# MGARCH.ssc # Prepared for the MGARCH Chapter # Date: April 5, 2002 hp.ibm=seriesMerge(hp.s,ibm.s) tmp=acf(hp.ibm^2) hp.ibm.cov=EWMA.cov(hp.ibm,lambda=0.9672375) seriesPlot(cbind(hp.ibm.cov[,1,1],hp.ibm.cov[,2,2],hp.ibm.cov[,1,2]), one.plot=F,strip.text=c("HP Vol.","IBM Vol.","Cov.")) hp.ibm.ewma=mgarch(hp.ibm~1,~ewma1,trace=F) hp.ibm.ewma mgarch(hp.ibm~1,~ewma2,trace=F) hp.ibm.dvec=mgarch(hp.ibm~1,~dvec(1,1),trace=F) class(hp.ibm.dvec) hp.ibm.dvec names(hp.ibm.dvec) coef(hp.ibm.dvec) sqrt(diag(vcov(hp.ibm.dvec,method="qmle"))) residuals(hp.ibm.dvec, standardize=T) summary(hp.ibm.dvec) autocorTest(residuals(hp.ibm.dvec,standardize=T)^2,lag=12) archTest(residuals(hp.ibm.dvec,standardize=T),lag=12) autocorTest(residuals(hp.ibm.dvec,standardize=T)^2,lag=12,bycol=F) plot(hp.ibm.dvec, ask=F) hp.ibm.cross=hp.ibm.dvec$R.t[,1,2] hp.ibm.cross=timeSeries(hp.ibm.cross,pos=positions(hp.ibm)) seriesPlot(hp.ibm.cross,strip="Conditional Cross Corr.") mgarch(hp.ibm~1,~dvec.mat.scalar(1,1),trace=F) hp.ibm.bekk=mgarch(hp.ibm~1,~bekk(1,1)) hp.ibm.bekk seriesPlot(cbind(hp.ibm.dvec$R.t[,1,2],hp.ibm.bekk$R.t[,1,2]), strip=c("DVEC Corr.","BEKK Corr."),one.plot=F,layout=c(1,2,1)) mgarch(hp.ibm~1,~ccc.two.comp(1,1),trace=F) mgarch(hp.ibm~1,~prcomp.pgarch(1,1,1),trace=F) mgarch(hp.ibm~1,~egarch(1,1),leverage=T,trace=F) hp.ibm.beta=mgarch(hp.ibm~seriesData(nyse.s),~dvec(1,1),xlag=1) summary(hp.ibm.beta) plot(hp.ibm.beta, ask=F) weekdaysVec=as.integer(weekdays(positions(hp.ibm))) MonFriDummy=(weekdaysVec==2|weekdaysVec==6) hp.ibm.dummy=mgarch(hp.ibm~1,~dvec(1,1)+MonFriDummy) summary(hp.ibm.dummy) hp.ibm.dvec.t=mgarch(hp.ibm~1,~dvec(1,1),cond.dist="t") hp.ibm.dvec.t$cond.dist hp.ibm.comp=compare.mgarch(hp.ibm.dvec, hp.ibm.dvec.t) hp.ibm.comp plot(hp.ibm.comp,qq=T) class(hp.ibm.dvec$model) hp.ibm.dvec$model names(hp.ibm.dvec$model) hp.ibm.dvec$model$arch bekk.mod=hp.ibm.bekk$model bekk.mod$a.value[2,1]=0 hp.ibm.bekk2=mgarch(series=hp.ibm,model=bekk.mod) bekk.mod=hp.ibm.bekk$model bekk.mod$c.value=rep(0,2) bekk.mod$c.which=rep(F,2) hp.ibm.bekk3=mgarch(series=hp.ibm, model=bekk.mod) LR.stat=-2*(hp.ibm.bekk3$likelihood - hp.ibm.bekk$likelihood) LR.stat