a single answer, for instance a single P -value
testing the null hypothesis of no treatment effect, and that single answer is the P -value
that would be appropriate in a matched randomized experiment. For Γ > 1, there is no
longer a single P -value, but rather an interval of possible P -values. The sensitivity analysis
asks: How large must Γ be before the interval is so long that it is inconclusive, perhaps
both accepting and rejecting the null hypothesis of no effect at the 0.05 level? The interval
of possible P -values would be inconclusive in this sense if it extended from below 0.05 to
above 0.05. The senmw and senmv functions compute sensitivity bounds for P -values.
Specifically, they compute the upper bound on the P -value, for a specific Γ, so if that upper
bound is at most 0.05, then a bias of magnitude Γ is too small to lead to acceptance of the
null hypothesis. The senmwCI function inverts bounds on P -values to obtain sensitivity
bounds for confidence intervals and point estimates. For detailed discussion of this model,
see Rosenbaum (2002, §4; 2007).
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Both packages useM -tests, that is, the tests associated with Huber’s (1981)M -estimates,
including the permutational t-test. The permutational t-test is a permutation or random-
ization test that permutes the observations; see, for instance, Fisher(1935), Pitman (1937)
and Welch (1937). In an M -statistic, the observations are slightly transformed, often with
a view to preventing one or two observations from having overwhelming influence, and in an
M -test the transformed observations are permuted. Maritz (1979, 1995) slightly adjusted
Huber’s M -statistics to make them more suitable for matched-pair permutation tests, and
there is a straightforward extension to matching with multiple controls (Rosenbaum 2007,
§4); see §3.

1.4 Outline

Section 2 discusses matched pairs with two familiar test statistics, the permutational t-test
and anM -test using Huber’s weights, similar to the method proposed by Maritz (1979). An
aid to interpreting values of Γ, its amplification into two equivalent sensitivity parameters
using amplify, is discussed in §2.4. Section 3 discusses matched sets with one treated
subject matched to more than one control. An observational study may contain evidence
factors, that is, two independent tests of no treatment effect that are likely to be affected
by different unobserved biases. Evidence factors are discussed in §4 along with an analytic
tool, truncatedP, that implements Zaykin et al. (2002)’s truncated product of independent
P -values. Related issues of effect modification in subgroup analyses are discussed in §5.
Where §2 and §3 used conventional test statistics, §6 considers test statistics with higher
power when used in a sensitivity analysis. Examples from the R packages are discussed
throughout. The examples may be used to reproduce analyses in several published articles.
Two appendices provide more information about the R packages.

2. Matched pairs

2.1 The permutational t-test for matched pairs

There are I matched sets, i = 1, . . . , I, and ni subjects, j = 1, . . . , ni, in set i, where
ni = 2 for treatment-control pairs and ni = K + 1 for matching every treated subject to
K controls. One subject in each set is treated, denoted Zij = 1, the others are untreated
controls, denoted Zij = 0, so 1 =

∑ni
i=1 Zij for each i. The jth subject in set i would exhibit

response rTij if assigned to treatment with Zij = 1 or response rCij if assigned to control
with Zij = 0, so this subject actually exhibits response Rij = Zij rTij + (1− Zij) rCij and
the effect of treatment on this subject, namely rT ij − rCij , is not observed; see Neyman
(1923), Welch (1937) and Rubin (1974). Fisher’s (1935) null hypothesis H0 of no treatment
effect asserts that rTij = rCij for all i, j. The treatment has additive shift or constant
effect if rTij − rCij = τ for all i, j.

Consider, first, matched pairs with ni = 2 for all i. The treated-minus-control pair
difference in outcomes is Yi = (Zi1 − Zi2) (Ri1 −Ri2). If the treatment has an additive
effect τ , then Yi = τ + ϵi where ϵi = (Zi1 − Zi2) (rCi1 − rCi2) = ± |rCi1 − rCi2|, whereas,
under Fisher’s null hypothesis, H0, of no effect, the pair difference is Yi = ϵi. Under H0 in
a paired randomized experiment, Yi = ± |rCi1 − rCi2| with equal probabilities.
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In a randomized experiment, the permutational t-test is the randomization test that
uses as its test statistic either the total, T =

∑I
i=1 Yi, or the mean, (1/I)

∑I
i=1 Yi, where

these two statistics give the same permutational P -value. The permutation distribution
of the mean, or the permutational t-test, is of historical and conceptual importance, in
part because, in a randomized experiment, the expectation of (1/I)

∑I
i=1 Yi is the average

treatment effect, {1/ (2I)}
∑I

i=1

∑2
j=1 (rTij − rCij).

2.2 Using the permutational t-test in matched pairs

Werfel et al. (1998) matched 39 welders exposed to chromium and nickel to 39 unexposed
controls, measuring DNA damage in lymphocytes by DNA elution rates through polycar-
bonate filters with proteinase K (or ERPC+). Pairs were matched for age and smoking
habits. The data frame erpcp in both packages has two columns, welder and control, and
it contains the ERPC+ values for 39 pairs or rows.

The following calculations obtain the upper bound on the one-sided P -value testing the
null hypothesis of no treatment effect using the permutational t-test (method=“t”). For
Γ = 1, this is the usual randomization P -value for the mean difference, namely 2.048×10−5.
For Γ = 3, the upper bound is 0.0228. For Γ = 4, the upper bound is 0.0579, so P -values
well below and slightly above the conventional 0.05 level are possible under H0 if the bias
could be as large as Γ = 4. In other words, rejection of H0 is sensitive to unmeasured
biases of magnitude Γ = 4.

> library(sensitivitymw)
> data(erpcp)
> senmw(erpcp, gamma = 1, method = “t”)$pval
[1] 2.048115e− 05

> senmw(erpcp, gamma = 3, method = “t”)$pval
[1] 0.02275942
> senmw(erpcp, gamma = 4, method = “t”)$pval
[1] 0.0579339

Association does not imply causation, and that is always true, but logical implication
tells us less than sensitivity analysis of the data at hand. The sensitivity analysis says
that the observed association between welding and DNA elution rates is too strong to be
explained by a bias of Γ = 3, because the maximum possible P -value from a bias of Γ = 3 is
0.0228, so a bias of that magnitude would not make the null hypothesis of no effect plausible.
However, a bias of Γ = 4 would make the null hypothesis barely plausible, because with a
bias that large, the P -value could be as large as 0.0579 > 0.05. Saying that association does
not imply causation is essentially the same as saying that the upper bound on the P -value
tends to 1 as Γ → ∞.

The P -value bounds are one-sided. In a sensitivity analysis, it is safe though somewhat
conservative to obtain a two-sided P -value by doubling the smaller of two one-sided P -
values, reporting a two-sided bound of 0.02275942× 2 = 0.04551884 for Γ = 3. The reason
doubling the one-sided P -value is conservative in a sensitivity analysis is that the bias that
pushes the test statistic T into the upper tail is different from the bias that pushes it into
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the lower tail; see the related discussion of use of the Bonferroni inequality in sensitivity
analyses in Rosenbaum and Silber (2009a, §4.5).

The function senmwCI computes point estimates and confidence intervals for an additive
effect τ . For Γ = 1, there is a single point estimate, which for method= “t” is the mean
difference, mean(erpcp$welder-erpcp$control) = 0.5739. The default is a one-sided
0.05-level confidence interval. (The level is controlled by alpha and one-or-two sided is
controlled by one.sided.)

> senmwCI(erpcp, gamma = 1, method = “t”, one.sided = TRUE)
$PointEstimate
minimum maximum

0.5739 0.5739

$Confidence.Interval
minimum maximum

0.394 Inf

For Γ = 2, there is no longer a single point estimate, 0.5739, but rather an interval of
point estimates, [0.4167, 0.7487] and a longer 95% confidence interval, τ ≥ 0.2081. Notably,
with a bias of at most Γ = 2, the smallest possible point estimate of τ , namely 0.4167, is
still fairly large.

> senmwCI(erpcp, gamma = 2, method = “t”, one.sided = TRUE)
$PointEstimate
minimum maximum

0.4167 0.7487

$Confidence.Interval
minimum maximum

0.2081 Inf

In a sensitivity analysis, it is safe but somewhat conservative to form a 95% two-sided
confidence interval as the intersection of two one-sided 97.5% confidence intervals, for the
same reason that two-sided P -values are safe but somewhat conservative; see Rosenbaum
(1995, §2.1) for some details.

2.3 M-statistics for matched pairs

An M -statistic gives each Yi a controlled degree of influence. Let s be the median of
the |Yi| = |Ri1 −Ri2|, as in Maritz (1979). For matched pairs, the M -statistic is T =∑I

i=1 ψ (Yi/s) where ψ (·) is a suitable function. Taking ψ (y) = y yields the same P -values
as the permutational t-test. Huber (1981) proposed a ψ (·) that tops out at a constant h > 0
and bottoms out at −h, specifically ψ (y) = max {−h, min (y, h)} = sign (y) · min (|y| , h),
thereby limiting to ±hs the influence one observation Yi can have on the statistic T .

With the default settings (or method= “h”) in the erpcp data, the upper bounds on
P -values using Huber’s weights are similar to those from the permutational t-test in §2.2,
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but this will vary from one data set to another. In parallel, senmwCI may be used to obtain
a sensitivity analysis for point estimates and confidence intervals.

> senmw(erpcp, gamma = 1, method = “h”)$pval
[1] 6.402131e− 06

> senmw(erpcp, gamma = 2, method = “h”)$pval
[1] 0.002410713
> senmw(erpcp, gamma = 3, method = “h”)$pval
[1] 0.01859188
> senmw(erpcp, gamma = 4, method = “h”)$pval
[1] 0.05304687

(Some comments about default settings follow. By default, senmv, senmw and senmwCI

use the median of |Yi| to define s, but the user can select a different quantile by changing the
value of lambda, the default being lambda = 1/2 for the median. By default, h = 2.5 in
senmv and h = 3 in senmw and senmwCI, but the user can select different values by changing
the value of trim. If the Yi are discrete and most Yi equal zero, the median |Yi| is not
useful for scaling, and it may be reasonable to take lambda = .90 and h = trim = 1, which
resembles a trimmed mean.)

2.4 Amplification: an aid to interpreting Γ

When computing or reporting a sensitivity analysis, it is often convenient to have an analysis
indexed by a single parameter, Γ. As discussed in §1.3, the sensitivity analysis reports the
range of possible inferences when an unobserved bias alters the odds of treatment by a factor
of at most Γ. The extremes of that range are produced by a bias strongly related to the
outcome. An amplification interprets the single parameter Γ in terms of two parameters,
one Λ controlling the relationship between the unobserved bias and treatment assignment
Zij , the other ∆ controlling the relationship between the unobserved bias and the outcome
Yi. Here, Λ is the maximum impact of the bias on the odds of treatment, Zi1 − Zi2 = 1,
and ∆ is the maximum impact of the unobserved bias on the odds of a positive response
difference, Yi > 0. A bias of Γ is equivalent to the curve defined by Γ = (Λ∆+ 1) / (Λ +∆).
More precisely, under a certain semiparametric model for Yi and Zi1 − Zi2, a sensitivity
analysis at Γ gives exactly the same P -value bounds as all sensitivity analyses at (Λ,∆)
such that Γ = (Λ∆+ 1) / (Λ +∆). In other words, one can calculate and report using
one parameter Γ but have available the equivalent interpretations involving two parameters
(Λ,∆). See Rosenbaum and Silber (2009b) for a precise discussion.

The function amplify in the sensitivitymv package performs the required elementary
calculations. Specifically, the call amplify(gamma, lambda) takes a scalar Γ > 1 and a
vector of Λ’s and computes the corresponding vector of ∆’s. The analyses in §2.2 and §2.3
were insensitive to Γ = 3. The following call considers Λ = (4, 5, 6, 7).

> library(sensitivitymv)
> amplify(3, c(4 : 7))

The result is:
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4 5 6 7
11.00 7.00 5.67 5.00

For example, an unobserved covariate that increases the odds of treatment, Zi1 − Zi2 = 1,
by at most Λ = 5 and the odds of a positive response difference, Yi > 0, by at most
∆ = 7 is equivalent to Γ = 3. However, Γ = 3 is also equivalent to (Λ,∆) = (7, 5), to
(Λ,∆) = (4, 11), to (Λ,∆) = (11, 4), and to (Λ,∆) = (6, 5.67). That is, a bias of Γ = 3 is
quite a large bias, the omission of a covariate strongly related to both treatment assignment
and response.

Similarly, amplify(1.5,2) yields 4, so Γ = 1.5 corresponds with both (Λ,∆) = (2, 4)
and (Λ,∆) = (4, 2), while amplify(1.25,2) yields 2, so Γ = 1.25 corresponds (Λ,∆) =
(2, 2). In words, Γ = 1.25 corresponds with a doubling of the odds of treatment and
a doubling of the odds of a positive response difference, not a trivially small bias. In
Γ = (Λ∆+ 1) / (Λ +∆), as ∆ → ∞, the corresponding Λ approaches Γ.

3. Matched sets with multiple controls

3.1 M-statistics with multiple controls

With ni ≥ 2 subjects in set i, there are ni − 1 treated-minus-control pair differences, Yik,
k = 1, . . . , ni−1, all with the same treated subject, Zij = 1, but each with a different control,

Ziℓ = 0. The scale factor, s, is now defined to be the median of the
∑I

i=1

(
ni
2

)
absolute

differences,
∣∣Rij −Rij′

∣∣ with j < j′. The M -statistic is then T =
∑I

i=1wi
∑ni−1

k=1 ψ (Yik/s),

summing over all
∑I

i=1 (ni − 1) pair differences Yik, where set i is given weight wi. See
Rosenbaum (2007, 2014) for technical discussion of sensitivity analyses using these statistics.

There are various ways to attach weights wi to matched sets, and senmv and senmw

provide several options. Before discussing weights, consider an example with constant
weights, essentially an unweighted example, in which every treated subject is matched to
ni − 1 = 2 controls.

3.2 Example with two controls

Fish often contains mercury. Does eating large quantities of fish increase levels of mercury in
the blood? Data set mercury in the sensitivitymw package is from the 2009-2010 National
Health and Nutrition Examination Survey (NHANES) and is the example in Rosenbaum
(2014). There are 397 rows or matched triples and three columns, one treated with two
controls. The values are methylmercury levels in blood in µg/dL. Column 1, “Treated”,
describes an individual who had at least 15 servings of fish or shellfish in the previous
month. Column 2, “Zero”, describes an individual who had 0 servings of fish or shellfish
in the previous month. Column 2, “One”, describes an individual who had 1 serving of
fish or shellfish in the previous month. In the comparison here, Zero and One are not
distinguished; both are controls. Sets were matched for gender, age, education, household
income, black race, Hispanic, and cigarette consumption; see Table 1 in Rosenbaum (2014).
A description of the data follows.
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> data(mercury)
>summary(mercury[,1])
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.230 1.300 2.360 3.724 4.280 38.000

>summary(unlist(mercury[,2:3]))
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.230 0.330 0.520 0.781 0.880 14.600

The upper bounds on the one-sided P -value testing the null hypothesis H0 of no treat-
ment effect are above 0.05 for Γ = 16 for both the permutational t-test and using Huber’s
ψ-function. In this example, rejection of H0 is highly insensitive to unmeasured bias.

> senmw(mercury, gamma = 1, method = “t”)$pval
[1] 0
> senmw(mercury, gamma = 1, method = “h”)$pval
[1] 0
> senmw(mercury, gamma = 16, method = “t”)$pval
[1] 0.05208875
> senmw(mercury, gamma = 16, method = “h”)$pval
[1] 0.1187912

Consider the possible impact of a bias of magnitude Γ = 5 on estimates of an additive
effect, τ . The interval of point estimates is [0.93, 4.09] and the (somewhat conservative)
two-sided 95% confidence interval is [0.74, 4.66]. Notice that the confidence interval is only
a little longer than the interval of point estimates, indicating that most of the uncertainty
comes from the bias Γ = 5 rather than sampling variability.

> senmwCI(mercury, gamma = 5, method = “h”, one.sided = FALSE)
$PointEstimate
minimum maximum

0.93 4.09

$Confidence.Interval
minimum maximum

0.74 4.66

3.3 Weighting matched sets of unequal sizes

Data set tbmetaphase in the sensitivitymv package contains both matched pairs and
matched triples. It is the example in Rosenbaum (2007, §4.3), and the documentation for
senmv shows how to reproduce the analyses in that paper.

When matched sets have different sizes, different ni, it is natural to ask whether larger
sets should receive more weight in the analysis. Should a matched triple receive more
weight than a matched pair? The default in senmv aims for efficiency in a randomization
test, Γ = 1. The default in senmv uses weights wi that would be optimal with ψ (y) = y
under a Gaussian model with constant variance; see Rosenbaum (2007, §4.2) for specifics.
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In some studies, all treated subjects in some well-defined population are matched to
variable numbers of controls. In this case, one may wish to describe the actual population
of treated subjects, to use weights that refer to average effect of the treatment on treated
subjects. By setting TonT = TRUE in senmv, weights of this form are used. See the
documentation for senmv for specifics.

4. Evidence factors

4.1 What are evidence factors?

Some observational studies permit two nearly independent tests of the null hypothesis of no
treatment effect, tests that are likely to be influenced by different unmeasured biases; see
Rosenbaum (2010b, 2011), Zhang et al. (2011), and Zubizarreta et al. (2012). Although
the same data are used twice, when carefully designed the two tests are nonetheless nearly
independent, so the study provides an independent replicate of itself with a different design
subject to different biases. Two such tests are called two “evidence factors.” If the two
evidence factors support each other, then they provide somewhat stronger evidence of effect.
In Zhang et al. (2011), two evidence factors supported one-another, strengthening evidence
of effect, but in Zubizarreta et al. (2012) they contradicted each other, weakening evidence
of effect.

4.2 Combining P -values using truncatedP

Because two evidence factors are nearly independent, their P -values may be combined
by methods for combining independent P -values, for instance, by Fisher’s product of P -
values or by Zaykin et al. (2002)’s truncated product of P -values. The truncated product
is the product of those P -values less than or equal to a certain cutpoint, κ, 0 < κ ≤
1. For κ = 1, the truncated product is the same as Fisher’s method. When some
null hypotheses are composite, some null P -values will be much larger than the uniform
distribution, and the truncated product eliminates these. As discussed by Hsu et al. (2013),
the truncated product is often much better than Fisher’s method when combining P -value
bounds obtained by sensitivity analyses.

The two equivalent functions, truncatedP and truncatedPbg in the sensitivitymv

package, take as input a sequence of independent P -values (or independent P -value bounds)
and return the P -value (or P -value bound) for the truncated product. By default, the
truncation point is κ = trunc = 0.2, but see Hsu et al. (2013) for comparisons of different
κ’s in sensitivity analyses.

4.3 Example: two comparisons in matched triples

Meibian et al. (2008) used the mean tail moment (mtm) of the comet assay to study
possible DNA damage among workers exposed to chromium at a tannery. They compared
30 unexposed controls to 60 tannery workers, where the tannery workers divided into two
groups of 30, one with higher direct exposure to chromium, the other with lower indirect
exposure. The two evidence factors compare controls to tannery workers and low to high
exposure. Each comparison may be biased, but presumably the process that leads some
people to work at a tannery is a different process than the process that assigns jobs within
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the tannery. Weiss (1981) distinguishes doses varied by a single process, hence perhaps
biased by a single bias, and doses varied by more than one process, hence less easily biased by
a single bias. The claim that exposure to chromium damages DNA would be strengthened
by an observation that mtm is lower with no exposure than with exposure at the tannery,
and by an observation that mtm is lower with low exposure at the tannery than with
high exposure, whereas other patterns would weaken that claim. The data were used as an
example in Rosenbaum (2011), where technical specifics may be found. The documentation
for truncatedP and truncatedPbg shows how to reproduce the analyses in that paper.

The data set mtm in the sensitivitymv package has 30 rows for 30 matched triples, and
three columns for control (cmtm), low exposure (e2mtm), high exposure (e1mtm). The
first lines of mtm are:

cmtm e2mtm e1mtm

[1, ] 1.45 1.79 3.02
[2, ] 2.48 2.15 6.60

...

In the first factor (mtm), there is one control and two treated subjects. In the second
factor (the last two columns, mtm[,2:3]), there are low-versus-high dose matched pairs.
The P -values computed by senmv are one-sided, upper tail, so to look in the opposite tail
for low mean tail moments among controls or among low dose exposed individuals, we
replace mtm by its negative. We see that the comparison of tannery workers and controls
has a P -value bound of 0.049 at Γ = 11, whereas the comparison of low-versus-high exposure
among tannery workers has a P -value bound of 0.076 at Γ = 2. These two tests are nearly
independent; see Rosenbaum (2011) for the definition of “nearly”.

> nmtm < −(−mtm)
> senmv(nmtm, method = “h”, gamma = 11)$pval
[1] 0.04883432
> senmv(nmtm[, 2 : 3], method = “h”, gamma = 2)$pval
[1] 0.07641043

Combining the two P -value bounds gives a P -value bound for the combination of 0.019. If
the first factor is biased at Γ = 11 and the second factor is biased at Γ = 2, those two biases
are insufficient to prompt acceptance of the null hypothesis of no effect as judged by the
combined P -value bound.

> truncatedP(c(0.07641043, 0.04883432))
[1] 0.01855308

5. Effect modification

Effect modification means that the magnitude of a treatment effect is not constant, but
rather is larger for certain values of an observed covariate and smaller for other values.
If the covariate has been controlled by matching, the matched pairs may be split into
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subgroups of pairs, where one subgroup experiences larger effects than another. Hsu et
al. (2013) show that when there is effect modification, subgroup analyses that allow for
multiple testing may be much less sensitive to unmeasured biases than a single summary
analysis. In particular, they study combining P -value bounds using Zaykin et al. (2002)’s
truncated product for two or more nonoverlapping subgroups of pairs. In parallel with
§4.3, the calculations for such subgroup analyses may be performed using senmv, senmw,
and truncatedP.

6. Better choices of test statistics for sensitivity analyses

6.1 Power of a sensitivity analysis

The power of a sensitivity analysis — its ability to distinguish treatment effects from biases
— is affected by the choice of test statistic. Packages sensitivitymw and sensitivitymv

offer several options for statistics with high power in a sensitivity analysis. After review-
ing some conceptual issues, §6.2 discusses statistics for matched pairs and §6.3 discusses
statistics for matched sets with K ≥ 2 controls. The discussion here is a brief summary of
material from Rosenbaum (2010c, 2013, 2014).

In an observational study, if the treatment has an effect and there is no bias from
unmeasured covariates, then the investigator will not know this. The best the investigator
can hope to say in this favorable situation is that the study’s conclusions are insensitive
to small and moderate biases. The power of a sensitivity analysis is the probability that
the investigator will be able to say this. More precisely, for a specific Γ, the power of
a sensitivity analysis is the probability that the upper bound on the P -value is at most
α, conventionally α = 0.05. The power is computed under a model in which there is a
treatment effect but — unknown to the investigator — no bias from unmeasured covariates.
When computed with Γ = 1, this is the power of a randomized experiment.

In a randomized experiment, some tests are better than others in that they have more
power. In parallel, in a sensitivity analysis in an observational study, some tests are better
than others in that they have more power for interesting values of Γ. As the sample size, I,
increases, I → ∞, there is a value, Γ̃, called the design sensitivity, such that the power tends
to one if the sensitivity analysis is done with Γ < Γ̃ and the power tends to zero if Γ > Γ̃, so
Γ̃ is the limiting sensitivity to unmeasured biases in large samples. For example, if matched
pair differences Yi were independent with Normal distributions having mean τ = 1/2 and
variance 1, then Wilcoxon’s signed rank statistic has design sensitivity Γ̃ = 3.17, theM -test
with Huber’s ψ-function and h = 2 has Γ̃ = 3.3, the permutational t-test has Γ̃ = 3.5, but
an M -statistic with a different ψ-function (ψin in §6.2) has Γ̃ = 4.0; see Rosenbaum (2013,
Table 3). This means that if the sensitivity analysis were performed with Γ = 3.6, then the
power of the first three statistics is declining to zero with increasing sample size, I → ∞,
while the power of the fourth statistic is increasing to one. The fourth test statistic ignores
Yi with small |Yi|. Simulations show that the pattern suggested by Γ̃ as I → ∞ is quite
visible in the finite-sample power for I = 200.
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6.2 Test statistics for matched pairs: inner trimming

In matched pairs, inner trimming means ignoring pairs Yi with small |Yi|. The ψ-function
with inner trimming, ψin, ignores those Yi whose |Yi| is small compared to the scaling
constant s. By default in senmv and senmw, s is the median |Yi|, and by default ψin ignores
Yi if |Yi| < s/2. A case can be made for ignoring Yi if |Yi| < s, rather than the default of
s/2, but this means ignoring half of the pairs, and that will be advantageous only if I is
fairly large.

Before describing ψin, some intuition is helpful. Suppose that the Yi were independent
with Normal distributions having expectation τ = 1/2 and variance 1, and let Ai = |Yi|. If
|Yi| = 0.01, then the chance that Yi > 0 is 0.5025, almost a coin flip despite a substantial
treatment effect; that is, Pr (Yi > 0 |Ai = 0.01) = 0.5025. A very small bias could explain
such a faint signal, in fact a bias of Γ = 0.5025/ (1− 0.5025) = 1.01 would do it. Now
consider |Yi| = 2, so Yi is either 1.5 standard deviations above its expectation, τ = 1/2,
or 2.5 standard deviations below its expectation. Then the chance that Yi > 0 given
|Yi| = 2 is Pr (Yi > 0 |Ai = 2) = 0.8808 and the bias that would be needed to explain this
is Γ = 0.8808/ (1− 0.8808) = 7.39. So in distinguishing a treatment effect of τ = 1/2 with
Yi ∼ N (τ, 1) from bias Γ in treatment assignment, a pair with |Yi| = 2 is much more helpful
than a pair with |Yi| = 0.01. For more intuition along these lines, see the heuristic graph
of the abz-function in Rosenbaum (2010c). The abz-function (for Albers, Bickel and van
Zwet 1976) is abz(y) = Pr (Yi > 0 | |Yi| = y ) viewed as a function of y. To have high power
in a sensitivity analysis, a test statistic should pay close attention to values of y for which
abz(y) is large.

What precisely is ψin? The permutational t-test has a ψ-function of ψt (y) = y and
Huber’s ψ-function performs outer trimming at h for resistance to outliers with ψh (y) =
sign (y) · min (|y| , h). Let ι be a nonnegative number below h, 0 ≤ ι < h. The default
in method = “i” of senmv and method = “p” of senmw is ι = inner = 1/2. The ψ-
function with inner trimming, ψin, is proportional to sign (y) · max {0, min (|y| , h)− ι}.
Multiplying a ψ-function by a positive constant has no effect on P -values or estimates;
however, it may make it easier to compare two ψ-functions. In particular, the constant
h/ (h− ι) is helpful. So ψin (y) = {h/ (h− ι)} · sign (y) ·max {0, min (|y| , h)− ι}. Then
ψin (y) = 0 for y ∈ [−ι, ι]. Also, ψin (y) = h for y ≥ h and ψin (y) = −h for y ≤ −h; that
is, ψh (y) = ψin (y) for |y| ≥ h. Finally, between −h and −ι and between ι and h, ψin (y)
increases linearly.

Returning to the mercury data in §3.2, consider the matched pairs mercury[,1:2]

formed by comparing column treated (i.e., column 1) with ≥ 15 servings of fish in the
previous month and column zero (i.e., column 2) with 0 servings of fish. At Γ = 17, the
upper bound on the P -value using ψh (y) with h = trim = 3 is 0.064. If ψin (y) is used
instead with ι = inner = 1/2 and h = trim = 3, the upper bound on the P -value is 0.027
at Γ = 17 and 0.045 at Γ = 19. Theory and simulations suggest inner trimming increases
the power of a sensitivity analysis. In this one example, rejection of H0 is insensitive to
larger biases if inner trimming is used.
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> senmw(mercury[, 1 : 2], inner = 0, trim = 3, gamma = 17)$pval
[1] 0.0641723
> senmw(mercury[, 1 : 2], inner = 1/2, trim = 3, gamma = 17)$pval
[1] 0.02658181
> senmw(mercury[, 1 : 2], inner = 1/2, trim = 3, gamma = 19)$pval
[1] 0.04549254

6.3 Test statistics for matching with K ≥ 2 controls: dispersion weighting

To increase the power of a randomization test in randomized block experiments, Tukey
(1957), Quade (1979) and Tardiff (1987) suggested giving greater weight wi to blocks in
which the responses Rij are more dispersed. This is analogous to giving greater weight to
matched pairs in which |Yi| = |Ri1 −Ri2| is larger, as in §6.2.

A similar strategy increases the power of a sensitivity analysis in matched sets with
a fixed number K ≥ 2 of controls, as discussed in detail in Rosenbaum (2014). The
documentation for senmw shows how to reproduce the examples in that paper.

The matched triples in the mercury data were analyzed without weights in §3.2, in
particular using method = “h”, obtaining an upper bound on the P -value testing no effect
of 0.1188 at Γ = 16. If weights are used, largely ignoring matched sets i in which Ri1, Ri2,
and Ri3 are almost the same, using method method = “w”, the upper bound on the P -value
is 0.0091 at Γ = 16 and is 0.0364 at Γ = 19.

> senmw(mercury, method = “h”, gamma = 16)$pval
[1] 0.1187912
> senmw(mercury, method = “w”, gamma = 16)$pval
[1] 0.009092439
> senmw(mercury, method = “w”, gamma = 19)$pval
[1] 0.03644606

Again, theory and simulations suggest that a sensitivity analysis will be more powerful
if matched sets with little variability are given little weight. In the example, a sensitivity
analysis that gave greater weight wi to matched sets with more dispersed responses reported
greater insensitivity to unmeasured biases.

7. Using the data to select a test statistic

As seen above in several examples, the choice of test statistic affects the reported degree of
sensitivity to unmeasured biases. One can select a test statistic based on a priori consider-
ations, and advice about how to do that is given in Rosenbaum (2013, 2014). One cannot,
however, perform many analyses searching for the least sensitive result, unless one properly
takes account of multiple testing.

Heller et al. (2009) suggest splitting the sample at random into a 10% planning sample
and a 90% analysis sample, planning the study using the planning sample, discarding the
planning sample, and basing the analysis on the untouched analysis sample. In particular,
the planning sample may be used to guide the choice of test statistic.
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Another approach uses several tests and all of the data, but corrects for multiple testing
using the joint distribution of the several tests; see Rosenbaum (2012a,b). This is called
“testing one hypothesis twice” or briefly “testing twice”. The method in Rosenbaum (2012b)
is applicable to M -tests for matched pairs, and can be implemented using the mvtnorm

package in R. Small (2013) developed an R package SensitivityCaseControl that performs
several types of adaptive inference in observational studies, and in particular the function
adaptive.noether.brown in that package implements the method in Rosenbaum (2012a).

Finally, several tests may be used with adjustment for multiple testing by the Bonfer-
roni inequality. Use of the Bonferroni inequality is easy to implement, because the joint
distribution of the several test statistics is not needed, but it is also quite conservative in
this context. One reason it is conservative is that several tests of the same null hypothesis
using the same data are typically highly positively correlated, and in this case the Bonfer-
roni inequality is quite conservative; see Rosenbaum (2012b). Another reason, relevant to
matching with multiple controls, is that bounds on individual P -values may not be jointly
attainable; see Rosenbaum and Silber (2009a, §4.5).

Sample splitting, testing twice and use of the Bonferroni inequality are attractive in
this context in that they attain the design sensitivity of the best of the several tests under
consideration; see Heller et al. (2009) and Rosenbaum (2012b). Testing twice also achieves
the best Bahadur efficiency of the several tests; see Berk and Jones (1978) and Rosenbaum
(forthcoming).

8. Related articles and packages

The methods used in the two R packages are described in Rosenbaum (2007, 2014). ForM -
statistics, design sensitivity, the power of a sensitivity analysis, and inner trimming (§6) are
discussed in Rosenbaum (2013). Weighting matched sets to increase design sensitivity (§6.3)
is discussed in Rosenbaum (2014). Using M -statistics with evidence factors is discussed in
Rosenbaum (2011).

Two other R packages that perform sensitivity analyses in observational studies are
Keele’s (2014) rbounds package and Small’s (2013) SensitivityCaseControl. Specifically,
rbounds performs a sensitivity analysis for matched pairs using Wilcoxon’s signed rank
statistic and the associated Hodges-Lehmann estimates and confidence intervals. Also,
SensitivityCaseControl implements the adaptive method in Small et al. (2013) for case-
control studies with more than one case-definition and the adaptive method in Rosenbaum
(2012a).

Appendix I: Comments about Default Settings

The default settings in senmw and senmv are intended to be safe and familiar, rather than
recommended. Theory and simulations favor inner trimming for matched pairs (§6.2) and
dispersion weighting for matched sets with K ≥ 2 controls (§6.3), and I recommend these
methods, e.g., method = “p” for pairs and method = “w” for sets in senmw. Both approaches
are less useful, perhaps harmful, if I is small, say I < 50, and dispersion weighting is useful
with small numbers of controls in each set, say K = 2, 3, or 4 controls. The method

parameter defines useful, reasonable combinations of trimming, inner trimming, scaling,
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weighting, etc. The user can take method = NA and then specify trimming, inner trimming,
etc; however, some combinations are not reasonable, so thought is required.

Appendix II: Contents of the Packages

The main function in package sensivitymv is senmv. The functions amplify, truncatedP,
and truncatedPbg are also directly useful, and may be used in conjunction with functions
in package sensitivitymw. The data sets in package sensivitymv are erpcp, lead150,
lead250, mercury, mtm, and tbmetaphase.

The main functions in package sensitivitymw are senmw and senmwCI. The data sets
in package sensitivitymw are erpcp and mercury.

Packages sensivitymv and sensitivitymw share several functions that are called by
other functions, specifically mscorev, multrnks, newurks. If you load both packages,
during the second load you will see a harmless warning saying that you already have these
functions.

Package sensivitymv uses function separable1v while package sensitivitymw uses
separable1k. When there are matched pairs or a fixed number of controls, separable1k
is faster than separable1v, and this is important primarily when building confidence inter-
vals, because separable1k is then called iteratively. Both separable1k and separable1v

perform the asymptotically separable calculation discussed in Gastwirth, Krieger and Rosen-
baum (2000). Function senmwCI in sensitivitymw produces confidence intervals for pairs
and for matching with a fixed number of controls, but there is no corresponding function
for variable controls in the sensivitymv package.

All of the functions and data sets mentioned above are documented in the packages.
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