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Abstract

We report on concepts and methods to implement the family of ARMA models with
GARCH/APARCH errors introduced by Ding, Granger and Engle. The software imple-
mentation is written in S and optimization of the constrained log-likelihood function is
achieved with the help of a SQP solver. The implementation is tested with Bollerslev’s
GARCH(1,1) model applied to the DEMGBP foreign exchange rate data set given by
Bollerslev and Ghysels. The results are compared with the benchmark implementation
of Fiorentini, Calzolari and Panattoni. In addition the MA(1)-APARCH(1,1) model for
the SP500 stock market index analyzed by Ding, Granger and Engle is reestimated and
compared with results obtained from the Ox/G@RCH and SPlus/Finmetrics software
packages. The software is part of the Rmetrics open source project for computational
finance and financial engineering. Implementations are available for both software envi-
ronments, R and SPlus.

Keywords: Time Series Analysis, Heteroskedasticity, ARCH, GARCH, APARCH, constrained
maximum log-likelihood, SQP solver, R, Rmetrics, SPlus, Finmetrics, Ox, G@RCH.

1. Introduction

GARCH, Generalized Autoregressive Conditional Heteroskedastic, models have become im-
portant in the analysis of time series data, particularly in financial applications when the goal
is to analyze and forecast volatility. For this purpose, we describe functions for simulating,
estimating and forecasting various univariate GARCH-type time series models in the condi-
tional variance and an ARMA specification in the conditional mean. We present a numerical
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2 An R and SPlus Software Implementation

implementation of the maximum log-likelihood approach under different assumptions, Nor-
mal, Student-t, GED errors or their skewed versions. The parameter estimates are checked
by several diagnostic analysis tools including graphical features and hypothesis tests. Func-
tions to compute n-step ahead forecasts of both the conditional mean and variance are also
available.

The number of GARCH models is immense, but the most influential models were the first.
Beside the standard ARCH model introduced by Engle [1982] and the GARCH model in-
troduced by Bollerslev [1986], we consider also the more general class of asymmetric power
ARCH models, named APARCH, introduced by Ding, Granger and Engle [1993]. APARCH
models include as special cases the TS-GARCH model of Taylor [1986] and Schwert [1989],
the GJR-GARCH model of Glosten, Jaganathan, and Runkle [1993], the T-ARCH model of
Zakoian [1993], the N-ARCH model of Higgins and Bera [1992], and the Log-ARCH model of
Geweke [1986] and Pentula [1986].

Coupled with these models was a sophisticated analysis of the stochastic process of data gen-
erated by the underlying process as well as estimators for the unknown model parameters.
Theorems for the autocorrelations, moments and stationarity and ergodicity of GARCH pro-
cesses have been developed for many of the important cases. There exist a collection of review
articles by Bollerslev, Chou and Kroner [1992], Bera and Higgins [1993], Bollerslev, Engle and
Nelson [1994], Engle [2001], Engle and Patton [2001], and Li, Ling and McAleer [2002] that
give a good overview of the scope of the research.

2. Mean and Variance Equation

We describe the mean equation of an univariate time series xt by the process

xt = E(xt|Ωt−1) + εt , (1)

where E(·|·) denotes the conditional expectation operator, Ωt−1 the information set at time t−
1, and εt the innovations or residuals of the time series. εt describes uncorrelated disturbances
with zero mean and plays the role of the unpredictable part of the time series. In the following
we model the mean equation as an ARMA process, and the innovations are generated from a
GARCH or APARCH process.

ARMA Mean Equation: The ARMA(m,n) process of autoregressive order m and moving
average order n can be described as

xt = µ +
m∑

i=1

aixt−i +
n∑

j=1

bjεt−j + εt ,

= µ + a(B)xt + b(B)εt , (2)

with mean µ, autoregressive coefficients ai and moving average coefficients bi. Note, that
the model can be expressed in a quite comprehensive form using the backshift operator B
defined by Bxt = xt−1. The functions a(B) and b(B) are polynomials of degree m and n
respectively in the backward shift operator B. If n = 0 we have a pure autoregressive process
and if on the other hand m = 0 we have a pure moving average process. The ARMA time
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series is stationary when the series a(B), which is the generating function of the coefficients
ai, converges for |B| < 1 that is, on or within the unit circle.

GARCH Variance Equation: The mean equation cannot take into account for heteroskedas-
tic effects of the time series process typically observed in form of fat tails, as clustering of
volatilities, and the leverage effect. In this context Engle [1982] introduced the Autoregres-
sive Conditional Heteroskedastic model, named ARCH, later generalized by Bollerslev [1986],
named GARCH. The εt terms in the ARMA mean equation (2) are the innovations of the
time series process. Engle [1982] defined them as an autoregressive conditional heteroscedastic
process where all εt are of the form

εt = zt σt , (3)

where zt is an iid process with zero mean and unit variance. Although εt is serially uncor-
related by definition its conditional variance equals σ2

t and, therefore, may change over time.
All the GARCH models we consider in the following differ only in their functional form for
the conditional variance.

The variance equation of the GARCH(p,q) model can be expressed as

εt = ztσt ,

zt ∼ Dϑ(0, 1) ,

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j ,

= ω + α(B)ε2
t−1 + β(B)σ2

t−1 , (4)

where Dϑ(0, 1) is the probability density function of the innovations or residuals with zero
mean and unit variance. Optionally, ϑ are additional distributional parameters to describe
the skew and the shape of the distribution. If all the coefficients β are zero the GARCH
model is reduced to the ARCH model. Like for ARMA models a GARCH specification often
leads to a more parsimonious representation of the temporal dependencies and thus provides
a similar added flexibility over the linear ARCH model when parameterizing the conditional
variance. Bolerslev [1986] has shown that the GARCH(p,q) process is wide-sense stationary
with E(εt) = 0, var(εt) = ω/(1 − α(1) − β(1)) and cov(εt, εs) = 0 for t 6= s if and only if
α(1) + β(1) < 1.

The variance equation of the APARCH(p,q) model can be written as

εt = ztσt ,

zt ∼ Dϑ(0, 1) ,

σδ
t = ω +

p∑
i=1

αi(|εt−i| − γiεt−i)δ +
q∑

j=1

βjσ
δ
t−j , (5)

where δ > 0 and −1 < γi < 1. This model has been introduced by Ding, Granger, and Engle
[1993]. It adds the flexibility of a varying exponent with an asymmetry coefficient to take the
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leverage effect into account. A stationary solution exists if ω > 0, and Σiαiκi + Σjβj < 1,
where κi = E(|z|+ γiz)δ. Note, that if γ 6= 0 and/or δ 6= 2 the κi depend on the assumptions
made on the innovation process. The family of APARCH models includes the ARCH and
GARCH models, and five other ARCH extensions as special cases:

• ARCH Model of Engle when δ = 2, γi = 0, and βj = 0.

• GARCH Model of Bollerslev when δ = 2, and γi = 0.

• TS-GARCH Model of Taylor and Schwert when δ = 1, and γi = 0.

• GJR-GARCH Model of Glosten, Jagannathan, and Runkle when δ = 2.

• T-ARCH Model of Zakoian when δ = 1.

• N-ARCH Model of Higgens and Bera when γi = 0, and βj = 0.

• Log-ARCH Model of Geweke and Pentula when δ → 0.

3. The Standard GARCH(1,1) Model

Code Snippet 1 shows how to write a basic S function named garch11Fit() to estimate
the parameters for Bollerslev’s GARCH(1,1) model. As the benchmark data set we use the
daily DEMGBP foreign exchange rates as supplied by Bollerslev and Ghysels [1996] and the
results obtained by Fiorentini, Calzolar and Panattoni [1996] based on the optimization of the
log-likelihood function using analytic expressions for the gradient and Hessian matrix. This
setting is well accepted as the benchmark for GARCH(1,1) models. The function estimates
the parameters µ, ω, α, β in a sequence of several major steps: (1) the initialization of the
time series, (2) the initialization of the model parameters, (3) the settings for the conditional
distribution function, (4) the composition of the log-likelihood function, (5) the estimation
of the model parameters, and 6) the summary of the optimization results.

Given the model for the conditional mean and variance and an observed univariate return
series, we can use the maximum log-likelihood estimation approach to fit the parameters for
the specified model of the return series. The procedure infers the process innovations or
residuals by inverse filtering. Note, that this filtering transforms the observed process εt into
an uncorrelated white noise process zt. The log-likelihood function then uses the inferred
innovations zt to infer the corresponding conditional variances σt

2 via recursive substitution
into the model-dependent conditional variance equations. Finally, the procedure uses the
inferred innovations and conditional variances to evaluate the appropriate log-likelihood ob-
jective function. The MLE concept interprets the density as a function of the parameter set,
conditional on a set of sample outcomes. The Normal distribution is the standard distribution
when estimating and forecasting GARCH models. Using εt = ztσt the log-likelihood function
of the Normal distribution is given by

LN (θ) = ln
∏

t

1√
(2πσ2

t )
e
− ε2t

2σ2
t = ln

∏
t

1√
(2πσ2

t )
e−

z2
t
2 (6)

= −1
2

∑
t

[log(2π) + log(σ2
t ) + z2

t ] ,
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or in general

LN (θ) = ln
∏

t

Dϑ(xt, E(xt|Ωt−1), σt) , (7)

where Dϑ is the conditional distribution function. The second argument of Dϑ denotes
the mean, and the third argument the standard deviation. The full set of parameters
θ includes the parameters from the mean equation (µ, a1:m, b1:n), from the variance equa-
tion (ω, α1:p, γ1:p, β1:q, δ), and the distributional parameters (ϑ) in the case of a non-normal
distribution function. For Bollerslev’s GARCH(1,1) model the parameter set reduces to
θ = {µ, ω, α1, β1}. In the following we will suppress the index on the parameters α and
β if we consider the GARCH(1,1) model.
The parameters θ which fit the model best, are obtained by minimizing the “negative” log-
likelihood function. Some of the values of the parameter set θ are constrained to a finite or
semi-finite range. Note, that ω > 0 has to be constrained on positive values, and that α and
β have to be constrained in a finite interval [0, 1). This requires a solver for constrained
numerical optimization problems. R offers the solvers nlminb() and optim(method="L-
BFGS-B") for constrained optimization, the first is also part of SPlus. These are R interfaces
to underlying Fortran routines from the PORT Mathematical Subroutine Library, Lucent
Technologies [1997], and to TOMS Algorithm 778, ACM [1997], respectively. In addition
we have implemented a sequential quadratic programming algorithm "sqp", Lucsan [1976],
which is more efficient compared to the other two solvers. And additionally, everything
is implemented in Fortran, the solver, the objective function, gradient vector, and Hessian
matrix.
The optimizer require a vector of initial parameters for the mean µ, as well as for the GARCH
coefficients ω, α, and β. The initial value for the mean is estimated from the mean µ of the
time series observations x. For the GARCH(1,1) model we initialize α = 0.1 and β = 0.8
by typical values of financial time series, and ω by the variance of the series adjusted by the
persistence ω = Var(x) ∗ (1− α− β). Further arguments to the GARCH fitting function are
the upper and lower box bounds, and optional control parameters.

3.1. How to fit Bollerslev’s GARCH(1,1) Model

In what follows we explicitly demonstrate how the parameter estimation for the GARCH(1,1)
model with normal innovations can be implemented in S. The argument list of the fitting
function garch11Fit(x) requires only the time series, the rest will be done automatically
step by step:

• Step 1 - Series Initialization: We save the time series x globally to have the values
available in later function calls without parsing the series through the argument list.

• Step 2 - Parameter Initialization: In the second step we initialize the set of model
parameters {θ}, params, and the corresponding upper and lower bounds. In the example
we use bounds lowerBounds and upperBounds which are wide enough to serve almost
every economic and financial GARCH(1,1) model, and define model parameters which
take typical values.

• Step 3 - Conditional Distribution: For the conditional distribution we use the Normal
distribution dnorm().
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garch11Fit = function(x)

{

# Step 1: Initialize Time Series Globally:

x <<- x

# Step 2: Initialize Model Parameters and Bounds:

Mean = mean(x); Var = var(x); S = 1e-6

params = c(mu = Mean, omega = 0.1*Var, alpha = 0.1, beta = 0.8)

lowerBounds = c(mu = -10*abs(Mean), omega = S^2, alpha = S, beta = S)

upperBounds = c(mu = 10*abs(Mean), omega = 100*Var, alpha = 1-S, beta = 1-S)

# Step 3: Set Conditional Distribution Function:

garchDist = function(z, hh) { dnorm(x = z/hh)/hh }

# Step 4: Compose log-Likelihood Function:

garchLLH = function(parm) {

mu = parm[1]; omega = parm[2]; alpha = parm[3]; beta = parm[4]

z = (x-mu); Mean = mean(z^2)

# Use Filter Representation:

e = omega + alpha * c(Mean, z[-length(x)]^2)

h = filter(e, beta, "r", init = Mean)

hh = sqrt(abs(h))

llh = -sum(log(garchDist(z, hh)))

llh }

print(garchLLH(params))

# Step 5: Estimate Parameters and Compute Numerically Hessian:

fit = nlminb(start = params, objective = garchLLH,

lower = lowerBounds, upper = upperBounds, control = list(trace=3))

epsilon = 0.0001 * fit$par

Hessian = matrix(0, ncol = 4, nrow = 4)

for (i in 1:4) {

for (j in 1:4) {

x1 = x2 = x3 = x4 = fit$par

x1[i] = x1[i] + epsilon[i]; x1[j] = x1[j] + epsilon[j]

x2[i] = x2[i] + epsilon[i]; x2[j] = x2[j] - epsilon[j]

x3[i] = x3[i] - epsilon[i]; x3[j] = x3[j] + epsilon[j]

x4[i] = x4[i] - epsilon[i]; x4[j] = x4[j] - epsilon[j]

Hessian[i, j] = (garchLLH(x1)-garchLLH(x2)-garchLLH(x3)+garchLLH(x4))/

(4*epsilon[i]*epsilon[j])

}

}

# Step 6: Create and Print Summary Report:

se.coef = sqrt(diag(solve(Hessian)))

tval = fit$par/se.coef

matcoef = cbind(fit$par, se.coef, tval, 2*(1-pnorm(abs(tval))))

dimnames(matcoef) = list(names(tval), c(" Estimate",

" Std. Error", " t value", "Pr(>|t|)"))

cat("\nCoefficient(s):\n")

printCoefmat(matcoef, digits = 6, signif.stars = TRUE)

}

� Code Snippet 1: Example script which shows the six major steps to estimate the parameters

of a GARCH(1,1) time series model. The same steps are implemented in the “full version” of

garchFit() which allows the parameter estimation of general ARMA(m,n)-APARCH(p,q) with

several types of conditional distribution functions.
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• Step 4 - Log-Likelihood Function: The function garchLLH() computes the“negative”log-
likelihood for the GARCH(1,1) model. We use a fast and efficient filter representation
for the variance equation, such that no execution time limiting for loop will become
necessary.

• Step 5: - Parameter Estimation: For the GARCH(1,1) model optimization of the log-
likelihood function we use the constrained solver nlminb() which is available in R
and SPlus. To compute standard errors and t-values we evaluate the Hessian matrix
numerically.

• Step 6: - Summary Report: The results for the estimated parameters together with
standard errors and t-values are summarized and printed.

3.2. Case Study: The DEMGBP Benchmark

Through the complexity of the GARCH models it is evident that different software imple-
mentations have different functionalities, drawbacks and features and may lead to differences
in the numerical results. McCullough and Renfro [1999], Brooks, Burke and Persand [2001],
and Laurent and Peters [2003] compared the results of several software packages. These in-
vestigations demonstrate that there could be major differences between estimated GARCH
parameters from different software packages. Here we use for comparisons the well accepted
benchmark suggested by Fiorentini, Calzolari, and Panattoni [1996] to test our implementa-
tion.
For the time series data we take the DEMGBP daily exchange rates as published by Bollerslev
and Ghysels [1996]. The series contains a total of 1975 daily observations sampled during the
period from January 2, 1984, to December 31, 1991. This benchmark was also used by
McCullough and Renfro [1999], and by Brooks, Burke, and Persand [2001] in their analysis
of several GARCH software packages. Figure 1 shows some stylized facts of the log-returns
of the daily DEM/GBP FX rates. The distribution is leptokurtic and skewed to negative
values. The log-returns have a mean value of µ = −0.00016, i.e. almost zero, a skewness of
ς = −0.25, and an excess kurtosis of κ = 3.62. The histogram of the density and the quantile-
quantile plot graphically display this behavior. Furthermore, the autocorrelation function of
the absolute values of the returns, which measures volatility, decay slowly.
We use the GARCH(1,1) model to fit the parameters of the time series using the function
garch11Fit() and compare these results with the benchmark computations of Fiorentini,
Calzolari, and Panattoni and with results obtained from other statistical software packages.

# Code Snippet 2: GARCH(1,1) Benchmark for the DEM/GBP Exchange Rates

> data(dem2gbp)

> garch11Fit(x = dem2gbp[, 1])

Coefficient(s):

Estimate Std. Error t value Pr(>|t|)

mu -0.00619040 0.00846211 -0.73154 0.46444724

omega 0.01076140 0.00285270 3.77236 0.00016171 ***

alpha 0.15313411 0.02652273 5.77369 7.7552e-09 ***

beta 0.80597365 0.03355251 24.02126 < 2.22e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1



8 An R and SPlus Software Implementation

index

lo
g 

R
et

ur
n

0 500 1000 1500 2000

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

DEM/GBP FX Rate Histogram of demgbp

demgbp

D
en

si
ty

−0.02 −0.01 0.00 0.01 0.02

0
20

40
60

80
10

0
12

0

−3 −2 −1 0 1 2 3

−
0.

02
−

0.
01

0.
00

0.
01

0.
02

0.
03

Normal Q−Q Plot

Normal Quantiles

E
m

pi
ric

al
 Q

ua
nt

ile
s

0 5 10 15 20 25 30

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Lag

A
C

F

Series  abs(demgbp)

� Figure 1: Returns, their distribution, the quantile-quantile plot, and the autocorrelation function of
the volatility for the DEMGBP benchmark data set.

The estimated model parameters are to more than four digests exactly the same numbers as
the FCP benchmark. Note, we used numerically computed derivatives whereas the benchmark
used analytically calculated derivatives. The observation that it is not really necessary to
compute the derivatives analytically was already made by Doornik [2000] and Laurent and
Peters [2001].

Rmetrics FCP Finmetrics G@ARCH Shazam TSP

μ -0.006190 -0.006190 -0.006194 -0.006183 -0.006194 -0.006190
ω 0.01076 0.01076 0.01076 0.01076 0.01076 0.01076
α 0.1531 0.1531 0.1540 0.1531 0.1531 0.1531
β 0.8060 0.8060 0.8048 0.8059 0.8060 0.8060

                        Rmetrics                         FCP Benchmark                  G@ARCH Ox
Estimate StdErrors Estimate StdErrors Estimate StdErrorsdErrors

μ 0.00619040 .00846211 -0.00619041 .00846212 -0.006184 0.008462    
ω 0.0107614 .00285270 0.0107614 .00285271 0.010760 0.002851    
α 0.153134 0.0265227 0.153134 0.0265228 0.153407 0.026569    
β 0.805974 0.0335525 0.805974 0.0335527 0.805879 0.033542    

    Rmetrics:      FCP Benchmark:   Ox/Garch:    Splus/Finmetrics:
Estimate StdError t Value Estimate StdError t Value Estimate StdError t Value Estimate StdError t Value

μ -0.0061904 0.0084621  -0.732 -0.0061904 0.0084621  -0.732 -0.006184 0.008462 -0.731 -0.006053 0.00847 -0.715
ω 0.010761 0.0028527   3.77 0.010761 0.0028527   3.77 0.010761 0.0028506  3.77  0.010896 0.0029103  3.74
α 0.15313 0.026523   5.77 0.15313 0.026523   5.77 0.15341 0.026569  5.77  0.15421 0.026830  5.75
β 0.80597 0.033553  24.0 0.80597 0.033553  24.0 0.80588 0.033542 24.0  0.80445 0.034037 23.6

� Table 1: Comparison of the results of the GARCH(1,1) parameter estimation for the DEMGBP
benchmark data set obtained from several software packages. The first two columns show the results from the
GARCH(1,1) example program, the second group from the FCP benchmark results, the third group from Ox’
G@RCH, and the last group from SPlus’ Finmetrics. The left hand numbers are the parameter estimates and
the right hand number the standard errors computed from the Hessian matrix.
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4. Alternative Conditional Distributions

Different types of conditional distribution functions D are discussed in literature. These are
the Normal distribution which we used in the previous section, the standardized Student-t
distribution and the generalized error distribution and their skewed versions. Since only the
symmetric Normal distribution of these functions is implemented in R’s base environment
and also in most of the other statistical software packages, we discuss the implementation of
the other distributions in some more detail.

The default choice for the distribution D of the innovations zt of a GARCH process is the
Standardized Normal Probability Function

f?(z) =
1√
2π

e−
z2

2 . (8)

The probability function or density is named standardized, marked by a star ?, because f?(z)
has zero mean and unit variance. This can easily be verified computing the moments

µ?
r =

∫ ∞

−∞
zrf?(z)dz . (9)

Note, that µ?
0 ≡ 1 and σ?

1 ≡ 1 are the normalization conditions, that µ?
1 defines the mean

µ ≡ 0, and µ?
2 the variance σ2 ≡ 1.

An arbitrary Normal distribution located around a mean value µ and scaled by the standard
deviation σ can be obtained by introducing a location and a scale parameter through the
transformation

f(z)dz → 1
σ

f?
(z − µ

σ

)
dz =

1
σ
√

2π
e−

(z−µ)2

2σ2 dz . (10)

The central moments µr of f(z) can simply be expressed in terms of the moments µ?
r of the

standardized distribution f?(z). Odd central moments are zero and those of even order can
be computed from

µ2r =
∫ ∞

−∞
(z − µ)2rf(z)dz = σ2rµ?

2r = σ2r 2r

√
π

Γ
(
r +

1
2

)
, (11)

yielding µ2 = 0, and µ4 = 3. The degree of asymmetry γ1 of a probability function, named
skewness, and the degree of peakedness γ2, named excess kurtosis, can be measured by nor-
malized forms of the third and fourth central moments

γ1 =
µ3

µ
3/2
2

= 0 , γ2 =
µ4

µ2
2

− 3 = 0 . (12)

However, if we like to model an asymmetric and/or leptokurtic shape of the innovations
we have to draw or to model zt from a standardized probability function which depends
on additional shape parameters which modify the skewness and kurtosis. However, it is
important that the probability has still zero mean and unit variance. Otherwise, it would be
impossible, or at least difficult, to separate the fluctuations in the mean and variance from the
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� Figure 2: The density and distribution for the Standardized Student-t distribution with unit vari-
ance for three different degrees of freedom, ν = 2.5, 5, 10. The graph for the largest value of ν is almost
undistinguishable from a Normal distribution.

fluctuations in the shape of the density. In a first step we consider still symmetric probability
functions but with an additional shape parameter which models the kurtosis. As examples we
consider the generalized error distribution and the Student-t distribution with unit variance,
both relevant in modelling GARCH processes.

4.1. Student-t Distribution

Bollerslev [1987], Hsieh [1989)], Baillie and Bollerslev [1989], Bollerslev, Chou, and Kroner
[1992], Palm [1996], Pagan [1996)], and Palm and Vlaar [1997] among others showed that
the Student-t distribution better captures the observed kurtosis in empirical log-return time
series. The density f?(z|ν) of the Standardized Student-t Distribution can be expressed as

f?(z|ν) =
Γ(ν+1

2 )√
π(ν − 2)Γ(ν

2 )
1(

1 + z2

ν−2

) ν+1
2

(13)

=
1√

ν − 2 B
(

1
2 , ν

2

) 1(
1 + z2

ν−2

) ν+1
2

,

where ν > 2 is the shape parameter and B(a, b) =Γ(a)Γ(b)/Γ(a + b) the Beta function.
Note, when setting µ = 0 and σ2 = ν/(ν− 2) formula (13) results in the usual one-parameter
expression for the Student-t distribution as implemented in the S function dt.

Again, arbitrary location and scale parameters µ and σ can be introduced via the transfor-
mation z → z−µ

σ . Odd central moments of the standardized Student-t distribution are zero
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and those of even order can be computed from

µ2r = σ2rµ?
2r = σ2r (ν − 2)

r
2

B( r+1
2 , ν−r

2 )
B(1

2 , ν
2 )

. (14)

Skewness γ1 and kurtosis γ2 are given by

γ1 =
µ3

µ
3/2
2

= 0 , γ2 =
µ4

µ2
2

− 3 =
6

ν − 4
. (15)

This result was derived using the recursion relation µ2r = µ2r−2
2r−1
ν−2r .

We have implemented the functions [rdpq]std() to generate random variates, and to com-
pute the density, probability and quantile functions. In the implementation of the distribution
function we made use of the relationship to the (non-standardized) Student-t distribution
function, [rdpq]t(), which is part of R’s and SPlus’ base installation.

4.2. Generalized Error Distribution

Nelson [1991] suggested to consider the family of Generalized Error Distributions, GED, al-
ready used by Box and Tiao [1973], and Harvey [1981]. f?(z|ν) can be expressed as

f?(z|ν) =
ν

λν21+1/νΓ(1/ν)
e−

1
2
| z
λν
|ν , (16)

λν =

(
2(−2/ν)Γ

(
1
ν

)
Γ
(

3
ν

) )1/2

,

with 0 < ν ≤ ∞. Note, that the density is standardized and thus has zero mean and
unit variance. Arbitrary location and scale parameters µ and σ can be introduced via the
transformation z → z−µ

σ . Since the density is symmetric, odd central moments of the GED
are zero and those of even order can be computed from

µ2r = σ2rµ?
2r = σ2r (21/νλν)2r

Γ
(

1
ν

) Γ
(2r + 1

ν

)
. (17)

Skewness γ1 and kurtosis γ2 are given by

γ1 =
µ3

µ
3/2
2

= 0 , γ2 =
µ4

µ2
2

− 3 =
Γ
(

1
ν

)
Γ
(

5
ν

)
Γ
(

3
ν

)2 − 3 . (18)

For ν = 1 the GED reduces to the Laplace distribution, for ν = 2 to the Normal distribution,
and for ν →∞ to the uniform distribution as a special case. The Laplace distribution takes the
form f(z) = e−

√
2|z|/

√
2, and the uniform distribution has range ±2

√
3. We have implemented

functions [rdpq]ged() which compute the GED and generate random variates. To compute
the distribution function F (x) =

∫ x
−∞ f(z)dz in an efficient way we have transformed 1

2 |
z
λν
|ν →

z and made use of the relationship to the Gamma distribution function which is part of R’s
and SPlus’ base installation.
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� Figure 3: The density and distribution for the GED. Three cases are considered: The leptokurtic
Laplace distribution with ν = 1, the Normal distribution with ν = 2, and the almost Uniform distribution for
large ν = 10.

4.3. Skewed Distributions

Fernandez and Steel [1998] proposed a quite general approach that allows the introduction
of skewness in any continuous unimodal and symmetric distribution by changing the scale at
each side of the mode

f(z|ξ) =
2

ξ + 1
ξ

[
f(ξz)H(−z) + f(

z

ξ
)H(z)

]
, (19)

where 0 < ξ < ∞ is a shape parameter which describes the degree of asymmetry. ξ = 1 yields
the symmetric distribution with f(z|ξ = 1) = f(z). H(z) = (1 + sign(z))/2 is the Heaviside
unit step function. Mean µξ and variance σξ of f(z|ξ) depend on ξ and are given by

µξ = M1

(
ξ − 1

ξ

)
,

σ2
ξ = (M2 −M2

1 )
(
ξ2 +

1
ξ2

)
,+2M2

1 −M2 (20)

Mr = 2
∫ ∞

0
xr f(x) dx ,

where Mr is the r-th absolute moment of f(x) on the positive real line. Note, that M2 ≡ 1 if
f(x) is a standardized distribution.
Now we introduce a re-parametrization in such a way that the skewed distribution becomes
standardized with zero mean and unit variance. Lambert and Laurent [2001] have also
reparametrized the density of Fernandez and Steel [1998] as a function of the conditional
mean and of the conditional variance in such a way that again the innovation process has
zero mean and unit variance. We call a skewed distribution function with zero mean and unit
variance Standardized Skewed Distribution function.
The probability function f?(z|ξ) of a standardized skewed distribution can be expressed in a
compact form as



Journal of Statistical Software 13

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Skew Student−t

z

f(
z)

xi=1.0

xi=0.8

xi=0.6

−4 −2 0 2 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Skew GED

z

f(
z)

xi=1.0

xi=0.8

xi=0.6

� Figure 4: The density and distribution for the skew Standardized Student-t with 5 degress of free-
dom and of the skew GED distribution with ν = 2 with zero mean and unit variance for three different degrees
of skewness, ξ = 1, 0.8, 0.6.

f?(z|ξθ) =
2σ

ξ + 1
ξ

f?(zµξσξ
|θ)

zµξσξ
= ξsign(σξ z+µξ)(σξz + µξ ) , (21)

where f?(z|θ) may be any standardized symmetric unimodal distribution function, like the
standardized Normal distribution (8), the standardized generalized error distribution (16) or
the standardized Student-t distribution (13). µξ and σξ can be calculated via equation (20).
Transforming z → z−µ

σ yields skewed distributions, where the parameters have the following
interpretation:

• µ - is the mean or location parameter,

• σ - is the standard deviation or the dispersion parameter,

• 0 < ξ < ∞ - is a shape parameter that models the skewness, and

• θ - is an optional set of shape parameters that model higher moments
of even order like ν in the GED and Student-t distributions.

The functions dsnorm(x, mean, sd, xi), dsged(x, mean, sd, nu, xi), and dsstd(x,
mean, sd, nu, xi) implement the density functions for the skew Normal, the skew GED,
and the skew Student-t. Default settings for the mean and standard deviation are mean=0 and
sd=1, so that the functions by default are standardized. S functions to compute probabilities
or quantiles and to generate random variates follow the common naming conventions used by
R and SPlus.

4.4. Fitting GARCH Processes with non-normal distributions

Bollerslev [1987] was the first who modelled financial time series for foreign exchange rates
and stock indexes using GARCH(1,1) models extended by the use of standardized Student-t
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distributions. In comparison to conditionally normal errors he found that t-GARCH(1,1)
errors much better capture the leptokurtosis seen in the data.

It is straightforward to add non-normal distribution functions to our fitting function listed
in Code Snippet 1. Then up to two additional parameters which can be either kept fixed or
estimated have to be introduced, the skew and/or the shape parameter. This is left as an
exercise to the reader. In the following we use the function garchFit() from the Rmetrics
software package. The relevant arguments are:

garchFit(cond.dist = c("dnorm", "dsnorm", "dstd", "dsstd", "dged", "dsged"),

skew = 0.9, shape = 4, include.skew = NULL, include.shape = NULL, ...)

The argument cond.dist allows to select one from six conditional distributions. Three of
them are skewed distributions, (the skew-Normal, the skew-Student, and the skew-GED), and
four of them have an additional shape parameter (the Student, the GED and their skewed
versions) as introduced in the previous section. The value for the skew, ξ, and the shape, ν, are
determined through the arguments skew and shape. Their are two additional undetermined
arguments named include.skew and include.shape. They can be set to TRUE or FALSE,
then the distributional parameters are included or kept fixed during parameter optimization,
respectively. If they are undetermined, then an automate selection is done depending on the
choice of the other parameters.

# Code Snippet 3: Fitting Bollerslev’s t-GARCH(1,1) Model

> garchFit(x = "dem2gbp", cond.dist = "dst")

Estimate Std. Error t value Pr(>|t|)

mu 0.002249 0.006954 0.323 0.7464

omega 0.002319 0.001167 1.987 0.0469 *

alpha1 0.124438 0.026958 4.616 3.91e-06 ***

beta1 0.884653 0.023517 37.617 < 2e-16 ***

shape 4.118427 0.401185 10.266 < 2e-16 ***

Note, that the model has not to be specified explicitly, since the GARCH(1,1) model is the
default. Another example shows how to fit a GARCH(1,1) model with Laplace distributed
errors. The Laplace distribution is a GED with shape parameter ν = 1. In this example we
show the estimated parameters from all three types of implemented solvers:

# Code Snippet 4: Fitting Laplace-GARCH(1,1) Model With Different Solvers

> garchFit(x = "dem2gbp", cond.dist = "dged", shape = 1, include.shape = FALSE,

algorithm = "nlminb+nm")

Estimate Std. Error t value Pr(>|t|)

mu 0.0030970 0.0002159 14.346 < 2e-16 ***

omega 0.0040774 0.0018143 2.247 0.0246 *

alpha1 0.1360974 0.0321703 4.231 2.33e-05 ***

beta1 0.8661677 0.0304597 28.436 < 2e-16 ***

> garchFit(cond.dist = "dged", shape = 1, include.shape = FALSE,

algorithm = "lbfgsb+nm")

Estimate Std. Error t value Pr(>|t|)

mu 0.0030970 0.0002159 14.346 < 2e-16 ***

omega 0.0040774 0.0018143 2.247 0.0246 *

alpha1 0.1360980 0.0321704 4.231 2.33e-05 ***

beta1 0.8661671 0.0304599 28.436 < 2e-16 ***
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> garchFit(cond.dist = "dged", shape = 1, include.shape = FALSE,

algorithm = "sqp")

Estimate Std. Error t value Pr(>|t|)

mu 0.003098 0.050169 0.062 0.951

omega 0.004077 0.001831 2.226 0.026 *

alpha1 0.136075 0.033163 4.103 4.07e-05 ***

beta1 0.866182 0.031381 27.602 < 2e-16 ***

We observe an agreement up to four digits in the GARCH coefficients ω, α, β, and an
agreement up to three digits for the ARMA coefficient µ.

5. ARMA(m,n) Models with GARCH(p,q) Errors

The next natural extension of the function garchFit() is to allow to model ARMA(m,n)
time series processes with GARCH(p,q) errors. Both, ARMA and GARCH may have general
orders m, n, p, q. For the specification we make use of the formula description of the S
language. The implementation of this extension requires three points to be considered:

• How to initialize the iteration of the ARMA and GARCH recursion formula?

• What is an efficient optimization algorithm?

• How to implement efficiently the ARMA and GARCH recursion formula?

For the initialization of the recursion formula we have implemented for the normal GARCH
model using the SQP algorithm two different types of startups which we call the ”mu-
current-iteration”, briefly init.rec="mci", and ”unconditional-expected-variances”, briefly
method="uev". For all other models and algorithms the "mci" type of initialization will
be used.

To explore the convergence behavior and efficiency of the optimization algorithms we have
implemented the R solvers nlminb(), optim("L-BFGS-B") which are available in R’s base
distribution, and have added an SQP solver implemented in a S function calling an under-
lying Fortran subroutine. For the first two implementations written entirely in S we used
a numerically effective filter() implementation without for-loops, whereas in the Fortran
version of the SQP algorithm, the log-likelihood function and the formula for the numerical
evaluation of the Hessian are also implemented internally in Fortran.

The major arguments in the garchFit() function are

garchFit(formula.mean = ~arma(0,0), formula.var = ~garch(1,1),

init.rec = c("mci", "uev"), algorithms = c("sqp", "nlminb", "bfgs"))

the remaining optional arguments will be discussed later.

5.1. The Recursion Initialization

In the DEM2GBP GARCH(1,1) Benchmark, FCP use the mean and variance initialization
for the innovations z and conditional variances h. We have implemented in Rmetrics the
following scheme

z1:` = 0 , h1:` = ω + ℘Υ , (22)
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where ω is the current value of the GARCH coefficient under optimization, ℘ the persistence,
and Υ the variance computed from one of the following two expressions

Υ = (1/T )ΣT
1 z2

t for ”mci”,

(23)
Υ = (1− ℘)ω for ”uev”,

In the case of the normal GARCH(p,q) we have ℘ =
∑

αi +
∑

βj .

# Code Snippet 5: Comparing "mci" and "uev" Recursion Initialization

> garchFit(series = "dem2gbp")@fit$coef

mu omega alpha1 beta1

-0.006190408 0.010761398 0.153134060 0.805973672

> garchFit(series = "dem2gbp", init.rec = "uev")@fit$coef

mu omega alpha1 beta1

-0.006269318 0.010983393 0.148699664 0.805808563

The results are compared in Table 2 with those obtained from the software package TSP 4.4,
which is one of the few packages which allows to specify how to initialize the recursion of the
variance formula.

Rmetrics TSP 4.4                 Rmetrics                   TSP 4.4
 "mci" "mci" "uev" "uev"

Estimate Estimate Estimate Estimate

μ -0.00619041 -0.00619041 -0.00626932 -0.00626932  
ω 0.010761 0.010761 0.010983 0.010983  
α 0.153134 0.153134 0.148700 0.148700  
β 0.805974 0.805974 0.805809 0.805809  

LLH  1106.608 1106.608 1106.949 1106.949

� Table 2: Comparison of the parameter estimates for the DEMGBP normal-GARCH(1,1) bench-
mark model as obtained from Rmetrics and TSP 4.4. "mci" denotes the ”mu-current-iteration” startup, and
”uev” denotes the ”unconditional-expected-variances”, startup. Note, that the results agree in all printed digits!

5.2. The Solvers

The fact why the function garchFit() has implemented different optimization algorithms has
historical reasons. When the first version was written the only solver implemented in R was the
AMC TOMS 778 algorithm optim(method="L-BFGS-B"). Later when the function nlminb()
was added to R’s base package, interfacing the PORT Mathematical Software Library, we
implemented it in garchFit(). Unfortunately, we found that for both solvers it was not
always possible to find the optimal values for the set of model parameters even if we tried
to adapt the control parameters. This problem was solved in many cases using a two stage
approach: First find a (near optimal) solution with one of the two constrained algorithms,
and then start with this solution a second optimization step with the (unconstrained) simplex
algorithm of Nelder-Mead, optim(method="Nelder-Mead"). The result is that one finds with
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this “hybrid approach” or “mixed method” in many cases an improved solution. The idea of
two step approaches is also mentioned in McCullough and Renfro [1999].

The idea to implement the Sequential Quadratic Programming algorithm, SQP, was inspired
by the fact that this algorithm is also part of the Ox, Doormik [1999], Matlab and Gauss,
Schoenberg [1999], software packages. SQP based algorithms represent very efficient nonlinear
programming methods. SQP algorithms have been implemented and tested, Schittkowski
[1999], that outperform significantly other methods in terms of accuracy and efficiency over a
large number of test problems. Based on work of Biggs [1999], Han [1999], and Powell [1999],
[1999], the method allows to closely mimic constrained optimization just as it is done for
unconstrained optimization. An overview of SQP methods can be found in Fletcher [1999],
Gill et al. [1999], Powell [1999], and Schittkowski [1999]. We have interfaced to Rmetrics the
SQP Fortran program written by Luksan [1999], which is a recursive quadratic programming
method with the BFGS variable metric update for general nonlinear programming problems.
This algorithm="sqp" is the default solver used for the optimization of all GARCH models.

5.3. Iteration of the Recursion Formulas

When we have written the garchFit() function entirely in S using the R solver nlminb()
and optim("L-BFGS-B") the bottleneck appeared in the computation of the log-likelihood
function. The computation seems to require a double for-loop in its most simple implemen-
tation.

# Code Snippet 6: APARCH - Computing Conditional Variances Effectively

> N = 10000; eps = round(rnorm(N), digits = 2) / 10

> omega = 0.1; alpha = c(0.1, 0.05); gamma = c(0, 0); beta = c(0.4, 0.3); delta = 2

> u = length(alpha); v = length(beta); uv = max(u,v); h = rep(0.1, uv)

# Case I: Conditional Variances as Double for-Loop:

> for (i in(uv+1):N ) {

+ ed = 0

+ for (j in 1:u) {

+ ed = ed+alpha[j]*(abs(eps[i-j])-gamma[j]*eps[i-j])^delta

+ }

+ h[i] = omega + ed + sum(beta*h[i-(1:v)])

+ }

The usage of the very time consuming double loop could be prevented using a (tricky) filter
representation of the processes build on top of the S function filter(). The following lines
of code are an excellent example how to avoid loops in S scripts and writing fast and efficient
S code.

# Code Snippet 7: Using R’s Filter Representation

# Case II: Conditional Variances in Filter Representation - Loopless:

> edelta = (abs(eps)-gamma*eps)^delta

> edeltat = filter(edelta, filter = c(0, alpha), sides = 1)

> c = omega/(1-sum(beta))

> h = c( h[1:uv], c + filter(edeltat[-(1:uv)], filter = beta,

+ method = "recursive", init = h[uv:1]-c))
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We like to remark, that the computation of the conditional variances by the filter repre-
sentation speeds up the computation of the log-likelihood function by one to two orders of
magnitude in time depending on the length of the series.

In the case of the SQP Fortran algorithm the computation of the log-likelihood function, of
the gradient vector, of the Hessian matrix, and of the conditinal distributions is implemented
entirely in Fortran. This results in a further essential speedup of execution time.

5.4. Tracing the Iteration Path

The parameter estimation is by default traced printing information about the model initial-
ization and about the iteration path

# Code Snippet 8: Tracing the "t-MA(1)-GARCH(1,2)" Model Fit

> garchFit(~arma(0,1), ~garch(1,2), cond.dist = "dstd")

# Partial Output ...

Series Initialization:

ARMA model: arma

Formula mean: ~ arma(0, 1)

GARCH model: garch

Formula var: ~ garch(1, 2)

...

Recursion Init: mci

Parameter Initialization:

Initial Parameters: $params

Limits of Transformations: $U, $V

Which Parameters are Fixed? $includes

Parameter Matrix:

U V params includes

mu -1.642679e-01 0.1642679 -0.016426142 TRUE

ma1 -9.999990e-01 0.9999990 0.009880086 TRUE

omega 2.211298e-07 22.1129849 0.022112985 TRUE

alpha1 1.000000e-06 0.9999990 0.100000000 TRUE

gamma1 -9.999990e-01 0.9999990 0.100000000 FALSE

beta1 1.000000e-06 0.9999990 0.400000000 TRUE

beta2 1.000000e-06 0.9999990 0.400000000 TRUE

delta 0.000000e+00 2.0000000 2.000000000 FALSE

skew 1.000000e-02 100.0000000 1.000000000 FALSE

shape 1.000000e+00 100.0000000 4.000000000 TRUE

Index List of Parameters to be Optimized:

mu ma1 omega alpha1 beta1 beta2 shape

1 2 3 4 6 7 10

...

Iteration Path:

SQP Algorithm

X and LLH improved to:

[1] -1.642614e-02 9.880086e-03 2.211298e-02 1.000000e-01 4.000000e-01

[6] 4.000000e-01 4.000000e+00 1.034275e+03

...

X and LLH final values:
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[1] 3.119662e-03 3.341551e-02 2.847845e-03 1.721115e-01 2.998233e-01

[6] 5.407535e-01 4.139274e+00 9.852278e+02

...

Control Parameters:

IPRNT MIT MFV MET MEC MER MES

1 200 500 2 2 1 4

XMAX TOLX TOLC TOLG TOLD TOLS RPF

1e+03 1e-16 1e-06 1e-06 1e-06 1e-04 1e-04

Time to Estimate Parameters:

Time difference of 7 secs

Hessian Matrix:

...

Coefficients and Error Analysis:

Estimate Std. Error t value Pr(>|t|)

mu 0.003120 0.007177 0.435 0.663797

ma1 0.033416 0.023945 1.396 0.162864

omega 0.002848 0.001490 1.911 0.056046 .

alpha1 0.172111 0.033789 5.094 3.51e-07 ***

beta1 0.299823 0.147459 2.033 0.042026 *

beta2 0.540753 0.144052 3.754 0.000174 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Log Likelihood:

985.2278 normalized: 0.4991022

In summary, the report gives us information about (i) the series initialization, (ii) the pa-
rameter initialization, (iii) the iteration path of the optimization, (iv) the Hessian matrix,
and (v) the final estimate including values for the the standard errors and the t-values.

6. APARCH(p,q) - Asymmetric Power ARCH Models

The last extension we consider is concerned with the Taylor effect and the leverage effect.

6.1. The Taylor-Schwert GARCH Model

Taylor [1986] replaced in the variance equation the conditional variance by the conditional
standard deviation, and Schwert [1989] modeled the conditional standard deviation as a lin-
ear function of lagged absolute residuals. This lead to the so called Taylor-Schwert GARCH
model. The model can be estimated fixing the value of δ, i.e. setting delta=1 and in-
clude.delta=FALSE, and excluding leverage=FALSE terms:

# Code Snippet 9: Fitting the TS-GARCH(1,1) Model

> garchFit(formula.var = ~aparch(1,1), delta = 1, include.delta = FALSE, leverage = FALSE)

LLH: 1104.411

mu omega alpha1 beta1

-0.005210079 0.030959213 0.166849469 0.808431234
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6.2. The GJR GARCH Model

The second model we consider is the model introduced by Glosten, Jagannathan and Runkle
[1993]. It is a variance model, i.e. fixed δ = 2 and allows for leverage effects:

# Code Snippet 10: Fitting the GJR-GARCH(1,1) Model

> garchFit(formula.var = ~aparch(1,1), delta = 2, include.delta = FALSE)

LLH: 1106.101

mu omega alpha1 gamma1 beta1

-0.007907355 0.011234020 0.154348236 0.045999936 0.801433933

6.3. The DGE GARCH Model

The last example in this series shows how to fit an APARCH(1,1) model introduced by Ding,
Granger and Engle [1999]:

# Code Snippet 11: Fitting the DGE-GARCH(1,1) Model

> garchFit(formula.var = ~aparch(1,1))

LLH: 1101.369

mu omega alpha1 gamma1 beta1 delta

-0.009775186 0.025358108 0.170567970 0.106648111 0.803174547 1.234059172

7. An Unique GARCH Modelling Approach

So far we have considered parameter estimation for heteroskedastic time series in the frame-
work of GARCH modelling. However, parameter estimation is not the only one aspect in the
analysis of GARCH models, several different steps are required in an unique approach: The
specification of a time series model, the simulation of artificial time series for testing purposes,
as already mentioned the parameter estimation, the diagnostic analysis, and the computation
of forecasts. In addition methods are needed for printing, plotting, and summarizing the
results. Rmetrics provides for each step in the modelling process a function:

• garchSpec() - specifies a GARCH model. The function creates a specification object of class "garchSpec"
which stores all relevant information to specify a GARCH model.

• garchSim() - simulates an artificial GARCH time series. The function returns a numeric vector with
an attribute defined by the specification structure.

• garchFit() - fits the parameters to the model using the maximum log-likelihood estimator. This
function estimates the time series coefficients and optionally the distributional parameters of the specified
GARCH model.

• print, plot, summary, - are S3 methods for an object returned by the function garchFit(). These
functions print and plot results, create a summary report and perform a diagnostic analysis.

• predict - is a generic function to forecast one step ahead from an estimated model. This S3 method
can be used to predict future volatility from a GARCH model.
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7.1. The Specification Structure

The function garchSpec() creates a S4 object called specification structure which specifies
a time series process from the ARMA-APARCH family and which can be extended easily to
include further type of GARCH models. The specification structure maintains information
that defines a model used for time series simulation, parameter estimation, diagnostic analysis,
and forecasting:

# garchSpec Class Representation:

setClass("garchSpec",

representation(

call = "call",

formula = "formula",

model = "list",

presample = "matrix",

distribution = "character")

)

The slots of an S4 garchSpec object include the @call, a @formula expression that describes
symbolically the model, a list with the @model coefficients and the distributional parameters,
a @presample character string which specifies how to initialize the time series process, and the
name of the conditional @distribution function. The specification structure is a very helpful
object which can be attributed to other objects like the result of a time series simulation
or a parameter fit, so that always all background information is available. A specification
structure can be in principle created from scratch using the function new, but it is much more
comfortable to use the function garchSpec(). The meaning of the arguments of this function
and its default values

> args(garchSpec)

function (model = list(omega = 1.0e-6, alpha = 0.1, beta = 0.8), presample = NULL,

cond.dist = c("rnorm", "rged", "rstd", "rsnorm", "rsged", "rsstd"), rseed = NULL)

is summarized in the following list:

• model - a list with the model parameters as entries
- omega - the variance value for the GARCH/APARCH specification,
- alpha - a vector of autoregressive coefficients of length p for the GARCH/APARCH specification,
- beta - a vector of moving average coefficients of length q for the GARCH/APARCH specification,
- further optional arguments:
- gamma - an optional vector of leverage coefficients of length p for the APARCH specification,
- mu - the mean value (optional) for ARMA/GARCH specification,
- ar - a vector of autoregressive coefficients (optional) of length m for the ARMA specification,
- ma - a vector of moving average coefficients (optional) of length n for the ARMA specification,
- delta - the (optional) exponent value used in the variance equation,
- skew - a numeric value specifying the skewness ξ of the conditional distribution,
- shape - a numeric value specifying the shape ν of the conditional distribution.

• presample - either NULL or a numeric "matrix" with 3 columns and at least max(m, n, p, q) rows. The
first column holds the innovations, the second the conditional variances, and the last the time series. If
presample=NULL then a default presample will be generated.

• cond.dist - a character string selecting the desired distributional form of the innovations either
"dnorm" for the Normal,
"dged" for the Generalized Error,
"dstd" for the standardized Student-t, or
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"dsnorm" for the skewed normal,
"dsged" for the skewed GED, or
"dsstd" for the skewed Student-t distribution.

• rseed - NULL or an integer value. If set to an integer, the value is the seed value for the random number
generation of innovations.

The function garchSpec() takes the inputs and derives the formula object from the model
arguments. Then the remaining values are assigned to the slots of the S4 object of class
"garchSpec" and returned.
The model is specified by default as a GARCH(1,1) process with ω = 10−6, α = 0.1, β = 0.8,
and with normal innovations. In general only a minimum of entries to the model list have to be
declared, missing values will be replaced by default settings. The model list can be retrieved
from the @model slot. Until now allowed models include the "ARCH", the "GARCH", and the
"APARCH" type of heteroskedastic time series processes. A formula object is automatically
created from the model list and available through the @formula slot, which is a list with two
formula elements named formula.mean and formula.var, most likely returned as arma(m,n)
and garch(p,q), where m, n, p, and q are integers denoting the model order. "arma" can
be missing in the case of iid innovations or can be specified as "ar(m)" or "ma(n)" in the
case of innovations from pure autoregressive or moving average models. garch(p,q) may be
alternatively specified as "arch(p)" or aparch(p,q). Note, that the conditional distribution
used for the innovations cannot be extracted from the @formula or @model slots, its name
is available from the @distribution slot, but the distributional parameters are part of the
model list.
The next code snippet shows the specification and printing of a t-MA(1)-GARCH(1,1) model
where innovations are taken from a Student-t conditional distribution function:

# Code Snippet 12: Specifying an t-MA(1)-GARCH(1,1) Model

> garchSpec(model = list(mean = 0.1, ma = 0.3, omega = 2.0e-6, alpha = 0.12,

beta = 0.84, skew = 1.1, shape = 4), cond.dist = "rsstd", rseed = 4711)

Formula:

~ ma(1) + garch(1, 1)

Model:

ma: 0.3

omega: 2.0e-6

alpha: 0.12

beta: 0.84

Distribution:

rsstd

Distributional Parameters:

nu = 4 xi = 1.1

Random Seed:

4711

Presample:

time z h y

0 0 1.819735 5e-05 0

7.2. Simulation of Artificial Time Series

The function garchSim() creates an artificial ARMA time series process with GARCH or
APARCH errors. The function requires the model parameters which can also be an object of
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� Figure 5: Returns and prices for two simulated GARCH processes. The upper two graphs repre-
sent Bollerslev’s t[4]-GARCH(1,1) model with a conditional distribution derived from the Student-t with 4
degrees of freedom. The lower two graphs represent a normal MA(1)-APARCH(1,1) model as introduced by
Ding, Granger and Engle.

class garchSpec, the length n of the time series, a presample to start the iteration, and the
name of cond.dist, the conditional distribution to generate the innovations. A presample
will be automatically created by default if not specified. The function garchSim() returns the
sample path for the simulated return series. The model specification is added as an attribute.

# Code Snippet 13: Simulating Bollerslev’s GARCH(1,1) Model

> model = list(omega = 1.0e-6, alpha = 0.13, beta = 0.81)

> garchSim(model, n = 100)

Time Series:

Start = 1

End = 100

Frequency = 1

[1] 7.708289e-04 3.201469e-03 5.455730e-03 1.092769e-03 9.551689e-03

[6] -1.602702e-03 1.893069e-03 -4.404711e-03 -3.380807e-03 -2.287276e-03

[11] -2.202586e-03 4.725309e-03 -1.817997e-03 ...

attr(,"spec")
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Formula:

~ garch(1, 1)

Model:

omega: 1e-06

alpha: 0.13

beta: 0.81

Distribution:

rnorm

Presample:

time z h y

0 0 0.4157423 1.666667e-05 0

# Note, garchSim() also accepts a Specification Structure:

> spec = garchSpec(model)

> garchSpec(model = spec, n = 100)

In the same way we can use the Rmetrics function garchSim() to simulate more complex
ARMA-GARCH/APARCH models. Here are some examples:

# Code Snippet 14: Simulating More Complex ARMA-GARCH Models

# ARMA-APARCH Simulation - Show Argument List:

> args(garchSim)

function (model = list(omega = 1e-06, alpha = 0.1, beta = 0.8), n = 100, n.start = 100,

presample = NULL, cond.dist = c("rnorm", "rged", "rstd", "rsnorm", "rsged", "rsstd"),

rseed = NULL)

# Specify ARCH(2) Model:

> model = list(omega = 1e-6, alpha = c(0.1, 0.3), beta = 0)

> garchSim(model)

# Specify Bollerslev t[4]-GARCH(1,1) Model:

> model <- list(omega = 1e-6, alpha = 0.15, beta = 0.75, shape = 4)

> garchSim(model, cond.dist = "rstd")

# Specify Ding-Engle-Granger MA(1)-APARCH(1,1) Model:

> model = list(ma = 0.1, omega = 1e-6, alpha = 0.15, gamma = 0.3, beta = 0.75, delta = 1.3))

> garchSim(model)

7.3. Tailored Parameter Estimation:

How to estimate the parameters of an ARMA-GARCH/APARCH model was already shown
in detail in the previous sections. In this section we discuss some technical details concerning
the S function garchFit() and explain how one can tailor the parameter estimation. The
estimation process is structured by the successive call of internal functions:

• garchFit - Main parameter estimation function

• .garchInitSeries - Initializes time series

• .garchInitParameters - Initializes the parameters to be optimized

• .garchSetCondDist - Defines the conditional distribution

• .garchOptimizeLLH - Optimizes the log-likelihood function

• .garchLLH - Computes the log-likelihood function

• .garchHessian - Computes the Hessian matrix
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All functions are written entirely in S. There is one exception concerned with the function
.garchOptimizeLLH() which is implemented in two different ways. The first type of imple-
mentation using the R solvers coming with R’s base package is written entirely in S. The
second type of implementation (the default) uses the Fortran SQP solver with the gradient,
the likelihood function and the conditional distribution functions also implemented in For-
tran. For the user who is not interested in implementation details, there is no difference in
using one or the other type of implementation.

garchFit: Argument List
The dot functions are internal functions which are called by the main function garchFit()
with options specified in the argument list. Some of the arguments were already described in
previous sections, here we give a brief summary of all arguments:

• formula.mean - a formula object for the ARMA(m,n) mean specification

• formula.var - a formula object for the GARCH/APARCH(p,q) variance specification

• series - a numeric vector specifying the time series

• init.rec - a character string naming the type of initialization of recurrence

• delta - a numeric value specifying the exponent delta

• skew - a numeric value specifying the optional skewness parameter

• shape - a numeric value specifying the optional shape parameter

• cond.dist - a numeric value specifying the name of the conditional distribution

• include.mean - a logical value, should the mean value be estimated ?

• include.delta - a logical value, should the exponent be estimated ?

• include.skew - a logical value, should the skewness parameter be estimated ?

• include.shape - a logical value, should the shape parameter be estimated ?

• leverage - a logical value, should the leverage factors be estimated ?

• trace - a logical value, should the optimization be traced ?

• algorithm - a character string naming the optimization algorithm

• control - a list of control parameters for the selected solver

• title - an optional project title string

• description - an optional project description string

fGARCH: Class Representation
The function garchFit() returns an S4 object of class "fGARCH" which has the following
representation:

# fGARCH Class Representation:

setClass("fGARCH",

representation(

call = "call",

formula = "list",

method = "character",

data = "list",

fit = "list",

residuals = "numeric",

fitted.values = "numeric",

sigma.t = "numeric",

title = "character",

description = "character")

)
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The "fGARCH" class representation has 10 slots. @call is a character string telling how the
function was invoked, @formula is a list with two formula entries, the formula.mean and for-
mula.var, @method is a string describing the parameter estimation, @data is a list holding the
empirical data set, @fit is a list with all information and parameters from the parameter fit,
@residuals, @fitted.values, @sigma.t are three numeric vectors with residuals, fitted val-
ues, and conditional standard deviations from the time series, and @title and @description
are slots for additional information.

The slot named @fit holds the results as a list object from the parameter estimation depending
on the solver used: "sqp", "nlminb", or "lbfgsb". The entries of the list are:

• @fit$coef - the estimated parameters

• @fit$se.par - the standard errors of the parameters

• @fit$llh - the value of the log-likelihood function

• @fit$grad - the value of the gradient vector

• @fit$hessian - the hessian matrix

• @fit$cvar - the covariance matrix

• @fit$ics - the values of information criterion statistics

• @fit$series - a list with series information

• @fit$params - a list with parameter information

The list @fit$series provides information about the time series and has the following major
entries:

• @fit$series$model - the model formulas

• @fit$series$order - the ARMA-GARCH/APARCH model orders

• @fit$series$init.rec - the type of recursion initialization

The list @fit$params provides information about the model parameters and has the following
major entries:

• @fit$params$params - all model parameters including the fixed

• @fit$params$U - the lower box bounds of the model parameters

• @fit$params$V - the upper box bounds of the model parameters

• @fit$params$includes - logical vector identifying fixed parameters

• @fit$params$index - index vector of included parameters

• @fit$params$cond.dist - name of the conditional distribution

• @fit$params$control - list of control parameters of the solver

As already mentioned 5 different algorithms are implemented for parameter estimation. The
selected algorithm can be tailored by the user through a list of control parameters. Common
to all algorithms are the following two entries:

• control$fscale - if set to TRUE, then the log likelihood function will be standardized by
the length of the time series to be fitted.

• control$xscale - if set to TRUE, then the time series x will be standardized by the standard
deviation of x.
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The first setting can be considered as an objective function scaling, and the second setting as
a parameter scaling. The coefficients a, and b of the ARMA formula, the coefficients alpha,
gamma and beta of the GARCH/APARCH formula, and the distributional parameters are
not influenced by this transformation. Only, the constants of the mean formula µ, and the
variance formula ω have to be properly rescaled after parameter estimation. In many examples
we have observed that this kind of scaling may have a significant influence on the execution
time of the estimation process. This may not always be the case, especially if the selected
optimization algorithm itself allows for an explicit function and parameter scaling.

sqp: Sequential Quadratic Programming Algorithm

The default algorithm="sqp" is a sequential quadratic programming algorithm, Luksan
[1999], allowing for general nonlinear constraints. Here we use upper and lower bounds on the
parameters, which are chosen automatically. The SQP algorithm, the log likelihood objective
function, and the Hessian are written entirely in Fortran 77, guaranteeing a fast and efficient
estimate of the parameters. The argument control in the function garchFit() allows to tai-
lor scaling, step-size selection, and convergence parameters. The set of integer valued control
parameters is given by

• control$MIT=200 - the maximum number of iterations, by default 200.

• control$MVF=500 - the maximum number of function evaluations, by default 500.

• control$MET=2 - an identifyer which specifies scaling strategy,
MET=1 means no scaling,
MET=2 means preliminary scaling in 1st iteration,
MET=3 means controlled scaling,
MET=4 means interval scaling, and
MET=5 means permanent scaling in all iterations.

• control$MEC=2 - an identifier which allows correction for negative curvature,
MEC=1 means no correction, and
MEC=2 means Powell correction, the default setting.

• control$MER=1 - an identifier which controls the restart after unsuccessful variable metric
updates,
MER=0 means no restarts, and
MER=1 means standard restart, the default setting.

• control$MES=4 - an identifier which selects the interpolation method in a line search,
MES=1 means bisection,
MES=2 means two point quadratic interpolation,
MES=3 means three point quadratic interpolation, and
MES=4 - three point cubic interpolation, the default setting.

and the set of real valued control parameters is

• control$XMAX=1000 - the value of the maximum stepsize.

• control$TOLX=1.0e-16 - the tolerance parameter for the change of the parameter vector.

• control$TOLC=1.0e-6 - the tolerance parameter for the constraint violation.

• control$TOLG=1.0e-6 - the tolerance parameter for the Lagrangian function gradient.

• control$TOLD=1.0e-6 - the tolerance parameter for a descent direction.

• control$TOLS=1.0e-4 - the tolerance parameter for a function decrease in the line search.

• control$RPF=0.001 - the value of the penalty coeffient.
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The choice of the control parameters control$XMAX and control$RPF is rather sensitive. If
the problem is badly scaled, then the default value control$XMAX=1000 can bee too small. On
the other hand, a lower value, say control$XMAX=1, can sometimes prevent divergence of the
iterative process. The default value control$RPF=0.001 is relatively small. Therfore a larger
value, say control$RPF=1 should sometimes be used. We highly recommend to adapt these
two control parameters if convergence problems arise in the parameter estimation process.

nlminb: BFGS Trust Region Quasi Newton Method

The algorithm selected by algorithm="nlminb" is available through the S function nlminb().
Implemented is a variation on Newton’s method, which approximates the Hessian (if not
specified) by the BFGS secant (quasi-Newton) updating method. The underlying Fortran
routine is part of the Fortran PORT library. To promote convergence from poor starting
guesses, the routine uses a model/trust technique, Gay [1983] with box bounds, Gay [1984].

Possible names in the control list and their default values are:

• control$eval.max=200 - the maximum number of function evaluations.

• control$iter.max=150 - the maximum number of iterations allowed.

• control$trace=0 - the iteration is printed every trace’th iteration.

• control$abs.tol=1.0e-20 - the value for the absolute tolerance.

• control$rel.tol=1.0e-10 - the value for the relative tolerance.

• control$x.tol=1.0e-8 - the value for the X tolerance.

• control$step.min=2.2e-14 - the minimum step size.

lbfgs: BFGS Limited Memory Quasi Newton Method

The algorithm selected by the argument algorithm="lbfgsb" and implemented in the S
function optim(method="L-BFGS-B)" is that of Byrd, Lu, Nocedal and Zhu [1995]. It uses a
limited-memory modification of the BFGS quasi-Newton method subject to box bounds on the
variables. The authors designed this algorithm especially for problems in which information
on the Hessian matrix is difficult to obtain, or for large dense problems. The algorithm is
implemented in Fortran 77, Zhu, Byrd, Lu, Nocedal [1997].

The control argument allows to tailor tracing, scaling, step-size selection, and convergence
parameters:

• control$trace - an integer, higher values give more information from iteration.

• control$fnscale - an overall scaling for the objective function and gradient.

• control$parscale - a vector of scaling values for the parameters.

• control$ndeps=1.0e-3 - a vector of step sizes for the gradient.

• control$maxit=100 - the maximum number of iterations.

• control$abstol - the absolute convergence tolerance.

• control$reltol - the relative convergence tolerance.

• control$lmm=5 - an integer giving the number of BFGS updates.

• control$factr=1.0e7 - controls the reduction in the objective function.

• control$pgtol - controls the tolerance on the projected gradient.
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+nm: Nelder-Mead Algorithm with BFGS Start Values

In many cases of practical parameter estimation of ARMA-GARCH and ARMA-APARCH
models using the "nlminb" and "lbfgsb" optimization algorithms with default control param-
eter settings, we observed, that the iteration process got stuck close to the optimal values. In-
stead of adapting the control parameters, we found out, that a second step optimization using
the Nelder-Mead [1965] algorithm can solve the problem in many cases starting from the final
values provided by the "nlminb" and "lbfgsb" algorithms. This approach can be applied set-
ting the argument algorithm in the function garchFit() either to algorithm="nlminb+nm"
or to algorithm="lbfgs+nm". The Nelder-Mead method searches then for a local optimum in
an unconstrained optimization problem combining the simplex, a generalized n-dimensional
triangle, with specific search rules. The reflection, contraction and expansion factor for the
simplex can be controlled by the following parameters:

• control$alpha=1 - the reflection factor.

• control$beta=0.5 - the contraction factor.

• control$gamme=2.0 - the expansion factor.

The additional control parameters for the Nelder-Mead algorithm control$trace, con-
trol$fnscale, control$parscale, control$maxit, control$ndeps, control$abstol are
the same as specified by the control parameters of the "nlminb" and "lbfgs" algorithms.

For any details concerning the control parameters we refer to the R help page.

7.4. Print, Summary and Plot Method

The print(), summary() and plot() methods create reports and graphs from an object of
class "fGARCH" created by the function garchFit(). The print and summary report lists the
function call, the mean and variance equation, the conditional distribution, the estimated
coefficients with standard errors, t values, and probabilities, and also the value of the log
likelihood function. In additions the summary report returns a diagnostic analysis of the
residuals. The plot function creates 13 plots displaying properties of the time series and
residuals.

Print Method: Model Parameters, Standard Errors and t-Values

A very useful feature of the log-likelihood is that second derivatives of the log-likelihood func-
tion can be used to estimate the standard errors of the model and distributional parameters.
Specifically, we have to compute the Hessian matrix. Taking the negative expectation of the
Hessian yields the so called information matrix. Inverting this matrix yields a matrix con-
taining the variances of the parameters on its diagonal, and the asymptotic covariances of the
parameters in the off-diagonal positions. The square root of the diagonal elements yields the
standard errors.

Beside the estimated model parameters and their standard errors, alltogether, the print()
method returns the following information:

• @title - the title string,

• @call - the function call,

• @formula - the mean and variance equation,
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• @fit$params$cond.dist - the name of the conditional distribution,

• @fit$par - the vector of estimated coefficients,

• @fit$matcoef - the coefficient matrix, where the four columns return
the parameter estimates,
the standard errors,
the t-values, and
the probabilities,

• @fit$value - the value of the log likelihood for the estimated parameters,

• @description - the description string.

The estimated parameters represent the computer’s answers to a solution where the log-
likelihood function becomes optimal. The standard error gives then a measure how sure one
can be about the estimated parameters. Note, that the standard error for one parameter
cannot be compared effortlessly with the standard error of another parameter. For this the
t-value are computed which are the ratios of the estimate divided by the standard error.
The ration allows a comparison across all parameters. It is just another and better way of
measuring how sure one can be about the estimate.

Summary Method: Analysis of Residuals

The summary method allows the analysis of standardized residuals, and thus provides addi-
tional information on the quality of the fitted parameters. The summary report adds to the
print report the following information:

# Code Snippet 15: Summarizing the Results from Parameter Estimates

# Estimate Parameters:

> fit = garchFit()

# Partial Summary Report ...

Standadized Residuals Tests:

Statistic p-Value

Jarque-Bera Test R Chi^2 1059.851 0

Shapiro-Wilk Test R W 0.9622817 0

Ljung-Box Test R Q(10) 10.12142 0.4299065

Ljung-Box Test R Q(15) 17.04350 0.3162709

Ljung-Box Test R Q(20) 19.29764 0.5025616

Ljung-Box Test R^2 Q(10) 9.062553 0.5261776

Ljung-Box Test R^2 Q(15) 16.07769 0.3769074

Ljung-Box Test R^2 Q(20) 17.50715 0.6198391

LM Arch Test R TR^2 9.771212 0.6360242

Information Criterion Statistics:

AIC BIC SIC HQIC

-1.117131 -1.105808 -1.117139 -1.112970

The Jarque-Bera and the Shapiro-Wilk test allow to test for normal distributed residuals, the
Ljung-Box test can be performed to test whether the residuals and squared residuals have
significant autocorrelations or not, and the Lagrange-Multiplier ARCH test allows to test
whether the residuals have conditional heteroskedasticity or not.
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� Figure 6: The upper row shows graphs for the series with 2 conditional standard deviations super-
imposed (Selection:13) and for the normal quantile-quantile plot (Selection: 13). The lower row shows the
same graphs for the parameter estimation with a Student-t conditional distribution.

For the comparison of different fitted models we can follow the same procedures as applied in
linear time series analysis. We can compare the value of the log likelihood for the estimated
parameters and we can compute information criterion statistics, like AIC and/or BIC statistics
to find out which model fits best.

Plot Method: Graphical Plots

The plot() method provides 13 different types of plots. (Nota bene, these are the same as
created by the SPlus/Finmetrics module.) The user may select from a menu which displays
the plot on the screen.

# Code Snippet 16: Creating Diagnostic Plots from Parameter Estimates

# Estimate Parameters:

> fit = garchFit()

# Diagnostic Plots:

> plot(fit)
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Make a plot selection (or 0 to exit):

1: Time Series

2: Conditional SD

3: Series with 2 Conditional SD Superimposed

4: ACF of Observations

5: ACF of Squared Observations

6: Cross Correlation

7: Residuals

8: Conditional SDs

9: Standardized Residuals

10: ACF of Standardized Residuals

11: ACF of Squared Standardized Residuals

12: Cross Correlation between r^2 and r

13: QQ-Plot of Standardized Residuals

Selection:

Note, that an explorative data analysis of the residuals is a very useful investigation, since it
gives a first idea on the quality of the fit.

7.5. Forecasting Heteroskedastic Time Series

One of the major aspects in the investigation of heteroskedastic time series is to produce
forecasts. Expressions for forecasts of both the conditional mean and the conditional variance
can be derived.

Forecasting the Conditional Mean:

To forecast the conditional mean we use just R’s base function arima() and its predict()
method. This approach, predicting from the ARMA model, is also used for example in the
Ox/G@RCH software package using the ARMA prediction from Ox.

Forecasting the Conditional Variance:

The conditional variance can be forecasted independently from the conditional mean. For a
GARCH(p,q) process, the h-step-ahead forecast of the conditional variance ω̂2

t+h|t is computed
recursively from

σ̂2
t+h|t = ω̂ +

q∑
i=1

α̂iε
2
t+h−i|t +

p∑
j=1

β̂jσ
2
t+h−j|t , (24)

where ε2
t+i|t = σ2

t+i|t for i > 0 while ε2
t+i|t = ε2

t+i and σ2
t+i|t = σ2

t+i for i ≤ 0.

For an APARCH(p,q) process the distribution of the innovations may have an effect on the
forecast, the optimal h-step-ahead forecast of the conditional variance ω̂2

t+h|t is computed
recursively from

σ̂δ
t+h|t = E(σδ

t+h|Ωt) (25)

= ω̂ +
q∑

i=1

α̂iE[(|εt+h−i| − γ̂iεt+h−i)δ̂|Ωt] +
p∑

j=1

β̂jσ
δ̂
t+h−j|t (26)
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where E[(|εt+h−i| − γ̂iεt+h−i)δ̂|Ωt] = κiσ
δ̂
t+k|t for k > 1, and κi = E(|z| − γiz)δ̂.

Here we have reprinted the formulas for the mean variance forecasts as summarized in the
paper of Laurent and Lambert [2002]. The following Code Snippet shows the 10 step ahead
forecast for the DEMGBP exchange returns modeled by Bollerslev’s GARCH(1,1) model.

# Code Snippet 17: Forecasting Mean and Variance

# Estimate Parameters:

> fit = garchFit()

# Forecast 10 step ahead

> predict(fit)

meanForecast meanError standardDeviation

1 -0.006190408 0.4702368 0.3833961

2 -0.006190408 0.4702368 0.3895422

3 -0.006190408 0.4702368 0.3953472

4 -0.006190408 0.4702368 0.4008358

5 -0.006190408 0.4702368 0.4060303

6 -0.006190408 0.4702368 0.4109507

7 -0.006190408 0.4702368 0.4156152

8 -0.006190408 0.4702368 0.4200402

9 -0.006190408 0.4702368 0.4242410

10 -0.006190408 0.4702368 0.4282313

In addition Table 3 compares results obtained from SPlus/Finmetrics and Ox/G@RCH.

                    R/Rmetrics                Splus/Finmetrics              Ox/G@RCH
Steps: Mean StDev Mean StDev Mean StDev

1 -0.006190 0.3834 -0.006053 0.3838 -0.006183 0.3834
2 -0.006190 0.3895 -0.006053 0.3900 -0.006183 0.3895
3 -0.006190 0.3953 -0.006053 0.3959 -0.006183 0.3953
4 -0.006190 0.4008 -0.006053 0.4014 -0.006183 0.4007
5 -0.006190 0.4060 -0.006053 0.4067 -0.006183 0.4060

� Table 3: Comparison of the 5-step ahead forecast results obtained from Rmetrics, Finmetrics and
G@RCH. Note, that the forecasted ”Mean” differs for all three packages since the parameter estimate for
µ also differs. The standard deviations ”StDev” derived from the forecasted variances are in agreement for
Rmetrics and G@RCH.

7.6. SP500 Case Study: MA(1)-APARCH(1,1) Modelling

As a last example we analyze the SP500 Index returns as discussed in the famous paper of
Ding, Granger and Engle [1993], DGE. The SP500 data are closing index values ranging from
January 3, 1928 to August 30, 1991.

In their paper DGE have estimated the parameters for three MA(1) time series models with
Bollerslev’s GARCH(1,1), with Taylor-Schwert’s GARCH(1,1) and with APARCH(1,1) errors.
The first order moving average term accounts for the positive first order autocorrelation for the
return series. In the following we re-estimate the MA(1)-APARCH(1,1) model and compare
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� Figure 7: From top to bottom are shown the SP500 daily returns, the exponentially cumulated re-
turns, and the volatilities computed as absolute values of the returns. The three graphs reproduce figures 2.1
- 2.3 in Ding, Granger and Engle [1993].

the results with the coefficients published by DGE. In addition we also estimate the parameters
using the SPlus/Finmetrics and Ox/G@RCH software for comparison.

# Code Snippet 18: Estimating the Parameters for DGE’s SP500 Model

# DGE MA(1)-GARCH(1,1) Model Parameter Estimation:

> data(sp500dge)

# Percentual returns result in better scaling and faster convergence ...

> x = 100*sp500dge[, 1]

# R/Rmetrics:

> garchFit(~arma(0,1), ~aparch(1,1))

Estimate Std. Error t value Pr(>|t|)

mu 0.020646 0.006346 3.253 0.00114 **

ma1 0.144745 0.008357 17.319 < 2e-16 ***

omega 0.009988 0.001085 9.203 < 2e-16 ***

alpha1 0.083803 0.004471 18.742 < 2e-16 ***

gamma1 0.373092 0.027995 13.327 < 2e-16 ***

beta1 0.919401 0.004093 224.622 < 2e-16 ***

delta 1.435124 0.067200 21.356 < 2e-16 ***



Journal of Statistical Software 35

# Rescale:

scale = 1/100; mu = 0.020646; mu*scale

[1] 0.00020646

omega = 0.009988; delta = 1.435124; omega / (1/scale)^(2/delta)

[1] 1.630283e-05

# SPlus/Finmetrics:

# BHHH with Tailored Control Scaled, for use under S-Plus, only

> module(finmetrics)

> x = 100*as.vector(sp500)

> fit = garch(~arma(0,1), ~pgarch(1,1), series = x, leverage = TRUE,

+ control = bhhh.control(tol=1e-6, delta=1e-6, n.iter=10000), trace = TRUE)

# Use Hessian Matrix ...

> coef = fit$coef

> se.coef = sqrt(diag(solve(-fit$cov$A)))

> t.value = coef/se.coef

> data.frame(Estimate = coef, StdError = se.coef, "t value" = t.value)

Estimate StdError t.value

C 0.02084031 0.006330720 3.291934

MA(1) 0.14470177 0.008294756 17.444971

A 0.01002876 0.001091768 9.185798

ARCH(1) 0.08374599 0.004448664 18.824976

LEV(1) -0.37098826 0.027775705 -13.356574

GARCH(1) 0.91954293 0.004078342 225.469798

POWER 1.42901650 0.067071355 21.305914

# Rescale:

mu = 0.02084; mu*scale

# [1] 0.0002084

omega = 0.01003; delta = 1.42902; omega / (1/scale)^(2/delta)

# [1] 1.592868e-05

# Try: Ox/G@RCH using Rmetrics Interface

> garchFit(~arma(0,1), ~aparch(1,1))

Coefficient Std.Error t-value t-prob

Cst(M) 0.020375 0.0063657 3.201 0.0014

MA(1) 0.144631 0.0083808 17.26 0.0000

Cst(V) 0.009991 0.0010827 9.228 0.0000

ARCH(Alpha1) 0.083769 0.0044350 18.89 0.0000

APARCH(Gamma1) 0.376495 0.028137 13.38 0.0000

GARCH(Beta1) 0.919863 0.0040708 226.0 0.0000

APARCH(Delta) 1.416169 0.066176 21.40 0.0000

# Rescale:

scale = 1/100; mu = 0.020375; mu*scale

[1] 0.00020375

omega = 0.009991; delta = 1.416169; omega / (1/scale)^(2/delta)

[1] 1.496536e-05

The standard errors and t-values from Rmetrics and G@arch which are shown in the above
code snippet are calculated from the Hessian matrix. Note, that SPlus prints by default
t-values computed from the OPG matrix. To make the results comparable we computed
standard errors and t-values from the SPlus output. The list element fit$cov$A returns
the Hessian matrix. Note, since we have scaled the time series by the scale factor s = 0.01,
we have to rescale the parameters for the original series in the following way: µ = µss and
ω = ωss

2/δ. In addition the summary() method performs diagnostic checks and the plot()
creates several diagnostic plots.
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DGE R  Splus  Ox
Paper Rmetrics rescaled Finmetrics rescaled G@RCH rescaled

μ 0.00021 0.02065 0.000207  0.02084 0.000208 0.02038 0.000204
a 0.145 0.1447  0.1447 0.1446
ω 0.000014 0.009988 0.0000163  0.01003 0.0000159 0.009991 0.0000150
α 0.083 0.08380  0.08375 0.08377
γ 0.373 0.3731 -0.3710 0.3765
β 0.920 0.9194    0.9195  0.9199
δ 1.43 1.435  1.429 1.416

� Table 4: Summary and comparison of the parameter estimates as obtained from DGE, Rmetrics,
Finmetrics, and SPlus.

Table 4 summarizes and compares the obtained results with those given in the paper of Ding,
Granger and Engle.

8. Summary and Outlook

In this paper we have presented and discussed the implementation of S functions for modeling
univariate time series processes from the ARMA-APARCH family allowing for (skew) Normal,
GED and Student-t conditional distributions. Through the modular concept of the estimation
procedure the software can easily be extended to other GARCH and GARCH related models.

The functions listed in Table 5 are part of the R package fSeries which is part of the
Rmetrics Software environment. Rmetrics is the premier open source solution for financial
market analysis and valuation of financial instruments. With hundreds of functions build on
modern and powerful methods Rmetrics combines explorative data analysis and statistical
modeling with object oriented rapid prototyping. Rmetrics is embedded in R, both building
an environment which creates especially for students and researchers in the third world a first
class system for applications in statistics and finance. Rmetrics allows you to study all the
source code, so you can find out precisely which variation of the algorithm or method has
been implemented. This let’s you understand what the source code does. Thus Rmetrics
can be considered as a unique platform ideally suited for teaching financial engineering and
computational finance.

The Rmetrics packages are downloadable from the CRAN server, cran.r-project.org, and they
are also part of most Debian distributions including for example the Quantian Linux Live
CD, www.quantian.org. The results presented in this paper were obtained using the R Version
2.2.1 and Rmetrics Version 221.10064. The SPlus version is available through Finance Online
GmbH, a Zurich based ETH spin-off company, www.finance.ch.

What’s next? The software will be extended to further GARCH models including integrated
GARCH models, see Engle and Bollerslev [1986], EGARCH models, see Nelson [1991] and
Bollerslev and Mikkelsen [1996], GARCH-in-Mean models as well as fractionally integrated
GARCH models. In the next version also the fixing of individual ARMA-GARCH/APARCH
coefficients will become available. To improve execution times numerically evaluated gradi-
ents of the log likelihood function will be replaced by the analytical derivatives. Furthermore,
we will provide additional conditional distribution functions including for example members
from the family of the hyperbolic distribution, Barndorff-Nielsen [1977]. Concerning perfor-
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GARCH Modelling and Utility Functions

Rmetrics' Functions: fSeries

GARCH Classes:
garchSpec S4 Class represenatation for specification object
fGARCH S4 Class represenatation for GARCH/APRACH models

Simulation and Parameter Estimation:
garchSpec Speciifes a GARCH/APARCH model
garchSim Simulates from a GARCH/APARCH model
garchFit Fits a GARCH/APARCH model to a univariate time series

  ARCH, GARCH, ARMA-GARCH, 
  APARCH, ARMA-APARCH Models

garchKappa Computes Expection for APARCH Models

Methods:
print S3: Print method for an object of class fGARCH

S3: Print method for an object of class garchSpec
plot S3: Plot method for an object of class fGARCH
summary S3: Summary method, diagnostic analysis
predict S3: Predict method, n-step ahead forecasts
residuals S3: Residuals method for an object of class fGARCH
fitted S3: Fitted values method for an object of class fGARCH  

Distribution Functions:
[dpqr]norm Normal Distribution Function (from Base Installation)
[dpqr]snorm Skew Normal Distribution
[dpqr]ged Generalized Error Distribution
[dpqr]sged Skew Generalized Error Distribution
[dpqr]std Standardized Student-t Distribution
[dpqr]sstd Skew standardized Student-t Distribution  

Utility Functions used by Skewed Distributions:
H Heaviside unit step function
Sign Just another signum function

Benchmark Data Set:
dem2gbp DEM-GBP foreign exchange rates data set
sp500dge SP500 stock market index data set

� Table 5: Listing of S functions for analyzing, modeling and forecasting heteroskedastic time series
processes from the ARMA-APARCH family.

mance analysis we plan to offer in addition several performance measures for the residuals
like Theil’s [1967] inequality coefficient, and Mincer and Zarnowitz’s [1969] R2 coefficient.
Concerning hypothesis testing we will add some specific tests including Engle’s [1982] LM
ARCH test to test the presence of ARCH effects, Engle and Ng’s [1993] test to investigate
possible misspecifications of the conditional variance equation, and Nyblom’s [1989] test to
check the constancy of model parameters over time.
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