TESTING ONE HYPOTHESIS TWICE IN OBSERVATIONAL STUDIES

PAUL R. ROSENBAUM

ABSTRACT. Based on JASA (2010) 105, 692-702, Biometrics (2011) 67, 1017-1027, AOAS (2012) 6, 83-105, Biometrika (2012) 99, 763-774, JASA (2015) 110, 205-217. Application in Zubizarreta et al (2014).

1. NOTATION; REVIEW

1.1. Treatment effects and treatment assignments. There are I pairs, i = 1, ..., I, of two subjects, j = 1, 2, one treated, $Z_{ij} = 1$, the other control, $Z_{ij} = 0$, with $Z_{i1} + Z_{i2} = 1$, matched for \mathbf{x} , so $\mathbf{x}_{i1} = \mathbf{x}_{i2}$ but possibly differing in an unmeasured covariate, $u_{i1} \neq u_{i2}$. As in Neyman (1923) & Rubin (1973), subject ij has potential responses r_{Tij} if treated $Z_{ij} = 1$, or r_{Cij} if control, $Z_{ij} = 0$, so the observed response from ij is $R_{ij} = Z_{ij} r_{Tij} + (1 - Z_{ij}) r_{Cij}$, and the treatment effect, $r_{Tij} - r_{Cij}$, is not observed. Fisher's (1935) sharp null hypothesis of no treatment effect asserts $H_0: r_{Tij} = r_{Cij}, \forall ij$. Write $\mathcal{F} = \{(r_{Tij}, r_{Cij}, \mathbf{x}_{ij}, u_{ij}), i = 1, ..., I, j = 1, 2\}$. If there is an additive effect, $r_{Tij} - r_{Cij} = \tau, \forall ij$, then the *i*th treated-minus-control difference in observed responses, $Y_i = (Z_{i1} - Z_{i2}) (R_{i1} - R_{i2})$, is

(1.1)
$$Y_i = (Z_{i1} - Z_{i2}) (r_{Ci1} + Z_{i1}\tau - r_{Ci2} - Z_{i2}\tau) = \tau + \epsilon_i$$
 where $\epsilon_i = (Z_{i1} - Z_{i2}) (r_{Ci1} - r_{Ci2})$

Write Ω for the set of possible values of $\mathbf{Z} = (Z_{11}, Z_{12}, \dots, Z_{I2})^T$, so $\mathbf{z} \in \Omega$ if $\mathbf{z} = (z_{11}, z_{12}, \dots, z_{I2})^T$ with $z_{ij} = 0$ or $z_{ij} = 1$ and $z_{i1} + z_{i2} = 1$ for every *i*. Write \mathcal{Z} for the event $\mathbf{Z} \in \Omega$.

1.2. General signed rank statistics testing no effect in a randomized experiment. In a randomized paired experiment, one subject in each pair is picked at random to receive treatment, the other receiving control, with independent assignments in distinct pairs, so $\Pr(Z_{ij} = 1 | \mathcal{F}, \mathcal{Z}) = \frac{1}{2}$, $\forall ij$, and $\Pr(\mathbf{Z} = \mathbf{z} | \mathcal{F}, \mathcal{Z}) = 2^{-I}$ for $\mathbf{z} \in \Omega$. If Fisher's H_0 were true, then $Y_i = Y_{Ci} = (Z_{i1} - Z_{i2}) (r_{Ci1} - r_{Ci2})$. Let $q_i \geq 0$ be a function of the $|Y_i|$'s such that $q_i = 0$ if $|Y_i| = 0$. Let $\operatorname{sgn}(y) = 1$ or 0 for, respectively y > 0 or $y \leq 0$. A general signed rank statistic is $T = \sum_{i=1}^{I} \operatorname{sgn}(Y_i) q_i$. Wilcoxon's signed rank statistic takes q_i equal to the rank of $|Y_i|$ when $|Y_i| > 0$. The sign test takes $q_i = 1$ when $|Y_i| > 0$. Randomization creates the null distribution $\Pr(T | \mathcal{F}, \mathcal{Z})$ of T. Under H_0 , the absolute difference $|Y_i| = |Y_{Ci}| = |r_{Ci1} - r_{Ci2}|$ is fixed by conditioning on \mathcal{F} , so q_i is also fixed, and $\operatorname{sgn}(Y_i) = 1$ or 0 each with equal probability $\frac{1}{2}$ if $|Y_i| > 0$, or $\operatorname{sgn}(Y_i) = 0$ if $|Y_i| = 0$; therefore, $\Pr(T | \mathcal{F}, \mathcal{Z})$ is the distribution of the sum of the I independent discrete random variables $\operatorname{sgn}\{(Z_{i1} - Z_{i2}) (r_{Ci1} - r_{Ci2})\} q_i$, taking values q_i or 0 with equal probabilities.

1.3. Sensitivity analysis in an observational study. A sensitivity analysis asks about the magnitude of departure from $\Pr(Z_{ij} = 1 | \mathcal{F}, \mathcal{Z}) = \frac{1}{2}$ that would need to be present to alter the qualitative conclusions of a study. A simple model for sensitivity analysis begins by assuming that in the population prior to matching, subjects have independent treatment assignments with

 $[\]textit{Date: May 2015} \quad \textit{rosenbaum@wharton.upenn.edu} \quad \textit{http://www-stat.wharton.upenn.edu/~rosenbap/.}$

PAUL R. ROSENBAUM

unknown probabilities, $\pi_{ij} = \Pr(Z_{ij} = 1 | \mathcal{F})$, such that two subjects, say ij and ij', with the same observed covariates, $\mathbf{x}_{ij} = \mathbf{x}_{ij'}$, may differ in their odds of treatment, $\pi_{ij} / (1 - \pi_{ij})$ and $\pi_{ij'} / (1 - \pi_{ij'})$, by at most a factor of $\Gamma \geq 1$, and then restricts the distribution of \mathbf{Z} to Ω by conditioning on the event \mathcal{Z} ; see Rosenbaum (2002,§4; 2011). This is the same as assuming

(1.2)
$$\Pr\left(\mathbf{Z}=\mathbf{z} \mid \mathcal{F}, \mathcal{Z}\right) = \frac{\exp\left(\gamma \, \mathbf{z}^{T} \mathbf{u}\right)}{\sum_{\mathbf{b}\in\Omega} \exp\left(\gamma \, \mathbf{b}^{T} \mathbf{u}\right)} = \prod_{i=1}^{I} \frac{\exp\left(\gamma \, z_{i1} \, u_{i1} + \gamma \, z_{i2} \, u_{i2}\right)}{\exp\left(\gamma \, u_{i1}\right) + \exp\left(\gamma \, u_{i2}\right)}, \ \mathbf{u} \in [0, 1]^{2I}$$

for $\mathbf{z} \in \Omega$, where $\gamma = \log(\Gamma) \geq 0$, so the *I* terms in the product in (1.2), namely $\Pr(Z_{ij} = 1 | \mathcal{F}, \mathcal{Z}) = \exp(\gamma u_{ij}) / \{\exp(\gamma u_{i1}) + \exp(\gamma u_{i2})\}$, are bounded below by $1/(1 + \Gamma)$ and above by $\Gamma/(1 + \Gamma)$. For $\Gamma = 1$ and $\gamma = 0$, (1.2) equals the randomization distribution, $\Pr(\mathbf{Z} = \mathbf{z} | \mathcal{F}, \mathcal{Z}) = 2^{-I}$. Let $\overline{\overline{T}}_{\Gamma}$ be the sum of *I* independent random variables where the *i*th random variable takes the value q_i with probability $\Gamma/(1 + \Gamma)$ and the value 0 with probability $1/(1 + \Gamma)$, and let \overline{T}_{Γ} be defined in the same way except with the roles of $\Gamma/(1 + \Gamma)$ and $1/(1 + \Gamma)$ interchanged. It is straightforward to show (Rosenbaum 1987) that, under Fisher's H_0 and (1.2), the null distribution of *T* satisfies

(1.3)
$$\Pr\left(\overline{T}_{\Gamma} \geq k \mid \mathcal{F}, \mathcal{Z}\right) \leq \Pr\left(T \geq k \mid \mathcal{F}, \mathcal{Z}\right) \leq \Pr\left(\overline{\overline{T}}_{\Gamma} \geq k \mid \mathcal{F}, \mathcal{Z}\right) \text{ for all } \mathbf{u} \in [0, 1]^{2I},$$

and the bounds are sharp, being attained for particular $\mathbf{u} \in [0,1]^{2I}$, so the bounds cannot be improved without further information about \mathbf{u} . Under mild conditions on the score function q_i , as $I \to \infty$, the probability $\Pr\left(\overline{\overline{T}}_{\Gamma} \ge k \mid \mathcal{F}, \mathcal{Z}\right)$ may be approximated using a Normal approximation to the distribution of $\overline{\overline{T}}_{\Gamma}$ with $\operatorname{E}\left(\overline{\overline{T}}_{\Gamma} \mid \mathcal{F}, \mathcal{Z}\right) = \frac{\Gamma}{1+\Gamma} \sum_{i=1}^{I} q_i$ and $\operatorname{var}\left(\overline{\overline{T}}_{\Gamma} \mid \mathcal{F}, \mathcal{Z}\right) = \frac{\Gamma}{(1+\Gamma)^2} \sum_{i=1}^{I} q_i^2$ with an analogous approximation for \overline{T}_{Γ} .

2. Power of a sensitivity analysis; design sensitivity

For fixed $\Gamma \geq 1$, (1.3) yields an upper bound on the one-sided significance level. For fixed $\Gamma \geq 1$, the power of an α level sensitivity analysis is the probability that this upper bound will be less than or equal to α ; see Rosenbaum (2004). For $\Gamma = 1$, this is the power of a randomization test. Power is computed under some model for the generation of \mathcal{F} and \mathbf{Z} . In the 'favorable situation' there is a treatment effect and no bias from unmeasured covariates, and we hope to report insensitivity to unmeasured bias. In the favorable situation, \mathbf{Z} is randomized, $Z_{i1} - Z_{i2} = \pm 1$ with equal conditional probabilities of $\frac{1}{2}$ given $(\mathcal{F}, \mathcal{Z})$, and \mathcal{F} is produced under some model for treatment effects. In the discussion here, the Y_i in (1.1) are independent and identically distributed with a distribution $G(\cdot)$ with density $g(\cdot)$; e.g., $Y_i \sim N(\tau, 1)$. Not knowing that we are in the favorable situation, we perform a sensitivity analysis hoping to report a high degree of insensitivity when the favorable situation does arise.

Given a test statistic and model generating \mathcal{F} , there is a value $\widetilde{\Gamma}$, the design sensitivity, such that, as $I \to \infty$, the power of the sensitivity analysis tends to 1 if performed with $\Gamma < \widetilde{\Gamma}$ and to 0 if performed with $\Gamma > \widetilde{\Gamma}$. In large sample sizes, this test statistic can distinguish this model for \mathcal{F} from all biases smaller than $\widetilde{\Gamma}$ but not from some biases larger than $\widetilde{\Gamma}$.

3. A NEW U-STATISTIC

Fix an integer m with $1 \le m \le I$, write \mathcal{K} for the set containing the $\binom{I}{m}$ sequences $\mathcal{I} = \langle i_1, \ldots, i_m \rangle$ of m distinct integers $1 \le i_1 < \cdots < i_m \le I$, and write $\mathbf{Y}_{\mathcal{I}} = \langle Y_{i_1}, \ldots, Y_{i_m} \rangle$. A U-statistic (Hoeffding 1948) has the form $T = \binom{I}{m}^{-1} \sum_{\mathcal{I} \in \mathcal{K}} h(\mathbf{Y}_{\mathcal{I}})$ where the kernel, $h(\cdot)$, is a symmetric

TESTING TWICE

TABLE 1. Simulated power of a one-sided 0.05 level sensitivity analysis conducted with $\Gamma = 3$, I = 250 pairs, and $Y_i = \tau + \epsilon_i$ where errors are standard Normal, standard logistic or t-distributed with 4 degrees of freedom.

Errors	Normal	Logistic	t with 4 df
Statistic	$\tau = 1/2$	$\tau = 1$	au = 1
Wilcoxon	0.08	0.40	0.43
(8,7,8)	0.63	0.74	0.57
(20, 16, 19)	0.52	0.69	0.61

function of its *m* arguments $\langle Y_{i_1}, \ldots, Y_{i_m} \rangle$. For $\mathcal{I} = \langle i_1, \ldots, i_m \rangle \in \mathcal{K}$, sort Y_{i_1}, \ldots, Y_{i_m} , into increasing order by their absolute values, $0 < |Y_{[\mathcal{I},1]}| < \cdots < |Y_{[\mathcal{I},m]}|$. Fix two integers $\underline{m}, \overline{m}$ with $1 \leq \underline{m} \leq \overline{m} \leq m$. In the new u-statistic, $h(\mathbf{Y}_{\mathcal{I}})$ is the number of positive differences among $Y_{[\mathcal{I},\underline{m}]}, \ldots, Y_{[\mathcal{I},\overline{m}]}$, so $h(\mathbf{Y}_{\mathcal{I}})$ is an integer in $\{0, 1, \ldots, \overline{m} - \underline{m} + 1\}$. If $m = \overline{m} = \underline{m} = 1$, then $h(\mathbf{Y}_{\mathcal{I}}) = \operatorname{sgn}(Y_{i_1}) = \operatorname{sgn}(Y_{[\mathcal{I},1]})$ and T is the sign statistic, whereas if $m = \overline{m} = \underline{m} = 2$, then $h(\mathbf{Y}_{\mathcal{I}}) = \operatorname{sgn}(Y_{[\mathcal{I},2]})$, and T is the U-statistic that closely approximates Wilcoxon's signed rank statistic. If $m = \overline{m} = \underline{m}$, then $h(\mathbf{Y}_{\mathcal{I}}) = \operatorname{sgn}(Y_{[\mathcal{I},2]})$, and T is the U-statistic that closely approximates Wilcoxon's signed rank statistic. If $m = \overline{m} = \underline{m}$, then $h(\mathbf{Y}_{\mathcal{I}}) = \operatorname{sgn}(Y_{[\mathcal{I},m]})$ and T is Stephenson's (1981) statistic which has excellent power when only a subset of treated subjects respond to treatment; see Conover and Salsburg (1988) and Rosenbaum (2010, DOS, §16). With m = 8, the statistic $(m, \underline{m}, m) = (8, 7, 8)$ has $h(\mathbf{Y}_{\mathcal{I}}) = \operatorname{sgn}(Y_{[\mathcal{I},7]}) + \operatorname{sgn}(Y_{[\mathcal{I},8]})$ with values 0, 1, 2. This U-statistic is a signed rank statistic which $q_i = \binom{I}{m}^{-1} \sum_{\ell=\underline{m}}^{\overline{m}} \binom{a_i-1}{\ell_{\ell-1}} \binom{I-a_i}{m-\ell}$ where a_i is the rank of $|Y_i|$.

TABLE 2. Design sensitivities $\widetilde{\Gamma}$ with additive effect τ . Errors are standard Normal, standard logistic or *t*-distributed.

Errors	Normal	Logistic	t with 4 df	t with 3 df
Statistic	$\tau = 1/2$	$\tau = 1$	au = 1	$\tau = 1$
Wilcoxon	3.2	3.9	6.8	6.0
(8,7,8)	5.1	5.5	9.1	6.8
(8, 6, 7)	3.5	4.5	9.0	7.7
(20, 16, 19)	4.9	5.6	10.1	7.8

3.1. A formula for the design sensitivity. Assume Y_i are *iid* from some distribution $G(\cdot)$ and there is no unobserved bias, $\Pr(Z_{ij} | \mathcal{F}, \mathcal{Z}) = \frac{1}{2}$. Let $\theta = \mathbb{E} \{h(\mathbf{Y}_{\mathcal{I}})\}$.

Proposition: The design sensitivity of the U-statistic $(m, \underline{m}, \overline{m})$ is $\widetilde{\Gamma} = \theta / (\overline{m} - \underline{m} + 1 - \theta)$.

4. Testing one hypothesis twice

Suppose there are two tests of H_0 using the same Y_i but different scores, $T = \sum_{i=1}^{I} \operatorname{sgn}(Y_i) q_i$ and $T' = \sum_{i=1}^{I} \operatorname{sgn}(Y_i) q'_i$, where $q_i \ge 0$ and $q'_i \ge 0$. It is important here that T and T' both receive a nonnegative contribution whenever $\operatorname{sgn}(Y_i) = 1$ or $Y_i > 0$. In the sensitivity analysis, there are now two upper bound random variables, $\overline{\overline{T}}_{\Gamma}$ and $\overline{\overline{T}}'_{\Gamma}$, which are each the sum of I independent random variables, both taking the value 0 with probability $1/(1 + \Gamma)$ or else the values q_i and q'_i with probability $\Gamma/(1 + \Gamma)$. Under mild conditions on the scores, q_i and q'_i , as $I \to \infty$, the

PAUL R. ROSENBAUM

joint distribution of $\overline{\overline{T}}$ and $\overline{\overline{T}}'$ tends to a bivariate Normal distribution with known, typically high correlation ρ . The bounding statistics $(\overline{\overline{T}}, \overline{\overline{T}}')$ are jointly stochastically larger than (T, T'). Hence, the required computations when you pick the least sensitive of two tests involve straightforward manipulations with the bivariate Normal distribution. With L tests, $L \geq 2$, the computations involve an L-variate Normal distribution. Computate using the mvtnorm package in R. Joint method has design sensitivity equal to the maximum of the L design sensitivities of the L tests.

Related software: http://www-stat.wharton.upenn.edu/~rosenbap/software.html

5. References

- Albers, W., Bickel, P. J., van Zwet, W. R. (1976), "Asymptotic expansions for the power of distribution free tests in the one sample problem," Ann. Stat., 4, 108-156. (The abz(y) function.)
- Berk, R. H., Jones, D. H. (1978), "Relatively optimal combinations of test statistics," Scand. J. Statist., 5, 158–162. (Bahadur efficiency of the minimum P-value.)
- Conover, W. J. & Salsburg, D. S. (1988), "Locally most powerful tests for treatment effects when only a subset can be expected to 'respond' to treatment," *Biometrics*, 44, 189-196.
- Cornfield, J., et al. (1959), "Smoking and lung cancer," JNCI, 22, 173-203.
- Heller, R., Rosenbaum, P. R., Small, D. S. (2009), "Split samples and design sensitivity in observational studies," JASA, 104, 1090-1101.
- Hoeffding, W. (1948), "A class of statistics with asymptotically normal distribution," Ann. Math. Statist., 19, 293-325.(Introduces U-statistics.)
- Neyman, J. (1923, 1990), "On the application of probability theory to agricultural experiments," *Stat. Sci.*, 5, 463-480.
- Rosenbaum, P. R. (2002), Observational Studies, NY: Springer.
- Rosenbaum, P. R. (2004), "Design sensitivity in observational studies," Biometrika, 91, 153-64.
- Rosenbaum, P. R. (2010), Design of Observational Studies, NY: Springer.
- Rosenbaum, P. R. (2010), "Design sensitivity and efficiency in observational studies," JASA, 105, 692-702.
- Rosenbaum, P. R. (2011), "A new U-statistic with superior design sensitivity in matched observational studies," *Biometrics*, 67, 1017-1027.
- Rosenbaum, P. R. (2012a), "An exact, adaptive test with superior design sensitivity in an observational study of treatments for ovarian cancer," Ann. Appl. Statist., 6, 83-105.
- Rosenbaum, P. R. (2012b), "Testing one hypothesis twice in observational studies," *Biometrika*, 99, 763-774.
- Rosenbaum, P. R. (2015), "Bahadur efficiency of sensitivity analyses in observational studies," JASA, 110, 205-217. (Connects design sensitivity and Bahadur efficiency.)
- Rubin, D. B. (1974), "Estimating causal effects of treatments in randomized and nonrandomized studies," J. Ed. Psych., 66, 688-701.
- Stephenson, W. R. (1981), "A general class of one-sample nonparametric test statistics based on subsamples," JASA, 76, 960-966.
- Zubizarreta, J. R., Paredes, R. D., and Rosenbaum, P. R. (2014), "Matching for balance, pairing for heterogeneity in an observational study of for-profit and not-for-profit high schools in Chile. *Ann. App. Statist.*, 8, 204-231. (Application of testing twice.)

DEPARTMENT OF STATISTICS, UNIVERSITY OF PENNSYLVANIA, PHILADELPHIA PA 19104