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Abstract. Based on JASA (2010) 105, 692-702, Biometrics (2011) 67, 1017-1027, AOAS (2012)
6, 83-105, Biometrika (2012) 99, 763-774, JASA (2015) 110, 205-217. Application in Zubizarreta
et al (2014).

1. Notation; Review

1.1. Treatment effects and treatment assignments. There are I pairs, i = 1, . . . , I, of two
subjects, j = 1, 2, one treated, Zij = 1, the other control, Zij = 0, with Zi1 + Zi2 = 1, matched
for x, so xi1 = xi2 but possibly differing in an unmeasured covariate, ui1 6= ui2. As in Neyman
(1923) & Rubin (1973), subject ij has potential responses rTij if treated Zij = 1, or rCij if control,
Zij = 0, so the observed response from ij is Rij = Zij rTij + (1− Zij) rCij , and the treatment
effect, rTij − rCij , is not observed. Fisher’s (1935) sharp null hypothesis of no treatment effect
asserts H0 : rTij = rCij , ∀ij. Write F = {(rTij , rCij ,xij , uij) , i = 1, . . . , I, j = 1, 2}. If there is
an additive effect, rTij − rCij = τ , ∀ij, then the ith treated-minus-control difference in observed
responses, Yi = (Zi1 − Zi2) (Ri1 −Ri2), is

(1.1) Yi = (Zi1 − Zi2) (rCi1 + Zi1τ − rCi2 − Zi2τ) = τ + εi where εi = (Zi1 − Zi2) (rCi1 − rCi2)

Write Ω for the set of possible values of Z = (Z11, Z12, . . . , ZI2)
T , so z ∈ Ω if z = (z11, z12, . . . , zI2)

T

with zij = 0 or zij = 1 and zi1 + zi2 = 1 for every i. Write Z for the event Z ∈ Ω.

1.2. General signed rank statistics testing no effect in a randomized experiment. In a
randomized paired experiment, one subject in each pair is picked at random to receive treatment, the
other receiving control, with independent assignments in distinct pairs, so Pr (Zij = 1 | F , Z) =
1
2 , ∀ij, and Pr (Z = z | F , Z) = 2−I for z ∈ Ω. If Fisher’s H0 were true, then Yi = YCi =
(Zi1 − Zi2) (rCi1 − rCi2). Let qi ≥ 0 be a function of the |Yi|’s such that qi = 0 if |Yi| = 0.
Let sgn (y) = 1 or 0 for, respectively y > 0 or y ≤ 0. A general signed rank statistic is T =∑I

i=1 sgn (Yi) qi. Wilcoxon’s signed rank statistic takes qi equal to the rank of |Yi| when |Yi| > 0.
The sign test takes qi = 1 when |Yi| > 0. Randomization creates the null distribution Pr (T | F , Z)
of T . Under H0, the absolute difference |Yi| = |YCi| = |rCi1 − rCi2| is fixed by conditioning on F ,
so qi is also fixed, and sgn (Yi) = 1 or 0 each with equal probability 1

2 if |Yi| > 0, or sgn (Yi) = 0
if |Yi| = 0; therefore, Pr (T | F , Z) is the distribution of the sum of the I independent discrete
random variables sgn {(Zi1 − Zi2) (rCi1 − rCi2)} qi, taking values qi or 0 with equal probabilities.

1.3. Sensitivity analysis in an observational study. A sensitivity analysis asks about the
magnitude of departure from Pr (Zij = 1 | F , Z) = 1

2 that would need to be present to alter the
qualitative conclusions of a study. A simple model for sensitivity analysis begins by assuming
that in the population prior to matching, subjects have independent treatment assignments with
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unknown probabilities, πij = Pr (Zij = 1 | F), such that two subjects, say ij and ij′, with the
same observed covariates, xij = xij′ , may differ in their odds of treatment, πij / (1− πij) and
πij′ / (1− πij′), by at most a factor of Γ ≥ 1, and then restricts the distribution of Z to Ω by
conditioning on the event Z; see Rosenbaum (2002,§4; 2011). This is the same as assuming

(1.2) Pr (Z = z | F , Z) =
exp

(
γ zTu

)∑
b∈Ω exp (γ bTu)

=
∏I

i=1

exp (γ zi1 ui1 + γ zi2 ui2)

exp (γ ui1) + exp (γ ui2)
, u ∈ [0, 1]

2I ,

for z ∈ Ω, where γ = log (Γ) ≥ 0, so the I terms in the product in (1.2), namely Pr (Zij = 1 | F , Z) =
exp (γ uij) / {exp (γ ui1) + exp (γ ui2)}, are bounded below by 1/ (1 + Γ) and above by Γ/ (1 + Γ).
For Γ = 1 and γ = 0, (1.2) equals the randomization distribution, Pr (Z = z | F , Z) = 2−I . Let

TΓ be the sum of I independent random variables where the ith random variable takes the value
qi with probability Γ/ (1 + Γ) and the value 0 with probability 1/ (1 + Γ), and let TΓ be defined in
the same way except with the roles of Γ/ (1 + Γ) and 1/ (1 + Γ) interchanged. It is straightforward
to show (Rosenbaum 1987) that, under Fisher’s H0 and (1.2), the null distribution of T satisfies

(1.3) Pr
(
TΓ ≥ k

∣∣ F , Z) ≤ Pr (T ≥ k | F , Z) ≤ Pr
(
TΓ ≥ k

∣∣∣ F , Z) for all u ∈ [0, 1]
2I ,

and the bounds are sharp, being attained for particular u ∈ [0, 1]
2I , so the bounds cannot be

improved without further information about u. Under mild conditions on the score function qi, as

I →∞, the probability Pr
(
TΓ ≥ k

∣∣∣ F , Z) may be approximated using a Normal approximation
to the distribution of TΓ with E

(
TΓ

∣∣∣ F , Z) = Γ
1+Γ

∑I
i=1 qi and var

(
TΓ

∣∣∣ F , Z) = Γ
(1+Γ)2

∑I
i=1 q

2
i

with an analogous approximation for TΓ.

2. Power of a sensitivity analysis; design sensitivity

For fixed Γ ≥ 1, (1.3) yields an upper bound on the one-sided significance level. For fixed Γ ≥ 1,
the power of an α level sensitivity analysis is the probability that this upper bound will be less than
or equal to α; see Rosenbaum (2004). For Γ = 1, this is the power of a randomization test. Power
is computed under some model for the generation of F and Z. In the ‘favorable situation’there
is a treatment effect and no bias from unmeasured covariates, and we hope to report insensitivity
to unmeasured bias. In the favorable situation, Z is randomized, Zi1 − Zi2 = ±1 with equal
conditional probabilities of 1

2 given (F ,Z), and F is produced under some model for treatment
effects. In the discussion here, the Yi in (1.1) are independent and identically distributed with a
distribution G (·) with density g (·); e.g., Yi ∼ N (τ , 1). Not knowing that we are in the favorable
situation, we perform a sensitivity analysis hoping to report a high degree of insensitivity when the
favorable situation does arise.
Given a test statistic and model generating F , there is a value Γ̃, the design sensitivity, such

that, as I →∞, the power of the sensitivity analysis tends to 1 if performed with Γ < Γ̃ and to 0
if performed with Γ > Γ̃. In large sample sizes, this test statistic can distinguish this model for F
from all biases smaller than Γ̃ but not from some biases larger than Γ̃.

3. A new U-statistic

Fix an integerm with 1 ≤ m ≤ I, writeK for the set containing the
(
I
m

)
sequences I = 〈i1, . . . , im〉

of m distinct integers 1 ≤ i1 < · · · < im ≤ I, and write YI = 〈Yi1 , . . . , Yim〉. A U-statistic

(Hoeffding 1948) has the form T =
(
I
m

)−1∑
I∈K h (YI) where the kernel, h (·), is a symmetric
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Table 1. Simulated power of a one-sided 0.05 level sensitivity analysis conducted
with Γ = 3, I = 250 pairs, and Yi = τ + εi where errors are standard Normal,
standard logistic or t-distributed with 4 degrees of freedom.

Errors Normal Logistic t with 4 df
Statistic τ = 1/2 τ = 1 τ = 1
Wilcoxon 0.08 0.40 0.43
(8,7,8) 0.63 0.74 0.57
(20,16,19) 0.52 0.69 0.61

function of its m arguments 〈Yi1 , . . . , Yim〉. For I = 〈i1, . . . , im〉 ∈ K, sort Yi1 , . . . , Yim , into in-
creasing order by their absolute values, 0 <

∣∣Y[I,1]

∣∣ < · · · < ∣∣Y[I,m]

∣∣. Fix two integers m, m with
1 ≤ m ≤ m ≤ m. In the new u-statistic, h (YI) is the number of positive differences among
Y[I,m], . . . , Y[I,m], so h (YI) is an integer in {0, 1, . . . ,m−m+ 1}. If m = m = m = 1, then
h (YI) = sgn (Yi1) = sgn

(
Y[I,1]

)
and T is the sign statistic, whereas if m = m = m = 2, then

h (YI) = sgn
(
Y[I,2]

)
, and T is the U-statistic that closely approximates Wilcoxon’s signed rank

statistic. If m = m = m, then h (YI) = sgn
(
Y[I,m]

)
and T is Stephenson’s (1981) statistic which

has excellent power when only a subset of treated subjects respond to treatment; see Conover and
Salsburg (1988) and Rosenbaum (2010, DOS, §16). With m = 8, the statistic (m,m,m) = (8, 7, 8)
has h (YI) = sgn

(
Y[I,7]

)
+sgn

(
Y[I,8]

)
with values 0, 1, 2. This U-statistic is a signed rank statistic

with qi =
(
I
m

)−1∑m
`=m

(
ai−1
`−1

)(
I−ai
m−`

)
where ai is the rank of |Yi| .

Table 2. Design sensitivities Γ̃ with additive effect τ . Errors are standard Normal,
standard logistic or t-distributed.

Errors Normal Logistic t with 4 df t with 3 df
Statistic τ = 1/2 τ = 1 τ = 1 τ = 1
Wilcoxon 3.2 3.9 6.8 6.0
(8,7,8) 5.1 5.5 9.1 6.8
(8,6,7) 3.5 4.5 9.0 7.7
(20,16,19) 4.9 5.6 10.1 7.8

3.1. A formula for the design sensitivity. Assume Yi are iid from some distribution G (·) and
there is no unobserved bias, Pr (Zij | F , Z) = 1

2 . Let θ = E {h (YI)}.
Proposition: The design sensitivity of the U-statistic (m,m,m) is Γ̃ = θ/ (m−m+ 1− θ).

4. Testing one hypothesis twice

Suppose there are two tests of H0 using the same Yi but different scores, T =
∑I

i=1 sgn (Yi) qi
and T ′ =

∑I
i=1 sgn (Yi) q

′

i, where qi ≥ 0 and q
′

i ≥ 0. It is important here that T and T ′ both receive
a nonnegative contribution whenever sgn (Yi) = 1 or Yi > 0. In the sensitivity analysis, there are

now two upper bound random variables, TΓ and T
′
Γ, which are each the sum of I independent

random variables, both taking the value 0 with probability 1/ (1 + Γ) or else the values qi and
q
′

i with probability Γ/ (1 + Γ). Under mild conditions on the scores, qi and q
′

i, as I → ∞, the
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joint distribution of T and T
′
tends to a bivariate Normal distribution with known, typically high

correlation ρ. The bounding statistics
(
T , T

′)
are jointly stochastically larger than (T, T ′). Hence,

the required computations when you pick the least sensitive of two tests involve straightforward
manipulations with the bivariate Normal distribution. With L tests, L ≥ 2, the computations
involve an L-variate Normal distribution. Computate using the mvtnorm package in R. Joint
method has design sensitivity equal to the maximum of the L design sensitivities of the L tests.
Related software: http://www-stat.wharton.upenn.edu/~rosenbap/software.html
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