ON THE LENGTH OF THE LONGEST INCREASING SUBSEQUENCE IN A RANDOM PERMUTATION

BÉLA BOLLOBÁS AND SVANTE JANSON Dedicated to Paul Erdős on his eightieth birthday.

ABSTRACT. Complementing the results claiming that the maximal length L_n of an increasing subsequence in a random permutation of $\{1, 2, ..., n\}$ is highly concentrated, we show that L_n is not concentrated in a short interval: $\sup_l P(l \leq L_n \leq l + n^{1/16} \log^{-3/8} n) \to 0$ as $n \to \infty$.

1. INTRODUCTION

Ulam [9] proposed the study of L_n , the maximal length of an increasing subsequence of a random permutation of the set $[n] = \{1, 2, ..., n\}$. Hammersley [4], Logan and Shepp [7], and Veršik and Kerov [10] proved that $E L_n \sim 2\sqrt{n}$ and

$$L_n/\sqrt{n} \xrightarrow{p} 2 \quad \text{as} \quad n \to \infty.$$
 (1.1)

Frieze [3] showed that the distribution of L_n is sharply concentrated about its mean; his result was improved by Bollobás and Brightwell [2], who in particular proved that

$$Var(L_n) = O(n^{1/2} (\log n / \log \log n)^2).$$
(1.2)

(The log factors have recently been removed by Talagrand [8].) Somewhat surprisingly, it is not known that the distribution of L_n is not much more concentrated than claimed by (1.2). In fact, it has not even been ruled out that if $w(n) \to \infty$ then $P(|L_n - EL_n| < w(n)) \to 0$ as $n \to \infty$. Our aim in this paper is to rule out this possibility for a fairly fast-growing function w(n), and to give a lower bound for $Var(L_n)$, complementing (1.2).

Theorem 1.

$$P(|L_n - EL_n| \le n^{1/16} \log^{-3/8} n) \to 0 \text{ as } n \to \infty.$$

More generally, if a_n and b_n are any numbers such that

$$\inf P(a_n \le L_n \le b_n) > 0$$
, then $(b_n - a_n)/n^{1/16} \log^{-3/8} n \to \infty$.

In particular, for sufficiently large n,

$$\operatorname{Var} L_n \ge n^{1/8} \log^{-3/4} n.$$

There is still a wide gap between the upper and lower bound, and there is no reason to believe that the bounds given here are the best possible. In fact, a boot-strap argument

Typeset by $\mathcal{A}_{\mathcal{M}}\!\mathcal{S}\text{-}\mathrm{T}_{\!E}\!\mathrm{X}$

Second author supported by the Göran Gustafsson Foundation for Research in Natural Sciences and Medicine

suggests that the range of variation is at least about $n^{1/10}$, see Theorem 2 below, and it is quite possible that the upper bound in (1.2) is sharp up to logarithmic factors, as conjectured in [2].

It is well-known that L_n also can be defined as the height of the random partial order defined as follows. Consider the unit square $Q = [0,1]^2$ with the coordinate order. Thus for $(x, y), (x', y') \in Q$ set $(x, y) \leq (x', y')$ if and only if $x \leq x'$ and $y \leq y'$, let $(\xi_i)_{i=1}^{\infty}$ be independent, uniformly distributed random points in Q and consider the induced partial order on the set $(\xi_i)_{i=1}^n$.

Let $\mu > 0$ be a constant and let m be the Lebesque measure in Q. Let us regard a Poisson process with intensity μdm in Q as a random subset of Q. Equivalently, let N be independent of $(\xi_i)_1^{\infty}$, with distribution $\operatorname{Po}(\mu)$, and take the set $\{\xi_i : 1 \leq i \leq N\}$. Write H_{μ} for the height of the induced partial order on this set.

In [2] the proof of (1.2) was based on a study of H_n . In particular they proved that

$$P\left(|H_n - \mathbb{E}H_n| > K_1 \lambda \frac{n^{1/4} \log n}{\log \log n}\right) \le e^{-\lambda^2}$$
(1.3)

for some constant K_1 , every $n \ge 3$ and every λ with $1 \le \lambda \le n^{1/4}/\log \log n$. For larger λ their proof yields

$$P(|H_n - E H_n| > K_2 \lambda^2 \log \lambda) \le e^{-\lambda^2}.$$
(1.4)

These inequalities hold for non-integer n as well: and that if $n \geq 3$ and $1 \leq \lambda \leq n^{1/4}/\log \log n$, then for every $\mu \leq n$, we have

$$P\left(|H_{\mu} - E H_{\mu}| > K_3 \lambda \frac{n^{1/4} \log n}{\log \log n}\right) \le e^{-\lambda^2}.$$
(1.5)

It is rather curious that our proof of a lower bound will use these results together with, as well as the following estimate from [2]:

$$0 \le 2n^{1/2} - \mathbb{E} H_n \le K_4 n^{1/4} \log^{3/2} n / \log \log n.$$
(1.6)

Remark. It is shown in [2] that (1.3) holds for L_n as well. (The same is true for (1.4) and (1.5).) Similarly, Theorem 1 holds for H_n too; this follows from the proof of Theorem 1 below, with a few simplifications.

The variables L_n and H_n may be defined, more generally, for random subsets of the *d*-dimensional cube $[0, 1]^d$. The results in [2] include this generalization, and it would be interesting to find lower bounds for the variance. Unfortunately, and somewhat surprisingly, the method used here does not work when $d \ge 3$. We try to explain this failure at the end of the paper.

2. Proof of Theorem 1

The idea behind the proof is that L_n essentially depends only on the points in a strip of measure $n^{-\alpha}$ for some $\alpha > 0$ ($\alpha = 1/8$ if we ignore logarithmic factors). The number of points in this strip is approximately Poisson distributed with expectation $n^{1-\alpha}$; hence the random variation of this number is of order $n^{(1-\alpha)/2}$ and the relative variation is $n^{-(1-\alpha)/2}$. This ought to correspond to a relative variation in the height of the same order $n^{-(1-\alpha)/2}$, ignoring the further variation due to the random position of the points, which would give a variation of order at least $n^{1/2} \cdot n^{-(1-\alpha)/2} = n^{\alpha/2}$.

We introduce some notation. For a Borel set $S \subset Q$, let

$$N_n(S) = |\{i \le n : \xi_i \in S\}|$$

be the number of those of our *n* random points that lie in *S*, and let $L_n(S)$ be the height of the partial order defined by these $N_n(S)$ points; similarly, let $H_n(S)$ be the height of the partial order defined by the restriction of our Poisson process to *S*. Finally, let $S_{\delta} = \{(x, y) \in Q : |x - y| \leq \delta\}$ be the strip of width 2δ along the diagonal. We shall deduce our theorem from two lemmas. The first of these claims that the height only depends on the points in S_{δ} for a fairly small value of δ .

Lemma 1. If K is sufficiently large, then with $\delta_n = K n^{-1/8} \log^{3/4} n (\log \log n)^{-1/2}$ we have

$$P(L_n \neq L_n(S_{\delta_n})) \to 0 \text{ as } n \to \infty.$$

Proof. We claim that $K = \max(3K_3^{1/2}, 2K_4^{1/2})$ will do, where K_3 and K_4 are the constants in (1.5) and (1.6). In fact, we shall prove slightly more than claimed, namely that the probability that the set $\{\xi_i : 1 \leq i \leq n\}$ contains a point $\xi_i \notin S_{\delta_n}$ that belongs to a maximal chain is o(1). Since the probability that a Poisson process Ξ in Q with intensity n has exactly n points with probability at least $e^{-1}n^{-1/2}$, it suffices to show that the corresponding probability for the Poisson process Ξ is $o(n^{-1/2})$.

Let M be the number of points in $\Xi \setminus S_{\delta}$ that belong to a maximal chain in Ξ . Then

$$M = \sum_{\xi \in \Xi} f(\xi, \Xi),$$

where

 $f(\xi, \Xi) = I(\xi \notin S_{\delta}) \cdot I(\xi \text{ belongs to a maximal chain in } \Xi).$

Hence, using an easily proved formula for Poisson processes (see, e.g., [5, Lemma 2.1], and [6, Lemma 10.1 and Exercise 11.1]),

$$E M = E \sum_{\xi \in \Xi} f(\xi, \Xi) = \int_Q E f(z, \Xi \cup \{z\}) n \, dm(z)$$

=
$$\int_{Q \setminus S_{\delta}} P(z \text{ belongs to a maximal chain in } \Xi \cup \{z\}) n \, dm(z).$$
(2.1)

Fix $z = (x, y) \notin S_{\delta}$ and let s = (x + y)/2, t = (x - y)/2, $Q_1 = [0, x] \times [0, y]$ and $Q_2 = [x, 1] \times [y, 1]$. Then, writing |R| for the area of a set $R \subset Q$, we have

$$|Q_1|^{1/2} + |Q_2|^{1/2} = (s^2 - t^2)^{1/2} + ((1 - s)^2 - t^2)^{1/2}$$

$$\leq s - \frac{t^2}{2s} + 1 - s - \frac{t^2}{2(1 - s)}$$

$$= 1 - \frac{t^2}{2s(1 - s)}$$

$$\leq 1 - 2t^2$$

$$\leq 1 - \frac{1}{2}\delta^2.$$

The random variables $H_n(Q_1)$ and $H_n(Q_2)$ have the same distributions as H_{μ_1} and H_{μ_2} , respectively, with $\mu_i = n|Q_i|$, i = 1, 2. Setting $\delta = \delta_n$, inequality (1.6) implies that if n is large enough,

$$\mathcal{E} H_{\mu_1} + \mathcal{E} H_{\mu_2} \le 2\mu_1^{1/2} + 2\mu_2^{1/2} \le 2n^{1/2} - n^{1/2}\delta_n^2 \le \mathcal{E} H_n - 1 - \frac{1}{2}n^{1/2}\delta_n^2.$$

Hence, by applying (1.5) with $\lambda = (2 \log n)^{1/2}$, we find that

$$P(z \text{ belongs to a maximal chain in } \Xi \cup \{z\}) = P(H_n(Q_1) + H_n(Q_2) + 1 \ge H_n)$$

$$\leq P(H_{\mu_1} \ge E H_{\mu_1} + \frac{1}{6}n^{1/2}\delta_n^2) + P(H_{\mu_2} \ge E H_{\mu_2} + \frac{1}{6}n^{1/2}\delta_n^2)$$

$$+ P(H_n \le E H_n - \frac{1}{6}n^{1/2}\delta_n^2)$$

$$\leq 3 \exp(-2\log n) = 3n^{-2}.$$

Consequently, (2.1) yields $E M \leq 3n^{-1}$, and the result follows.

Lemma 2. Suppose that $\delta_n \searrow 0$ and that $P(L_n \neq L_n(S_{\delta_n})) \to 0$ as $n \to \infty$. If (α_n) is any sequence with $\alpha_n = o(\delta_n^{-1/2})$ then

$$\sup_{x} P(|L_n - x| \le \alpha_n) \to 0 \quad as \quad n \to \infty.$$

Proof. It is convenient to use couplings, and we begin by recalling the relevant definitions. A *coupling* of two random variables X and Y (possibly defined on different probability spaces), is a pair of random variables (X', Y') defined on a common probability space such that $X' \stackrel{d}{=} X$ and $Y' \stackrel{d}{=} Y$. The notion of coupling depends only on the distributions of X and Y, so we may as well talk about a coupling of two distributions (which can be formulated as finding a joint distribution with given marginals).

We also define the total variation distance of two random variables X and Y (or, more properly, of their distributions $\mathcal{L}(X)$ and $\mathcal{L}(Y)$) as

$$d_{TV}(X,Y) = \sup_{A} |P(X \in A) - P(Y \in A)|, \qquad (2.2)$$

taking the supremum over all Borel sets A. If (X', Y') is a coupling of X and Y then, clearly, $d_{TV}(X, Y) = d_{TV}(X', Y') \leq P(X' \neq Y')$. Conversely, it is easy to construct a coupling of X and Y such that equality holds (such couplings are known as *maximal* couplings). Thus

$$d_{TV}(X,Y) = \min \mathcal{P}(X' \neq Y'), \qquad (2.3)$$

where the minimum ranges over all couplings of X and Y. Moreover, provided the probability space where X is defined is rich enough, there exists a maximal coupling (X', Y') of X and Y with X' = X.

We may assume that $\delta_n < 1$ and $\alpha_n \ge \delta_n^{-1/4} \to \infty$. (All limits in the proof are taken as $n \to \infty$.)

Let $m = m(n) = \lceil 6\alpha_n \sqrt{n} \rceil \leq 7\alpha_n \sqrt{n}$, and let $\mu = \mu(n) = |S_{\delta_n}|$; thus

$$\delta_n \le \mu \le 2\delta_n$$

We use the facts that, for any $n, p, \lambda_1, \lambda_2$,

$$d_{TV}(\operatorname{Bi}(n,p),\operatorname{Po}(np)) \le p$$

and

$$d_{TV}(\operatorname{Po}(\lambda_1), \operatorname{Po}(\lambda_2)) \leq |\lambda_1 - \lambda_2| / \max(\lambda_1, \lambda_2)^{1/2},$$

see e.g. [1, Theorems 2.M and 1.C]. Hence

$$d_{TV} (N_n(S_{\delta_n}), N_{n+m}(S_{\delta_n})) = d_{TV} (\mathrm{Bi}(n, \mu), \mathrm{Bi}(n+m, \mu))$$

$$\leq d_{TV} (\mathrm{Bi}(n, \mu), \mathrm{Po}(n\mu)) + d_{TV} (\mathrm{Po}(n\mu), \mathrm{Po}((n+m)\mu))$$

$$+ d_{TV} (\mathrm{Po}((n+m)\mu), \mathrm{Bi}(n+m, \mu))$$

$$\leq \mu + m\mu/(n\mu)^{1/2} + \mu$$

$$= mn^{-1/2} \mu^{1/2} + 2\mu \leq 7\sqrt{2}\alpha_n \delta_n^{1/2} + 4\delta_n \leq 14\alpha_n \delta_n^{1/2}.$$

Choose a maximal coupling (N'_n, N'_{n+m}) of $N_n(S_{\delta_n})$ and $N_{n+m}(S_{\delta_n})$, and let $(\xi'_i)_{i=1}^{\infty}$ be a sequence of independent random points, uniformly distributed in S_{δ_n} ; assume also that (ξ'_i) is independent of (N'_n, N'_{n+m}) . Let L'(N) be the height of the partial order defined by $\{\xi'_i : i \leq N\}$. Then $(L'(N'_n), L'(N'_{n+m}))$ is a coupling of $L_n(S_{\delta_n})$ and $L_{n+m}(S_{\delta_n})$, and thus

$$d_{TV}(L_n(S_{\delta_n}), L_{n+m}(S_{\delta_n})) \leq P(L'(N'_n) \neq L'(N'_{n+m}))$$

$$\leq P(N'_n \neq N'_{n+m}) = d_{TV}(N_n(S_{\delta_n}), N_{n+m}(S_{\delta_n}))$$

$$< 14\alpha_n \delta_n^{1/2}.$$

Furthermore, using $L_{n+m}(S_{\delta_{n+m}}) \leq L_{n+m}(S_{\delta_n}) \leq L_{n+m}$, we see that

$$d_{TV}(L_n, L_{n+m})$$

$$\leq P(L_n \neq L_n(S_{\delta_n})) + P(L_{n+m} \neq L_{n+m}(S_{\delta_n})) + d_{TV}(L_n(S_{\delta_n}), L_{n+m}(S_{\delta_n}))$$

$$\leq P(L_n \neq L_n(S_{\delta_n})) + P(L_{n+m} \neq L_{n+m}(S_{\delta_{n+m}})) + 14\alpha_n \delta_n^{1/2}$$

$$\to 0.$$

Hence a maximal coupling (L'_n, L'_{n+m}) of L_n and L_{n+m} satisfies $P(L'_n \neq L'_{n+m}) \rightarrow 0$.

We next define another coupling of L_n and L_{n+m} , now trying to push the variables apart. Observe that necessarily $n\delta_n \to \infty$, since otherwise, for some $C < \infty$ and arbitrarily large n,

$$\operatorname{E} L_n(S_{\delta_n}) \leq \operatorname{E} N_n(S_{\delta_n}) = n|S_{\delta_n}| \leq 2n\delta_n \leq 2C,$$

which contradicts $L_n/\sqrt{n} \xrightarrow{p} 2$ and $P(L_n \neq L_n(S_{\delta_n})) \rightarrow 0$. Hence $m = O(\alpha_n n^{1/2}) = o(\delta_n^{-1/2} n^{1/2}) = o(n)$.

In particular, we may assume that n > 3m. Set $Q_1 = [0, \frac{m}{3n}]^2$ and $Q_2 = (\frac{m}{3n}, 1]^2$. Then

$$L_{n+m} \ge L_{n+m}(Q_1) + L_{n+m}(Q_2).$$
(2.4)

Moreover, $N_{n+m}(Q_1) \sim \text{Bi}(n+m, (\frac{m}{3n})^2)$ with an expectation of $(n+m)(\frac{m}{3n})^2 > \frac{m^2}{9n} \ge 4\alpha_n^2$; and it follows from Chebyshev's inequality, that

$$\mathcal{P}(N_{n+m}(Q_1) \ge 2\alpha_n^2) \to 1.$$
(2.5)

Since the distribution of $L_{n+m}(Q_1)$ conditional on $N_{n+m}(Q_1) = \nu$ equals the distribution of L_{ν} for any $\nu \geq 1$, we obtain from (1.1) that

$$P(L_{n+m}(Q_1) > 2\alpha_n) \to 1.$$

$$(2.6)$$

Similarly, $n + m - N_{n+m}(Q_2) \sim \operatorname{Bi}\left(n + m, 1 - (1 - \frac{m}{3n})^2\right)$ with expectation

$$(n+m)\left(2\frac{m}{3n}-\frac{m^2}{9n^2}\right) = \left(\frac{2}{3}+o(1)\right)m$$

and thus

$$P(N_{n+m}(Q_2) \ge n) = P(n+m-N_{n+m}(Q_2) \le m) \to 1.$$
 (2.7)

We define L''_n to be the height of the partial order defined by the first n of ξ_1, ξ_2, \ldots that fall in Q_2 ; obviously $L''_n \stackrel{d}{=} L_n$, so (L''_n, L_{n+m}) is a coupling of L_n and L_{n+m} . Moreover, if $N_{n+m}(Q_2) \ge n$, then $L_{n+m}(Q_2) \ge L''_n$, and thus (2.4), (2.6), (2.7) yield

$$P(L_{n+m} > L''_n + 2\alpha_n) \to 1.$$
 (2.8)

Combining this coupling with a maximal coupling (L'_{n+m}, L'_n) of L_{n+m} and L_n such that $L'_{n+m} = L_{n+m}$, we obtain a coupling (L'_n, L''_n) of L_n with itself, i.e. two random variables L'_n and L''_n with $L'_n \stackrel{d}{=} L''_n \stackrel{d}{=} L_n$, such that

$$P(L'_n > L''_n + 2\alpha_n) \ge P(L_{n+m} > L''_n + 2\alpha_n) - P(L_{n+m} \neq L'_n) \to 1.$$

Finally we observe that for any real x,

$$P(L'_{n} > L''_{n} + 2\alpha_{n}) \le P(L'_{n} > x + \alpha_{n}) + P(L''_{n} < x - \alpha_{n}) = P(|L_{n} - x| > \alpha_{n})$$

and thus

$$\sup_{x} \mathcal{P}(|L_n - x| \le \alpha_n) \le 1 - \mathcal{P}(L'_n > L''_n + \alpha_n) \to 0.$$

Theorem 1 follows immediately from the lemmas.

3. Further remarks

Note that the proof of Theorem 1 uses the concentration results in [2], and that stronger concentration results would imply a stronger version of Theorem 1, i.e. less concentration than given above. This leads to the following result, which shows that, at least for some n, the distribution of H_n is not strictly concentrated (with, say, exponentially decreasing tails) with a variation of much less than $n^{-1/10}$. (For simplicity we consider here H_n ; presumably the same result is true for L_n .)

Theorem 2. If $\varepsilon > 0$ is sufficiently small, then there exist infinitely many n such that for some $m \leq n$ we have

$$P(|H_m - E H_m| > \varepsilon n^{1/10}) > n^{-2}.$$

Proof. Assume on the contrary, and somewhat more generally, that for some γ , $0 < \gamma < 1/2$, and all large n,

$$\mathbf{P}(|H_m - \mathbf{E}H_m| > n^{\gamma}) \le n^{-2}, \quad m \le n.$$
(3.1)

The argument in the proof of [2, Theorem 9] then yields

$$2n^{1/2} - \mathbb{E}H_n = O(n^\gamma) \tag{3.2}$$

and Lemma 1 holds for H_n , by the argument above, with

$$\delta_n = K n^{\gamma/2 - 1/4},\tag{3.3}$$

provided K is large enough. Hence Lemma 2 (for H_n) shows that

$$P(|H_n - E H_n| \le \alpha_n) \to 0 \tag{3.4}$$

whenever $\alpha_n = o(\delta_n^{-1/2})$, i.e., when

$$\alpha_n n^{\gamma/4 - 1/8} \to 0. \tag{3.5}$$

If $\gamma < 1/10$, we may take $\alpha_n = n^{\gamma}$, which then satisfies (3.5), and obtain a contradiction from (3.1) and (3.4). In order to obtain the slightly stronger statement in the theorem, we let $\gamma = 1/10$ and note that if

$$P(|H_n - E H_n| > \varepsilon n^{1/10}) \le n^{-2} < 1/2$$
 (3.6)

for every $\varepsilon > 0$ and $n \ge n(\varepsilon)$, then there exists a sequence $\varepsilon_n \to 0$ such that

$$P(|H_n - EH_n| > \varepsilon_n n^{1/10}) < 1/2.$$
(3.7)

We now choose $\alpha_n = \varepsilon_n n^{1/10}$, which satisfies (3.5), and obtain a contradiction from (3.4) and (3.7). Hence either (3.1) or (3.6), for some $\varepsilon > 0$, fails for infinitely many n, which proves the result.

Finally, let us see what happens when we try to generalize the results to the random d-dimensional order defined by random points in $Q_d = [0, 1]^d$. Lemma 1 holds, with

$$\delta_n = K n^{-1/4d} \log^{3/4} n \, (\log \log n)^{-1/2}, \tag{3.8}$$

by essentially the same proof; we now define $S_{\delta} = \{(x_i)^d : |x_i - x_j| \leq \delta, i < j\}$, and note that $|S_{\delta}| \approx \delta^{d-1}$. For Lemma 2, however, we need

$$\alpha_n = o\left(n^{1/d - 1/2} \delta_n^{-(d-1)/2}\right),\tag{3.9}$$

in which case we may take $m = Kn^{1-1/d}\alpha_n$ for some large K. However, (3.8) and (3.9) imply $\alpha_n = o(n^{(7-3d)/8d}) = o(1)$ for $d \ge 3$, so we do not obtain any result at all. (We also need $\alpha_n \ge 1$). The method of Theorem 2 yields no result either: we obtain $\delta_n = Kn^{\gamma/2-1/2d}$ and by (3.9) we have

$$\alpha_n = o(n^{(3-d)/4d - \gamma(d-1)/4}), \tag{3.10}$$

which again contradicts $\alpha_n \ge 1$ for any $\gamma > 0$ when d > 3.

We can explain this failure in terms of the heuristics at the beginning of Section 2. We still have a relative variation of the number of points in the strip S_{δ} of order $n^{-(1-\alpha)/2}$, for some $\alpha > 0$, but this translates to a variation of the height of order only $n^{1/d-1/2+\alpha/2}$, which does not give any non-trivial result (α is rather small). Of course, this does not preclude the possibility that there is a substantial variation of the height due to the random position of points in the strip.

References

- 1. A. D. Barbour, L. Holst and S. Janson, Poisson Approximation, Oxford Univ. Press, Oxford, 1992.
- 2. B. Bollobás and G. Brightwell, The height of a random partial order: concentration of measure, Ann. Appl. Probab. 2 (1992), 1009–1018.
- 3. A. Frieze, On the length of the longest monotone subsequence in a random permutation, Ann. Appl. Probab. 1 (1991), 301–305.
- J.M. Hammersley, A few seedlings of research, Proc. 6th Berkeley Symp. Math. Stat. Prob. (1972), Univ. of California Press, 345–394.
- 5. S. Janson, Random coverings in several dimensions, Acta Math. 156 (1986), 83-118.
- 6. O. Kallenberg, Random Measures, Akademie-Verlag, Berlin, 1983.
- B.F. Logan and L.A. Shepp, A variational problem for Young tableaux, Advances in Mathematics 26 (1977), 206-222.
- 8. Michel Talagrand, Concentration of measure and isoperimetric inequalities in product spaces (to appear).
- 9. S.M. Ulam, Monte Carlo calculations in problems of mathematical physics, *Modern Mathematics for the Engineer* (1961), E.F. Beckenbach Ed., McGraw Hill, New York.
- A.M. Veršik and S.V. Kerov, Asymptotics of the Plancherel measure of the symmetric group and the limiting form of Young tableaux, *Dokl. Akad. Nauk. SSSR* 233 (1977), 1024–1028. (Russian)

BÉLA BOLLOBÁS, DEPARTMENT OF PURE MATHEMATICS AND MATHEMATICAL STATISTICS, UNIVER-SITY OF CAMBRIDGE, 16 MILL LANE, CAMBRIDGE CB2 1SB, ENGLAND

 $E\text{-}mail\ address:$ B.Bollobas@pmms.cam.ac.uk

Svante Janson, Department of Mathematics, Uppsala University, PO Box 480, S-751 06 Uppsala, Sweden

E-mail address: svante.janson@math.uu.se