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Abstract� Complementing the results claiming that the maximal length Ln of an increasing
subsequence in a random permutation of f�� �� � � � � ng is highly concentrated� we show that

Ln is not concentrated in a short interval� supl P�l � Ln � l � n���� log���� n� � 	 as
n��


�� Introduction

Ulam ��� proposed the study of Ln� the maximal length of an increasing subsequence
of a random permutation of the set �n� � f�� �� � � � � ng	 Hammersley �
�� Logan and Shepp
���� and Ver�sik and Kerov ��� proved that ELn � �

p
n and

Ln�
p
n

p�� � as n��� ��	��

Frieze ��� showed that the distribution of Ln is sharply concentrated about its mean� his
result was improved by Bollob�as and Brightwell ���� who in particular proved that

Var�Ln� � O�n���
�
logn� log logn��

�
� ��	��

�The log factors have recently been removed by Talagrand ���	� Somewhat surprisingly� it is
not known that the distribution of Ln is not much more concentrated than claimed by ��	��	
In fact� it has not even been ruled out that if w�n��� then P�jLn�ELnj � w�n��� 
as n � �	 Our aim in this paper is to rule out this possibility for a fairly fast�growing
function w�n�� and to give a lower bound for Var�Ln�� complementing ��	��	

Theorem ��

P�jLn � ELnj � n���� log���� n��  as n���

More generally� if an and bn are any numbers such that

inf P�an � Ln � bn� � � then �bn � an��n
���� log���� n���

In particular� for su�ciently large n�

VarLn � n��� log���� n�

There is still a wide gap between the upper and lower bound� and there is no reason to
believe that the bounds given here are the best possible	 In fact� a boot�strap argument
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suggests that the range of variation is at least about n����� see Theorem � below� and
it is quite possible that the upper bound in ��	�� is sharp up to logarithmic factors� as
conjectured in ���	

It is well�known that Ln also can be de�ned as the height of the random partial order
de�ned as follows	 Consider the unit square Q � �� ��� with the coordinate order	 Thus
for �x� y�� �x�� y�� � Q set �x� y� � �x�� y�� if and only if x � x� and y � y�� let ��i�

�
i	� be

independent� uniformly distributed random points in Q and consider the induced partial
order on the set ��i�

n
i	�	

Let � �  be a constant and let m be the Lebesque measure in Q	 Let us regard a
Poisson process with intensity �dm in Q as a random subset of Q	 Equivalently� let N be
independent of ��i�

�
� � with distribution Po���� and take the set f�i � � � i � Ng	 Write

H� for the height of the induced partial order on this set	
In ��� the proof of ��	�� was based on a study of Hn	 In particular they proved that

P
�
jHn � EHnj � K�	

n��� logn

log logn

�
� e��

�

��	��

for some constant K�� every n � � and every 	 with � � 	 � n���� log logn	 For larger 	
their proof yields

P�jHn � EHnj � K�	
� log 	� � e��

�

� ��	
�

These inequalities hold for non�integer n as well� and that if n � � and � � 	 �
n���� log logn� then for every � � n� we have

P
�
jH� � EH�j � K�	

n��� log n

log logn

�
� e��

�

� ��	��

It is rather curious that our proof of a lower bound will use these results together with�
as well as the following estimate from ����

 � �n��� � EHn � K�n
��� log��� n� log log n� ��	��

Remark� It is shown in ��� that ��	�� holds for Ln as well	 �The same is true for ��	
� and
��	��	� Similarly� Theorem � holds for Hn too� this follows from the proof of Theorem �
below� with a few simpli�cations	

The variables Ln and Hn may be de�ned� more generally� for random subsets of the
d�dimensional cube �� ��d	 The results in ��� include this generalization� and it would be
interesting to �nd lower bounds for the variance	 Unfortunately� and somewhat surpris�
ingly� the method used here does not work when d � �	 We try to explain this failure at
the end of the paper	

�� Proof of Theorem �

The idea behind the proof is that Ln essentially depends only on the points in a strip
of measure n�� for some 
 �  �
 � ��� if we ignore logarithmic factors�	 The number
of points in this strip is approximately Poisson distributed with expectation n���� hence
the random variation of this number is of order n
������ and the relative variation is
n�
������	 This ought to correspond to a relative variation in the height of the same order
n�
������� ignoring the further variation due to the random position of the points� which
would give a variation of order at least n��� 	 n�
������ � n���	

We introduce some notation	 For a Borel set S 
 Q� let

Nn�S� � jfi � n � �i � Sgj





be the number of those of our n random points that lie in S� and let Ln�S� be the height
of the partial order de�ned by these Nn�S� points� similarly� let Hn�S� be the height
of the partial order de�ned by the restriction of our Poisson process to S	 Finally� let
S� � f�x� y� � Q � jx � yj � �g be the strip of width �� along the diagonal	 We shall
deduce our theorem from two lemmas	 The �rst of these claims that the height only
depends on the points in S� for a fairly small value of �	

Lemma �� If K is su�ciently large� then with �n � Kn���� log���n �log log n����� we

have

P
�
Ln �� Ln�S�n�

��  as n���

Proof� We claim thatK � max��K�
���� �K

���
� � will do� whereK� andK� are the constants

in ��	�� and ��	��	 In fact� we shall prove slightly more than claimed� namely that the
probability that the set f�i � � � i � ng contains a point �i �� S�n that belongs to a
maximal chain is o���	 Since the probability that a Poisson process � in Q with intensity
n has exactly n points with probability at least e��n����� it su�ces to show that the
corresponding probability for the Poisson process � is o�n�����	

Let M be the number of points in � n S� that belong to a maximal chain in �	 Then

M �
X
���

f������

where
f����� � I�� �� S�� 	 I�� belongs to a maximal chain in ���

Hence� using an easily proved formula for Poisson processes �see� e	g	� ��� Lemma �	��� and
��� Lemma �	� and Exercise ��	����

EM � E
X
���

f����� �

Z
Q

E f�z�� � fzg�ndm�z�

�

Z
QnS�

P�z belongs to a maximal chain in � � fzg�ndm�z�� ��	��

Fix z � �x� y� �� S� and let s � �x � y���� t � �x � y���� Q� � �� x�  �� y� and
Q� � �x� �� �y� ��	 Then� writing jRj for the area of a set R 
 Q� we have

jQ�j��� � jQ�j��� � �s� � t����� � ���� s�� � t�����

� s� t�

�s
� �� s� t�

���� s�

� �� t�

�s��� s�

� �� �t�

� �� �

�
���

The random variables Hn�Q�� and Hn�Q�� have the same distributions as H�� and H�� �
respectively� with �i � njQij� i � �� �	 Setting � � �n� inequality ��	�� implies that if n is
large enough�

EH�� � EH�� � ��
���
� � ��

���
� � �n��� � n�����n � EHn � �� �

�n
�����n�



�

Hence� by applying ��	�� with 	 � �� log n����� we �nd that

P�z belongs to a maximal chain in � � fzg� � P�Hn�Q�� �Hn�Q�� � � � Hn�

� P�H�� � EH�� �
�
�n

�����n� � P�H�� � EH�� �
�
�n

�����n�

� P�Hn � EHn � �
�n

�����n�

� � exp��� log n� � �n���

Consequently� ��	�� yields EM � �n��� and the result follows	 �

Lemma �� Suppose that �n �  and that P
�
Ln �� Ln�S�n�

� �  as n � �� If �
n� is

any sequence with 
n � o��
����
n � then

sup
x

P�jLn � xj � 
n��  as n���

Proof� It is convenient to use couplings� and we begin by recalling the relevant de�nitions	
A coupling of two random variables X and Y �possibly de�ned on di�erent probability
spaces�� is a pair of random variables �X �� Y �� de�ned on a common probability space such

that X � d
� X and Y � d

� Y 	 The notion of coupling depends only on the distributions
of X and Y � so we may as well talk about a coupling of two distributions �which can be
formulated as �nding a joint distribution with given marginals�	

We also de�ne the total variation distance of two random variables X and Y �or� more
properly� of their distributions L�X� and L�Y �� as

dTV �X�Y � � sup
A
jP�X � A�� P�Y � A�j� ��	��

taking the supremum over all Borel sets A	 If �X �� Y �� is a coupling of X and Y then�
clearly� dTV �X�Y � � dTV �X

�� Y �� � P�X � �� Y ��	 Conversely� it is easy to construct
a coupling of X and Y such that equality holds �such couplings are known as maximal

couplings�	 Thus

dTV �X�Y � � minP�X � �� Y ��� ��	��

where the minimum ranges over all couplings of X and Y 	 Moreover� provided the prob�
ability space where X is de�ned is rich enough� there exists a maximal coupling �X �� Y ��
of X and Y with X � � X	

We may assume that �n � � and 
n � �
����
n � �	 �All limits in the proof are taken

as n��	�

Let m � m�n� � d�
n
p
ne � �
n

p
n� and let � � ��n� � jS�n j� thus

�n � � � ��n�

We use the facts that� for any n� p� 	�� 	��

dTV
�
Bi�n� p��Po�np�

� � p

and

dTV
�
Po�	���Po�	��

� � j	� � 	�j
�
max�	�� 	��

����



�

see e	g	 ��� Theorems �	M and �	C�	 Hence

dTV
�
Nn�S�n��Nnm�S�n�

�
� dTV

�
Bi�n� ���Bi�n�m���

�
� dTV

�
Bi�n� ���Po�n��

�
� dTV

�
Po�n���Po��n�m���

�
� dTV

�
Po��n�m����Bi�n�m���

�
� ��m���n����� � �

� mn�������� � �� � �
p
�
n�

���
n � 
�n � �

n�

���
n �

Choose a maximal coupling �N �
n� N

�
nm� of Nn�S�n� and Nnm�S�n�� and let ���i�

�
i	� be

a sequence of independent random points� uniformly distributed in S�n � assume also that
���i� is independent of �N

�
n� N

�
nm�	 Let L��N� be the height of the partial order de�ned

by f��i � i � Ng	 Then �L��N �
n�� L

��N �
nm�

�
is a coupling of Ln�S�n� and Lnm�S�n�� and

thus

dTV
�
Ln�S�n�� Lnm�S�n�

� � P
�
L��N �

n� �� L��N �
nm�

�
� P�N �

n �� N �
nm� � dTV

�
Nn�S�n�� Nnm�S�n�

�
� �

n�

���
n �

Furthermore� using Lnm�S�n�m� � Lnm�S�n� � Lnm� we see that

dTV �Ln� Lnm�

� P�Ln �� Ln�S�n�� � P�Lnm �� Lnm�S�n�� � dTV
�
Ln�S�n�� Lnm�S�n�

�
� P�Ln �� Ln�S�n�� � P�Lnm �� Lnm�S�n�m�� � �

n�

���
n

� �

Hence a maximal coupling �L�n� L
�
nm� of Ln and Lnm satis�es P�L�n �� L�nm�� 	

We next de�ne another coupling of Ln and Lnm� now trying to push the variables
apart	 Observe that necessarily n�n ��� since otherwise� for some C �� and arbitrarily
large n�

ELn�S�n� � ENn�S�n� � njS�n j � �n�n � �C�

which contradicts Ln�
p
n

p�� � and P�Ln �� Ln�S�n�� � 	 Hence m � O�
nn
���� �

o��
����
n n���� � o�n�	
In particular� we may assume that n � �m	 Set Q� � �� m�n �

� and Q� � � m�n � ��
�	 Then

Lnm � Lnm�Q�� � Lnm�Q��� ��	
�

Moreover� Nnm�Q�� � Bi�n�m� �m�n �
�� with an expectation of �n�m��m�n �

� � m�

�n � 

�n�
and it follows from Chebyshev�s inequality� that

P�Nnm�Q�� � �
�n�� �� ��	��

Since the distribution of Lnm�Q�� conditional on Nnm�Q�� � � equals the distribution
of L� for any � � �� we obtain from ��	�� that

P�Lnm�Q�� � �
n�� �� ��	��



�

Similarly� n�m�Nnm�Q�� � Bi
�
n�m� �� ��� m

�n �
�
�
with expectation

�n�m�
�
�
m

�n
� m�

�n�

�
�
�
�
�
� o���

�
m�

and thus
P�Nnm�Q�� � n� � P�n�m�Nnm�Q�� � m�� �� ��	��

We de�ne L��n to be the height of the partial order de�ned by the �rst n of ��� ��� � � � that

fall in Q�� obviously L
��
n

d
� Ln� so �L��n� Lnm� is a coupling of Ln and Lnm	 Moreover�

if Nnm�Q�� � n� then Lnm�Q�� � L��n� and thus ��	
�� ��	��� ��	�� yield

P�Lnm � L��n � �
n�� �� ��	��

Combining this coupling with a maximal coupling �L�nm� L
�
n� of Lnm and Ln such that

L�nm � Lnm� we obtain a coupling �L�n� L
��
n� of Ln with itself� i	e	 two random variables

L�n and L��n with L�n
d
� L��n

d
� Ln� such that

P�L�n � L��n � �
n� � P�Lnm � L��n � �
n�� P�Lnm �� L�n�� ��

Finally we observe that for any real x�

P�L�n � L��n � �
n� � P�L�n � x� 
n� � P�L��n � x� 
n� � P�jLn � xj � 
n�

and thus

sup
x

P�jLn � xj � 
n� � �� P�L�n � L��n � 
n�� � �

Theorem � follows immediately from the lemmas	

�� Further remarks

Note that the proof of Theorem � uses the concentration results in ���� and that stronger
concentration results would imply a stronger version of Theorem �� i	e	 less concentration
than given above	 This leads to the following result� which shows that� at least for some
n� the distribution of Hn is not strictly concentrated �with� say� exponentially decreasing
tails� with a variation of much less than n�����	 �For simplicity we consider here Hn�
presumably the same result is true for Ln	�

Theorem �� If  �  is su�ciently small� then there exist in�nitely many n such that

for some m � n we have

P�jHm � EHmj � n����� � n���

Proof� Assume on the contrary� and somewhat more generally� that for some ��  � � �
���� and all large n�

P�jHm � EHmj � n	� � n��� m � n� ��	��

The argument in the proof of ��� Theorem �� then yields

�n��� � EHn � O�n	� ��	��



�

and Lemma � holds for Hn� by the argument above� with

�n � Kn	������� ��	��

provided K is large enough	 Hence Lemma � �for Hn� shows that

P�jHn � EHnj � 
n��  ��	
�

whenever 
n � o��
����
n �� i	e	� when


nn
	������ � � ��	��

If � � ���� we may take 
n � n	 � which then satis�es ��	��� and obtain a contradiction
from ��	�� and ��	
�	 In order to obtain the slightly stronger statement in the theorem�
we let � � ��� and note that if

P�jHn � EHnj � n����� � n�� � ��� ��	��

for every  �  and n � n��� then there exists a sequence n �  such that

P�jHn � EHnj � nn
����� � ���� ��	��

We now choose 
n � nn
����� which satis�es ��	��� and obtain a contradiction from ��	
�

and ��	��	 Hence either ��	�� or ��	��� for some  � � fails for in�nitely many n� which
proves the result	 �

Finally� let us see what happens when we try to generalize the results to the random
d�dimensional order de�ned by random points in Qd � �� ��d	 Lemma � holds� with

�n � Kn����d log���n �log logn������ ��	��

by essentially the same proof� we now de�ne S� � f�xi�d � jxi � xj j � �� i � jg� and note
that jS�j � �d��	 For Lemma �� however� we need


n � o
�
n��d������
d�����n

�
� ��	��

in which case we may take m � Kn����d
n for some large K	 However� ��	�� and
��	�� imply 
n � o

�
n
���d���d

�
� o��� for d � �� so we do not obtain any result at all	

�We also need 
n � ��	 The method of Theorem � yields no result either� we obtain
�n � Kn	������d and by ��	�� we have


n � o
�
n
��d���d�	
d�����

�
� ��	��

which again contradicts 
n � � for any � �  when d � �	
We can explain this failure in terms of the heuristics at the beginning of Section �	 We

still have a relative variation of the number of points in the strip S� of order n�
�������
for some 
 � � but this translates to a variation of the height of order only n��d��������
which does not give any non�trivial result �
 is rather small�	 Of course� this does not
preclude the possibility that there is a substantial variation of the height due to the random
position of points in the strip	
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