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ABsTrRACT. Complementing the results claiming that the maximal length Ly, of an increasing

subsequence in a random permutation of {1,2,...,n} is highly concentrated, we show that
L, is not concentrated in a short interval: sup; P(I < L, <1+ n1/1610g—3/8 n) — 0 as
n — oo.

1. INTRODUCTION

Ulam [9] proposed the study of L,,, the maximal length of an increasing subsequence
of a random permutation of the set [n] = {1,2,...,n}. Hammersley [4], Logan and Shepp
[7], and Versik and Kerov [10] proved that E L,, ~ 2y/n and

Lo/vn 252 as n— . (1.1)

Frieze [3] showed that the distribution of L,, is sharply concentrated about its mean; his
result was improved by Bollobas and Brightwell [2], who in particular proved that

Var(L,) = O(n'/? (logn/loglogn)?). (1.2)

(The log factors have recently been removed by Talagrand [8].) Somewhat surprisingly, it is
not known that the distribution of L,, is not much more concentrated than claimed by (1.2).
In fact, it has not even been ruled out that if w(n) — oo then P(|L,, —E L, | < w(n)) — 0
as n — 0o. Our aim in this paper is to rule out this possibility for a fairly fast-growing
function w(n), and to give a lower bound for Var(L,,), complementing (1.2).

Theorem 1.
P(|L, —EL,| < n'/16 log_g/8 n)—0 as n— oo.

More generally, if a, and b, are any numbers such that
infP(a, <L, <b,) >0, then (b, — an)/nl/16 log_?’/8 n — oo.
In particular, for sufficiently large n,
Var L,, > nl/8 log_a/4 n.

There is still a wide gap between the upper and lower bound, and there is no reason to
believe that the bounds given here are the best possible. In fact, a boot-strap argument
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suggests that the range of variation is at least about n'/1°, see Theorem 2 below, and

it is quite possible that the upper bound in (1.2) is sharp up to logarithmic factors, as
conjectured in [2].

It is well-known that L,, also can be defined as the height of the random partial order
defined as follows. Consider the unit square @ = [0, 1]?> with the coordinate order. Thus
for (z,y), (¢',y') € Q set (z,y) < (2',y') if and only if z < 2’ and y < ¢/, let (&)2, be
independent, uniformly distributed random points in ¢} and consider the induced partial
order on the set (&) ;.

Let ¢+ > 0 be a constant and let m be the Lebesque measure in ). Let us regard a
Poisson process with intensity udm in @) as a random subset of (). Equivalently, let N be
independent of (&;)$°, with distribution Po(u), and take the set {£; : 1 <7 < N}. Write
H,, for the height of the induced partial order on this set.

In [2] the proof of (1.2) was based on a study of H,,. In particular they proved that

1/4
no_ogn 1°g”> <e N (1.3)

P(|Hn —EH,| > K\
log logn

for some constant K7, every n > 3 and every A with 1 < X\ < nt/4 /loglogn. For larger A
their proof yields

P(|H, — EH,| > K>\2log \) < e . (1.4)

These inequalities hold for non-integer n as well: and that if n > 3 and 1 < A <
n'/*/loglogn, then for every p < n, we have

nl/4 logn) < e_>‘2.

P(H “EH,|> K3\
| " “|> 3 loglogn

(1.5)
It is rather curious that our proof of a lower bound will use these results together with,
as well as the following estimate from [2]:

0<2n'/? —EH, < K;n'*log®/? n/loglogn. (1.6)

Remark. It is shown in [2] that (1.3) holds for L,, as well. (The same is true for (1.4) and
(1.5).) Similarly, Theorem 1 holds for H,, too; this follows from the proof of Theorem 1
below, with a few simplifications.

The variables L,, and H,, may be defined, more generally, for random subsets of the
d-dimensional cube [0,1]?. The results in [2] include this generalization, and it would be
interesting to find lower bounds for the variance. Unfortunately, and somewhat surpris-
ingly, the method used here does not work when d > 3. We try to explain this failure at
the end of the paper.

2. PROOF OF THEOREM 1

The idea behind the proof is that L, essentially depends only on the points in a strip
of measure n~ for some a > 0 (o = 1/8 if we ignore logarithmic factors). The number
of points in this strip is approximately Poisson distributed with expectation n'~%; hence
the random variation of this number is of order n{!=®/2 and the relative variation is
n~(1=)/2_ This ought to correspond to a relative variation in the height of the same order
n~(1=®)/2 jgnoring the further variation due to the random position of the points, which
would give a variation of order at least n'/2 . n=(1=®)/2 = pe/2,

We introduce some notation. For a Borel set S C @, let

N,(S)=H{i<n:¢& e S}
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be the number of those of our n random points that lie in S, and let L, (S) be the height
of the partial order defined by these N, (S) points; similarly, let H,(S) be the height
of the partial order defined by the restriction of our Poisson process to S. Finally, let
Ss = {(z,y) € Q : |xr —y| < ¢} be the strip of width 26 along the diagonal. We shall
deduce our theorem from two lemmas. The first of these claims that the height only
depends on the points in S5 for a fairly small value of 4.

Lemma 1. If K is sufficiently large, then with 6, = Kn~/8 log3/4n (loglogn)~? we
have
P(Ln # Ln(S(;n)) —0 as n — oo.

Proof. We claim that K = max(3K31/2, 2Ki/2) will do, where K3 and K4 are the constants
in (1.5) and (1.6). In fact, we shall prove slightly more than claimed, namely that the
probability that the set {& : 1 < ¢ < n} contains a point & ¢ Ss, that belongs to a
maximal chain is o(1). Since the probability that a Poisson process Z in () with intensity
n has exactly n points with probability at least e~ 'n~1/2, it suffices to show that the
corresponding probability for the Poisson process Z is o(n~1/2).

Let M be the number of points in E \ Ss that belong to a maximal chain in Z. Then

M=>"f(8),
(EE

where
f(&,E)=1(¢ ¢ Ss) - I(€ belongs to a maximal chain in ).

Hence, using an easily proved formula for Poisson processes (see, e.g., [5, Lemma 2.1], and
[6, Lemma 10.1 and Exercise 11.1]),

EM=E) f(&Z2)= | Ef(z,2EU{z})ndm(z)
s,

= / P(z belongs to a maximal chain in EU {z})n dm(z). (2.1)
Q\Ss

Fix 2z = (z,y) ¢ S; and let s = (z +y)/2, t = (v — y)/2, Q1 = [0,z] x [0,y] and
Q2 = [z,1] X [y,1]. Then, writing |R| for the area of a set R C @, we have

Qi+ (@2 = (52 = 2)1/2 + (1 — ) — %)%

2 t2
<s——+1—-5—
2s

2(1 —s)
2

_q_ !

2s5(1 — s)
<1—2t2

1
<1-—=6%
- 2

The random variables H,,(Q1) and H,(Q2) have the same distributions as H,, and H,,,
respectively, with p; = n|Q;|, i« = 1,2. Setting 0 = J,,, inequality (1.6) implies that if n is
large enough,

EH, +EH,, <2u)” +2uy/% <2n'/? —n'/282 <EH, — 1 - Ln'/?2.
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Hence, by applying (1.5) with A = (2logn)!/2, we find that

P(z belongs to a maximal chain in 2U {z}) = P(H,(Q1) + H,(Q2) +1 > H,,)
<P(H,, >EH,, +in*?62)+P(H,, > EH,, + in'/?52)
+P(H, <EH, — in'/?62)
< 3exp(—2logn) = 3n~"2.

Consequently, (2.1) yields EM < 3n~!, and the result follows. O
Lemma 2. Suppose that 6, \, 0 and that P(Ln # Ln(S(;n)) =0 asn — o0o. If (o) is

any sequence with oy, = 0(6;1/2) then

supP(|L, —z| <a,) =0 as n— oo.

Proof. Tt is convenient to use couplings, and we begin by recalling the relevant definitions.
A coupling of two random variables X and Y (possibly defined on different probability
spaces), is a pair of random variables (X’,Y”) defined on a common probability space such

that X’ £ X and Y’ £ Y. The notion of coupling depends only on the distributions
of X and Y, so we may as well talk about a coupling of two distributions (which can be
formulated as finding a joint distribution with given marginals).

We also define the total variation distance of two random variables X and Y (or, more
properly, of their distributions £(X) and L(Y)) as

dry(X,Y) = Sl,clxp |P(X € A) —P(Y € A)|, (2.2)

taking the supremum over all Borel sets A. If (X', Y”) is a coupling of X and Y then,
clearly, dry(X,Y) = dry(X',Y') < P(X’ # Y’). Conversely, it is easy to construct
a coupling of X and Y such that equality holds (such couplings are known as mazimal
couplings). Thus

dry(X,Y) = min P(X' # V"), (2.3)

where the minimum ranges over all couplings of X and Y. Moreover, provided the prob-
ability space where X is defined is rich enough, there exists a maximal coupling (X', Y”)
of X and Y with X' = X.

We may assume that 6, < 1 and a,, >
as n — 00.)

Let m = m(n) = [6a,v/n] < Tapy/n, and let p = p(n) =S5, |; thus

V4 0. (A1l limits in the proof are taken
On < p < 20,
We use the facts that, for any n,p, A1, Ao,

drv (Bi(n,p), Po(np)) <p

and
drv (Po(A1),Po(A2)) < [A1 — Ao/ max(A1, A2) /2,



see e.g. [1, Theorems 2.M and 1.C]. Hence

drv (Nu(S5,)sNntm(Ss,)) = drv (Bi(n, p), Bi(n 4 m, 1))
< drv (Bi(n, u), Po(np)) + drv (Po(nu), Po((n +m)u))
+ drv (Po((n +m)p), Bi(n + m, 1))
< i+ mp/ (np) % +
= mn_1/2u1/2 +2u < 7\/§an6,1/2 + 40, < 1404”671/2.

mtm) of Nyo(Ss,) and Nyt (Ss,), and let (&)52; be
a sequence of independent random points, uniformly distributed in S, ; assume also that
(&;) is independent of (N}, N, ). Let L'(N) be the height of the partial order defined
by {& :i < N}. Then (L'(N}),L'(N,,,,)) is a coupling of L,(Ss,) and Ly (S5, ), and
thus

Choose a maximal coupling (N}, N},

drv (Ln(Ss,), Lnm(Ss,)) < P(L'(Ny,) # L'(Nyym))
< P(N/} # n+m) —dTV( n(55,)s N (Ss,, ))
< 1da, 61/

Furthermore, using Ly (Ss,,..) < Lntm(Ss,) < Lptm, we see that

dTV(LnaLn—f-m)
< P(Ln 7& Ln(StSn)) + P(Ln+m 7& Ln-l-m(StSn)) + dTV( (S(Sn) n+m (Sén))
< P(Ln 7& Ln(StSn)) + P(Ln+m 7& Ln+M(S5n+m)) + 14an6£/2
— 0.

Hence a maximal coupling (L;,, L, ,,) of L, and Ly, satisfies P(L;, # L;,,,,) — 0.

We next define another coupling of L, and L,4,,, now trying to push the variables
apart. Observe that necessarily nd,, — oo, since otherwise, for some C' < 0o and arbitrarily
large n,

which contradicts L, /vn — 2 and P(L, # L,(Ss5,)) = 0. Hence m = O(a,n'/?) =
(67 *nt/2) = o(n).
In particular, we may assume that n > 3m. Set Q1 = [0, 22

w|§
—
e
—
=
D
=

3 2 and Qo = (5=
Ln+m > Ln-l-m(Ql) + Ln-l-m(QZ)- (2-4)

Moreover, Ny 41m (Q1) ~ Bi(n+m, (£)?) with an expectation of (n+m)(3£)? > 2= > 4a2;
and it follows from Chebyshev’s inequality, that

P(Npim(Q1) > 202) — 1. (2.5)

Since the distribution of Ly, ., (Q1) conditional on N, ;,,(Q1) = v equals the distribution
of L, for any v > 1, we obtain from (1.1) that

P(Lpsm(Q1) > 2a,) — 1. (2.6)
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Similarly, n +m — Nyim(Q2) ~ Bi(n 4+ m,1 — (1 — 22)2) with expectation

o _ m—2) = (2 4 o(1))m,

3n  9n?

(n +m)<
and thus
P(Nptm(Q2) >n) =P(n+m— Npymn(Q2) <m) — 1. (2.7)

We define L to be the height of the partial order defined by the first n of &1, &5, ... that

fall in Q2; obviously L 4 L, so (L, Ly,4+m) is a coupling of L,, and L,,4,,. Moreover,
if Npim(Q2) > n, then Ly, 4, (Q2) > LI, and thus (2.4), (2.6), (2.7) yield

P(Lpym > L + 20,) — 1. (2.8)

Combining this coupling with a maximal coupling (L, ,,,, L;,) of L1, and L,, such that
L/

vo4m = Lin4m, we obtain a coupling (L, L) of L, with itself, i.e. two random variables
L' and L' with L', £ L £ L, such that

P(L), > L' + 2a,,) > P(Lpyrn > L +20,) — P(Lppyn # L) — 1.
Finally we observe that for any real x,
P(L;, > L, 4+ 2a,,) < P(L, >z + ) + P(L, <z —a,) =P(|L, —z| > ay)

and thus
supP(|L, —z| < ) <1 -P(L, > L + ) = 0. O

Theorem 1 follows immediately from the lemmas.

3. FURTHER REMARKS

Note that the proof of Theorem 1 uses the concentration results in [2], and that stronger
concentration results would imply a stronger version of Theorem 1, i.e. less concentration
than given above. This leads to the following result, which shows that, at least for some
n, the distribution of H,, is not strictly concentrated (with, say, exponentially decreasing
tails) with a variation of much less than n~'/1°, (For simplicity we consider here H,;
presumably the same result is true for L,,.)

Theorem 2. If ¢ > 0 is sufficiently small, then there exist infinitely many n such that
for some m < n we have

P(|H,, — E H,,| > en*/1%) > n=2,

Proof. Assume on the contrary, and somewhat more generally, that for some v, 0 < v <
1/2, and all large n,
P(|H, —EH,|>n")<n™2 m<n. (3.1)

The argument in the proof of [2, Theorem 9] then yields

2nt/2 —EH, = O(n") (3.2)



and Lemma 1 holds for H,,, by the argument above, with
6 = Kn/?71/4, (3.3)
provided K is large enough. Hence Lemma 2 (for H,,) shows that

P(|H, —EH,| < a,) = 0 (3.4)

—1/2y .
whenever «,, = o(dy, / ), i.e., when

a4 18 0. (3.5)

If v < 1/10, we may take a;,, = n?, which then satisfies (3.5), and obtain a contradiction
from (3.1) and (3.4). In order to obtain the slightly stronger statement in the theorem,
we let v = 1/10 and note that if

P(|H, —EH,|>en'/*%) <n"2<1/2 (3.6)
for every € > 0 and n > n(e), then there exists a sequence £, — 0 such that
P(|H, —EH,| > ¢e,n"%) < 1/2. (3.7)

We now choose a,, = £,n'/'%, which satisfies (3.5), and obtain a contradiction from (3.4)
and (3.7). Hence either (3.1) or (3.6), for some € > 0, fails for infinitely many n, which
proves the result. O

Finally, let us see what happens when we try to generalize the results to the random
d-dimensional order defined by random points in Qg = [0, 1]¢. Lemma 1 holds, with

5, = Kn=*1og® *n (loglogn)~1/2, (3.8)

by essentially the same proof; we now define S5 = {(z;)¢ : |z; — x;| <, i < j}, and note
that |S5| < d4~1. For Lemma 2, however, we need

a, = O(nl/d—l/26;(d—l)/2)’ (39)
in which case we may take m = Kn!'~'%q, for some large K. However, (3.8) and
(3.9) imply a,, = o(n(7=39/8d) = o(1) for d > 3, so we do not obtain any result at all.
(We also need o, > 1). The method of Theorem 2 yields no result either: we obtain
6 = Kn"/?2=1/24 and by (3.9) we have

a, = 0(n(3—d)/4d—7(d—1)/4)’ (3.10)

which again contradicts a,, > 1 for any v > 0 when d > 3.

We can explain this failure in terms of the heuristics at the beginning of Section 2. We
still have a relative variation of the number of points in the strip Ss of order n~—(1=®)/2,
for some a > 0, but this translates to a variation of the height of order only n'/d—1/2+a/2
which does not give any non-trivial result (o is rather small). Of course, this does not
preclude the possibility that there is a substantial variation of the height due to the random
position of points in the strip.
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