
Package ‘HiddenMarkov’
18 February 2008

Title Hidden Markov Models

Version 1.2-4

Date 2008-02-18

Author David Harte

Maintainer David Harte <david@statsresearch.co.nz>

Description Contains functions for the analysis of Discrete Time Hidden Markov Models, Markov
Modulated GLMs and the Markov Modulated Poisson Process. It includes functions for
simulation, parameter estimation, and the Viterbi algorithm. See the topic Overview for an
introduction to the package, and changes for a list of recent changes. The algorithms are based
of those of Walter Zucchini.

License GPL (>=2)

URL http://www.statsresearch.co.nz

R topics documented:
BaumWelch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
bwcontrol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
changes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
compdelta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Demonstration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
dthmm.obsolete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
dthmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Estep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
forwardback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
HiddenMarkov-internal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
logLik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
mchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
mmglm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
mmpp.misc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
mmpp.obsolete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
mmpp . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Mstep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
neglogLik . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
probhmm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

1



2 BaumWelch

residuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
simulate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Transform.Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Viterbi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Index 41

BaumWelch Estimate Parameters Using Baum-Welch Algorithm

Description

Estimates the parameters of a hidden Markov model. The Baum-Welch algorithm (Baum et al,
1970) referred to in the HMM literature is a version of the EM algorithm (Dempster et al, 1977).
See Hartley (1958) for an earlier application of the EM methodology, though not referred to as such.

Usage

BaumWelch(object, control, ...)
## S3 method for class 'dthmm':
BaumWelch(object, control = bwcontrol(), ...)
## S3 method for class 'mmglm':
BaumWelch(object, control = bwcontrol(), ...)
## S3 method for class 'mmpp':
BaumWelch(object, control = bwcontrol(), ...)

Arguments

object an object of class "dthmm", "mmglm", or "mmpp".

control a list of control settings for the iterative process. These can be changed by using
the function bwcontrol.

... other arguments.

Details

The initial parameter values used by the EM algorithm are those that are contained within the input
object.

The code for the methods "dthmm", "mmglm" and "mmpp" can be viewed by typing BaumWelch.dthmm,
BaumWelch.mmglm or BaumWelch.mmpp, respectively, on the R command line.

Value

The output object (a list) with have the same class as the input, and will have the same compo-
nents. The parameter values will be replaced by those estimated by this function. The object will
also contain additional components.

An object of class "dthmm" will also contain

u an n×m matrix containing estimates of the conditional expectations. See “De-
tails” in Estep.

v an n × m × m array containing estimates of the conditional expectations. See
“Details” in Estep.
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LL value of log-likelihood at the end.

iter number of iterations performed.

diff difference between final and previous log-likelihood.

References

Baum, L.E.; Petrie, T.; Soules, G. & Weiss, N. (1970). A maximization technique occurring in the
statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics
41(1), 164–171. DOI: http://dx.doi.org/10.1214/aoms/1177697196

Dempster, A.P.; Laird, N.M. & Rubin, D.B. (1977). Maximum likelihood from incomplete data via
the EM algorithm (with discussion). J. Royal Statist. Society B 39(1), 1–38.

Hartley, H.O. (1958). Maximum likelihood estimation from incomplete data. Biometrics 14(2),
174–194. DOI: http://dx.doi.org/10.2307/2527783

See Also

logLik, residuals, simulate, summary , neglogLik

bwcontrol Control Parameters for the Baum Welch Algorithm

Description

Creates a list of parameters that control the operation of BaumWelch.

Usage

bwcontrol(maxiter = 500, tol = 1e-05, prt = TRUE, posdiff = TRUE,
converge = expression(diff < tol))

Arguments

maxiter is the maximum number of iterations, default is 500.

tol is the convergence criterion, default is 0.00001.

prt is logical, and determines whether information is printed at each iteration; de-
fault is TRUE.

posdiff is logical, and determines whether the iterative process stops if a negative log-
likelihood difference occurs, default is TRUE.

converge is an expression giving the convergence criterion. The default is the difference
between successive values of the log-likelihood.

Examples

# Increase the maximum number of iterations to 1000.
# All other components will retain their default values.
a <- bwcontrol(maxiter=1000)
print(a)

http://dx.doi.org/10.1214/aoms/1177697196
http://dx.doi.org/10.2307/2527783
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changes Changes Made to the Package

Description

This page contains a listing of recent changes made to the package.

Details

1. Since we have included different classes of HMMs (see dthmm, mmglm and mmpp), it is much
tidier to use an object orientated approach. This ensures that the functions across all models
follow a more consistent naming convention, and also the argument list for the different model
functions are more simple and consistent (see Overview). (14 Sep 2007)

2. The main tasks (model fitting, residuals, simulation, Viterbi, etc) can now be called by generic
functions (see topic Overview). The package documentation has been rearranged so that
these generic functions contain the documentation for all model types (e.g. see BaumWelch).
(14 Sep 2007)

3. There are a number of functions, still contained in the package, that are obsolete. This is either
because they do not easily fit into the current naming convention used to implement the more
object orientated approach, or their argument list is slightly complicated. These functions have
been grouped in the topics dthmm.obsolete and mmpp.obsolete. (14 Sep 2007)

4. There are various second level functions. For example, the model fitting is achieved by the
generic BaumWelch function. However, this will call functions to do the E-step, M-step,
forward and backward probabilities, and so on. At the moment, these second level functions
have not been modified into an object orientated approach. It is not clear at this point whether
this would be advantageous. If one went down this route, then one would probably group all
of the E-step functions (for all models) under the same topic. If not, then it may be best to
group all second level functions for each model under the same topic (e.g. forwardback,
probhmm and Estep would be grouped together, being the second level functions for the
dthmm model). (14 Sep 2007)

5. The original function called Viterbi has been renamed to Viterbihmm, and Viterbi is
now a generic function. (14 Sep 2007)

6. Programming code that uses old versions of the functions should still work with this revised
version of the package. However, you will get warning messages stating that certain func-
tions are deprecated, and suggesting a possible alternative. To get a quick overview of the
programming style, have a look at the examples in topic dthmm. (09 Nov 2007)

7. forwardback: for loops replaced by Fortran code; much faster. The corresponding R
code is still contained within the function in case the Fortran has incompatibility issues. (23
Nov 2007)

8. forwardback.mmpp: for loops replaced by Fortran code. The corresponding R code is
still contained within the function in case the Fortran has incompatibility issues. (24 Nov
2007)

9. Estep.mmpp: for loops replaced by Fortran code. Cuts time considerably. These loops in
R used far more time than the forward and backward equations. The corresponding R code
is still contained within the function in case the Fortran has incompatibility issues. (27 Nov
2007)

10. forwardback.mmpp, forwardback and Estep.mmpp: argument fortran added. (3
Dec 2007)
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11. forwardback, forwardback.mmpp and Estep.mmpp: inclusion of all variable sized
arrays in the Fortran subroutine call to be compatible with non gfortran compilers (3 Dec
2007); more added for calls to Fortran subroutines multi1 and multi2. (6 Dec 2007)

12. Estep.mmpp: error in Fortran code of loop 6; j1=0 to j1=1. (5 Dec 2007)

13. BaumWelch.mmpp: if (diff < 0) stop ... to if (diff < 0 & control$posdiff)
stop ..., consistent with BaumWelch.dthmm. (11 Dec 2007)

14. logLik.dthmm, logLik.mmglm, logLik.mmpp: for loop replaced by Fortran code.
(15 Feb 2008)

15. dthmm: argument discrete set automatically for known distributions, stops if not set for
unknown distributions. (15 Feb 2008)

16. neglogLik, Pi2vector, vector2Pi, Q2vector, vector2Q: new functions provid-
ing an alternative means of calculating maximum likelihood parameter estimates. (18 Feb
2008)

Future Development

1. The functions residuals and Viterbi need methods for objects with class mmpp.

2. A number of the original functions have names that are too general. For example forwardback
calculates the forward-backward probabilities, but only for the model dthmm. The corre-
sponding function for the mmpp model is forwardback.mmpp. It would be more consis-
tent to attach to these original functions a dthmm suffix.

3. The demonstration examples are all for dthmm. Also need some for mmglm and mmpp.

compdelta Compute Marginal Distribution of Stationary Markov Chain

Description

Computes the marginal distribution of a stationary Markov chain with transition probability matrix
Π. The m discrete states of the Markov chain are denoted by 1, · · · ,m.

Usage

compdelta(Pi)

Arguments

Pi is the m × m transition probability matrix of the Markov chain.

Details

If the Markov chain is stationary, then the marginal distribution δ satisfies

δ = δΠ .

Obviously,
m∑
j

δj = 1.
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Value

A numeric vector of length m containing the marginal probabilities.

Examples

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,
0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

print(compdelta(Pi))

Demonstration Demonstration Examples

Description

Demonstration examples can be run by executing the code below.

Examples

# Model with class "dthmm" with the Beta distribution
demo("beta", package="HiddenMarkov")

# Model with class "dthmm" with the Gamma distribution
demo("gamma", package="HiddenMarkov")

# Model with class "dthmm" with the Log Normal distribution
demo("lnorm", package="HiddenMarkov")

# Model with class "dthmm" with the Logistic distribution
demo("logis", package="HiddenMarkov")

# Model with class "dthmm" with the Gaussian distribution
demo("norm", package="HiddenMarkov")

dthmm.obsolete Discrete Time HMM - Obsolete Functions

Description

These functions are obsolete and will ultimately be removed from the package. Please change to
the object orientated versions: BaumWelch, residuals, simulate or Viterbi.
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Usage

Baum.Welch(x, Pi, delta, distn, pm, pn = NULL, nonstat = TRUE,
maxiter = 500, tol = 1e-05, prt = TRUE,
posdiff = (distn[1]!="glm"))

residualshmm(x, Pi, delta, distn, pm, pn = NULL, discrete = FALSE)
sim.hmm(n, initial, Pi, distn, pm, pn = NULL)
sim.hmm1(n, initial, Pi, distn, pm)
sim.markov(n, initial, Pi)
Viterbihmm(x, Pi, delta, distn, pm, pn = NULL)

Arguments

x is a vector of length n containing the observed process.

n length of process.

initial integer, being the initial hidden Markov state (1, · · · ,m).

Pi is the m × m transition probability matrix of the hidden Markov chain.

delta is the marginal probability distribution of the m hidden states at the first time
point.

distn is a character string with the distribution name, e.g. "norm" or "pois".
If the distribution is specified as "wxyz" then a distribution function called
"pwxyz" should be available, in the standard R format (e.g. pnorm or ppois).

pm is a list object containing the (Markov dependent) parameter values associated
with the distribution of the observed process (see dthmm).

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

discrete is logical, and is TRUE if distn is a discrete distribution.

nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,
default. See “Details” below.

maxiter is the maximum number of iterations, default is 500.

tol is the convergence criterion, being the difference between successive values of
the log-likelihood; default is 0.00001.

prt is logical, and determines whether information is printed at each iteration; de-
fault is TRUE.

posdiff is logical, and determines whether the iterative process stops if a negative log-
likelihood difference occurs.

Details

The function sim.hmm1 will run faster for cases where the argument pn is NULL.
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dthmm Discrete Time HMM Object

Description

Creates a discrete time hidden Markov model object with class "dthmm".

Usage

dthmm(x, Pi, delta, distn, pm, pn = NULL, discrete = NULL,
nonstat = TRUE)

Arguments

x is a vector of length n containing the observed process. Alternatively, x could
be specified as NULL, meaning that the data will be added later (e.g. simulated).

Pi is the m × m transition probability matrix of the homogeneous hidden Markov
chain.

delta is the marginal probability distribution of the m hidden states at the first time
point.

distn is a character string with the distribution name, e.g. "norm" or "pois".
If the distribution is specified as "wxyz" then a distribution function called
"pwxyz" should be available, in the standard R format (e.g. pnorm or ppois).

pm is a list object containing the (Markov dependent) parameter values associated
with the distribution of the observed process (see below).

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see below).

discrete is logical, and is TRUE if distn is a discrete distribution. Set automatically for
distributions already contained in the package.

nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,
default. See “Details” below.

Value

A list object with class "dthmm", containing the above arguments as named components.

Notation

1. MacDonald & Zucchini (1997) use t to denote the time, where t = 1, · · · , T . To avoid confu-
sion with other uses of t and T in R we use i = 1, · · · , n.

2. We denote the observed sequence as {Xi}, i = 1, · · · , n; and the hidden Markov chain as
{Ci}, i = 1, · · · , n.

3. The history of the observed process up to time i is denoted by X(i), i.e.

X(i) = (X1, · · · , Xi)

where i = 1, · · · , n. Similarly for C(i).

4. The hidden Markov chain has m states denoted by 1, · · · ,m.
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5. The Markov chain transition probability matrix is denoted by Π, where the (j, k)th element is

πjk = Pr{Ci+1 = k |Ci = j}

for all i (i.e. all time points), and j, k = 1, · · · ,m.

6. The Markov chain is assumed to be homogeneous, i.e. for each j and k, πjk is constant over
time.

7. The Markov chain is said to be stationary if the marginal distribution is the same over time,
i.e. for each j, δj = Pr{Ci = j} is constant for all i. The marginal distribution is denoted by
δ = (δ1, · · · , δm).

List Object pm

The list object pm contains parameter values for the probability distribution of the observed process
that are dependent on the hidden Markov state. These parameters are generally required to be
estimated. See “Modifications” in topic Mstep when some do not require estimation.

Assume that the hidden Markov chain has m states, and that there are ` parameters that are depen-
dent on the hidden Markov state. Then the list object pm should contain ` named vector components
each of length m. The names are determined by the required probability distribution.

For example, if distn == "norm", the arguments names must coincide with those used by the
functions dnorm or rnorm, which are mean and sd. Each must be specified in either pm or pn.
If they both vary according to the hidden Markov state then pm should have the named components
mean and sd. These are both vectors of length m containing the means and standard deviations of
the observed process when the hidden Markov chain is in each of the m states. If, for example, sd
was “time” dependent, then sd would be contained in pn (see below).

If distn == "pois", then pm should have one component named lambda, being the parameter
name in the function dpois. Even if there is only one parameter, the vector component should still
be within a list and named.

List Object pn

The list object pn contains parameter values of the probability distribution for the observed process
that are dependent on the observation number or “time”. These parameters are assumed to be known.

Assume that the observed process is of length n, and that there are ` parameters that are depen-
dent on the observation number or time. Then the list object pn should contain ` named vector
components each of length n. The names, as in pm, are determined by the required probability
distribution.

For example, in the observed process we may count the number of successes in a known number of
Bernoulli trials, i.e. the number of Bernoulli trials is known at each time point, but the probability of
success varies according to a hidden Markov state. The prob parameter of rbinom (or dbinom)
would be specified in pm and the size parameter would specified in pn.

One could also have a situation where the observed process was Gaussian, with the means varying
according to the hidden Markov state, but the variances varying non-randomly according to the
observation number (or vice versa). Here mean would be specified within pm and sd within pn.
Note that a given parameter can only occur within one of pm or pn.

Complete Data Likelihood

The “complete data likelihood”, Lc, is

Lc = Pr{X1 = x1, · · · , Xn = xn, C1 = c1, · · · , Cn = cn} .
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This can be shown to be

Pr{X1 = x1 |C1 = c1}Pr{C1 = c1}
n∏

i=2

Pr{Xi = xi |Ci = ci}Pr{Ci = ci |Ci−1 = ci−1} ,

and hence, substituting model parameters, we get

Lc = δc1πc1c2πc2c3 · · ·πcn−1cn

n∏
i=1

Pr{Xi = xi |Ci = ci} ,

and so

log Lc = log δc1 +
n∑

i=2

log πci−1ci +
n∑

i=1

log Pr{Xi = xi |Ci = ci} .

Hence the “complete data likelihood” is split into three terms: the first relates to parameters of the
marginal distribution (Markov chain), the second to the transition probabilities, and the third to the
distribution parameters of the observed random variable. When the Markov chain is non-stationary,
each term can be maximised separately.

When the hidden Markov chain is assumed to be stationary, δ = Π′δ (see topic compdelta),
and then the first two terms of log Lc determine the transition probabilities Π. This raises more
complicated numerical problems, as the first term is effectively a constraint. We deal with this in a
slightly ad-hoc manner by effectively disregarding the first term, which is assumed to be relatively
small. In the M-step, the transition matrix is determined by the second term, then δ is estimated
using the relation δ = δΠ.

References

Elliott, R.J.; Aggoun, L. & Moore, J.B. (1994). Hidden Markov Models: Estimation and Control.
Springer-Verlag, New York.

Harte, D. (2006). Mathematical Background Notes for Package “HiddenMarkov”. Statistics Re-
search Associates, Wellington. URL: http://homepages.paradise.net.nz/david.
harte/SSLib/Manuals/notes.pdf.

MacDonald, I.L. & Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-valued
Time Series. Chapman and Hall/CRC, Boca Raton.

Rabiner, L.R. (1989). A tutorial on hidden Markov models and selected applications in speech
recognition. Proceedings of the IEEE 77(2), 257–286. DOI: http://dx.doi.org/10.1109/
5.18626.

Zucchini, W. (2005). Hidden Markov Models Short Course, 3–4 April 2005. Macquarie University,
Sydney.

Examples

#----- Test Gaussian Distribution -----

Pi <- matrix(c(1/2, 1/2, 0,
1/3, 1/3, 1/3,
0, 1/2, 1/2),

byrow=TRUE, nrow=3)

delta <- c(0, 1, 0)

x <- dthmm(NULL, Pi, delta, "norm",
list(mean=c(1, 6, 3), sd=c(0.5, 1, 0.5)))

http://homepages.paradise.net.nz/david.harte/SSLib/Manuals/notes.pdf
http://homepages.paradise.net.nz/david.harte/SSLib/Manuals/notes.pdf
http://dx.doi.org/10.1109/5.18626
http://dx.doi.org/10.1109/5.18626
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x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Poisson Distribution -----

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

x <- dthmm(NULL, Pi, delta, "pois", list(lambda=c(4, 0.1)),
discrete = TRUE)

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Exponential Distribution -----

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

x <- dthmm(NULL, Pi, delta, "exp", list(rate=c(2, 0.1)))

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))
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# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Beta Distribution -----

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

x <- dthmm(NULL, Pi, delta, "beta", list(shape1=c(2, 6), shape2=c(6, 2)))

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Binomial Distribution -----

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

delta <- c(0, 1)

# vector of "fixed & known" number of Bernoulli trials
pn <- list(size=rpois(1000, 10)+1)

x <- dthmm(NULL, Pi, delta, "binom", list(prob=c(0.2, 0.8)), pn,
discrete=TRUE)

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

#----- Test Gamma Distribution -----

Pi <- matrix(c(0.8, 0.2,
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0.3, 0.7),
byrow=TRUE, nrow=2)

delta <- c(0, 1)

pm <- list(rate=c(4, 0.5), shape=c(3, 3))

x <- seq(0.01, 10, 0.01)
plot(x, dgamma(x, rate=pm$rate[1], shape=pm$shape[1]),

type="l", col="blue", ylab="Density")
points(x, dgamma(x, rate=pm$rate[2], shape=pm$shape[2]),

type="l", col="red")

x <- dthmm(NULL, Pi, delta, "gamma", pm)

x <- simulate(x, nsim=1000)

# use above parameter values as initial values
y <- BaumWelch(x)

print(summary(y))
print(logLik(y))
hist(residuals(y))

# check parameter estimates
print(sum(y$delta))
print(y$Pi %*% rep(1, ncol(y$Pi)))

Estep E Step of EM Algorithm

Description

Performs the expectation step of the EM algorithm for a dthmm process. This function is called
by the BaumWelch function. The Baum-Welch algorithm referred to in the HMM literature is a
version of the EM algorithm.

Usage

Estep(x, Pi, delta, distn, pm, pn = NULL)

Arguments

x is a vector of length n containing the observed process.

Pi is the current estimate of the m × m transition probability matrix of the hidden
Markov chain.

distn is a character string with the distribution name, e.g. "norm" or "pois". If
the distribution is specified as "wxyz" then a probability (or density) function
called "dwxyz" should be available, in the standard R format (e.g. dnorm or
dpois).

pm is a list object containing the current (Markov dependent) parameter estimates
associated with the distribution of the observed process (see dthmm).
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pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

delta is the current estimate of the marginal probability distribution of the m hidden
states.

Details

Let uij be one if Ci = j and zero otherwise. Further, let vijk be one if Ci−1 = j and Ci = k, and
zero otherwise. Let X(n) contain the complete observed process. Then, given the current model
parameter estimates, the returned value u[i,j] is

ûij = E[uij |X(n)] = Pr{Ci = j |X(n) = x(n)} ,

and v[i,j,k] is

v̂ijk = E[vijk |X(n)] = Pr{Ci−1 = j, Ci = k |X(n) = x(n)} ,

where j, k = 1, · · · ,m and i = 1, · · · , n.

Value

A list object is returned with the following components.

u an n×m matrix containing estimates of the conditional expectations. See “De-
tails”.

v an n × m × m array containing estimates of the conditional expectations. See
“Details”.

LL the current value of the log-likelihood.

Author(s)

The algorithm has been taken from Zucchini (2005).

References

Zucchini, W. (2005). Hidden Markov Models Short Course, 3–4 April 2005. Macquarie University,
Sydney.

See Also

BaumWelch, Mstep

forwardback Forward and Backward Probabilities

Description

These functions calculate the forward and backward probabilities for a dthmm process, as defined
in MacDonald & Zucchini (1997, Page 60).
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Usage

backward(x, Pi, distn, pm, pn = NULL)
forward(x, Pi, delta, distn, pm, pn = NULL)
forwardback(x, Pi, delta, distn, pm, pn = NULL, fortran = TRUE)

Arguments

x is a vector of length n containing the observed process.

Pi is the m × m transition probability matrix of the hidden Markov chain.

delta is the marginal probability distribution of the m hidden states.

distn is a character string with the distribution name, e.g. "norm" or "pois". If
the distribution is specified as "wxyz" then a probability (or density) function
called "dwxyz" should be available, in the standard R format (e.g. dnorm or
dpois).

pm is a list object containing the current (Markov dependent) parameter estimates
associated with the distribution of the observed process (see dthmm).

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

fortran logical, if TRUE (default) use the Fortran code, else use the R code.

Details

Denote the n×m matrices containing the forward and backward probabilities as A and B, respec-
tively. Then the (i, j)th elements are

αij = Pr{X1 = x1, · · · , Xi = xi, Ci = j}

and
βij = Pr{Xi+1 = xi+1, · · · , Xn = xn |Ci = j} .

Further, the diagonal elements of the product matrix AB′ are all the same, taking the value of the
log-likelihood.

Value

The function forwardback returns a list with two matrices containing the forward and backward
probabilities, logalpha and logbeta, respectively, and the log-likelihood (LL).

The functions backward and forward return a matrix containing the forward and backward
probabilities, logalpha and logbeta, respectively.

Author(s)

David Harte, 2005. The algorithm has been taken from Zucchini (2005).

References

MacDonald, I.L. & Zucchini, W. (1997). Hidden Markov and Other Models for Discrete-valued
Time Series. Chapman and Hall/CRC, Boca Raton.

Zucchini, W. (2005). Hidden Markov Models Short Course, 3–4 April 2005. Macquarie University,
Sydney.



16 HiddenMarkov-internal

See Also

logLik

Examples

# Set Parameter Values

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,
0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

p <- c(1, 4, 2, 5, 3)
delta <- c(0, 1, 0, 0, 0)

#------ Poisson HMM ------

x <- dthmm(NULL, Pi, delta, "pois", list(lambda=p), discrete=TRUE)

x <- simulate(x, nsim=10)

y <- forwardback(x$x, Pi, delta, "pois", list(lambda=p))

# below should be same as LL for all time points
print(log(diag(exp(y$logalpha) %*% t(exp(y$logbeta)))))
print(y$LL)

#------ Gaussian HMM ------

x <- dthmm(NULL, Pi, delta, "norm", list(mean=p, sd=p/3))

x <- simulate(x, nsim=10)

y <- forwardback(x$x, Pi, delta, "norm", list(mean=p, sd=p/3))

# below should be same as LL for all time points
print(log(diag(exp(y$logalpha) %*% t(exp(y$logbeta)))))
print(y$LL)

HiddenMarkov-internal
Internally Used Functions

Description

This page lists internally used functions. They should not be required by most users.

Usage

## S3 method for class 'mmpp':
residuals(object, ...)
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as.dthmm(object)
as.mmglm(object)

makedensity(distn)
makedensity1(distn)
makedistn(distn)

getj(x, j)

dglm(x, x1, beta0, beta1, sigma, family, link, size = NA,
log = FALSE)

pglm(q, x1, beta0, beta1, sigma, family, link, size = NA,
log = FALSE)

Details

The function makedensity is used to reparameterise various R probability (or density) functions
(e.g. dnorm and dpois) into a format with a standard argument list. Similarly, makedistn
reparameterises a distribution function.

The function getj is used to extract the jth element from each vector component in a list object.

The function as.dthmm coerces an object with class "mmglm" to an object with class "dthmm".
Similarly, the function as.mmglm coerces an object with class "dthmm" to an object with class
"mmglm" (if possible).

The functions dglm and pglm calculate the density and probability, respectively, for an observation
given a generalised linear model.

logLik Log Likelihood of Hidden Markov Model

Description

Provides methods for the generic function logLik.

Usage

## S3 method for class 'dthmm':
logLik(object, fortran=TRUE, ...)
## S3 method for class 'mmglm':
logLik(object, fortran=TRUE, ...)
## S3 method for class 'mmpp':
logLik(object, fortran=TRUE, ...)

Arguments

object an object with class "dthmm", "mmglm" or "mmpp".

fortran logical, if TRUE (default) use the Fortran code, else use the R code.

... other arguments.
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Details

The methods provided here will always recalculate the log-likelihood even if it is already contained
within the object. This enables the user to change parameter or data values within the object
and recalculate the log-likelihood for the revised configuration.

The code for the methods "dthmm", "mmglm" and "mmpp" can be viewed by typing logLik.dthmm,
logLik.mmglm or logLik.mmpp, respectively, on the R command line.

Value

Returns the value of the log-likelihood.

Examples

Pi <- matrix(c(1/2, 1/2, 0,
1/3, 1/3, 1/3,
0, 1/2, 1/2),

byrow=TRUE, nrow=3)

x <- dthmm(NULL, Pi, c(0,1,0), "norm",
list(mean=c(1, 6, 3), sd=c(1, 0.5, 1)))

x <- simulate(x, nsim=100)

print(logLik(x))

mchain Markov Chain Object

Description

Creates a Markov chain object with class "mchain". It does not simulate data.

Usage

mchain(x, Pi, delta, nonstat = TRUE)

Arguments

x is a vector of length n containing the observed process, else it is specified as
NULL. This is used when there are no data and a process is to be simulated.

Pi is the m × m transition probability matrix of the Markov chain.

delta is the marginal probability distribution of the m state Markov chain at the first
time point.

nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,
default. See “Details” below.

Value

A list object with class "mchain", containing the above arguments as named components.



mmglm 19

Examples

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

# Create a Markov chain object with no data (NULL)
x <- mchain(NULL, Pi, c(0,1))

# Simulate some data
x <- simulate(x, nsim=2000)

# estimate transition probabilities
estPi <- table(x$mc[-length(x$mc)], x$mc[-1])
rowtotal <- estPi %*% matrix(1, nrow=nrow(Pi), ncol=1)
estPi <- diag(as.vector(1/rowtotal)) %*% estPi
print(estPi)

mmglm Markov Modulated GLM Object

Description

Creates a Markov modulated generalised linear model object with class "mmglm".

Usage

mmglm(x, Pi, delta, family, link, beta, glmformula = formula(y~x1),
sigma = NA, nonstat = TRUE)

Arguments

x a dataframe containing the observed variable (i.e. the response variable in the
generalised linear model) and the covariate. Currently, the response variable
must be named y and the covariate x1. Alternatively, x could be specified as
NULL, meaning that the data will be added later (e.g. simulated). See Details
below for the binomial case.

Pi is the m × m transition probability matrix of the hidden Markov chain.

delta is the marginal probability distribution of the m hidden states at the first time
point.

family character string, the GLM family, one of "gaussian", "poisson", "Gamma"
or "binomial".

link character string, the link function. If family == "binomial", then one of
"logit", "probit" or "cloglog"; else one of "identity", "inverse"
or "log".

beta a 2 × m matrix containing parameter estimates. The first row contains the m
constants in the linear predictor for each Markov state, and the second row con-
tains the linear regression coefficient in the linear predictor for each Markov
state.

glmformula currently the only model formula is y~x1.
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sigma if family == "gaussian", then it is the variance; if family == "Gamma",
then it is 1/sqrt(shape); for each Markov state.

nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,
default.

Details

This model assumes that the observed responses are ordered in time, together with a covariate at
each point. The model is based on a simple regression model within the glm framework (see
McCullagh & Nelder, 1989), but where the coefficients β0 and β1 in the linear predictor vary ac-
cording to a hidden Markov state. The responses are assumed to be conditionally independent given
the value of the Markov chain.

If family == "binomial" then the response variable y is interpreted as the number of suc-
cesses. The dataframe x must also contain a variable called size being the number of Bernoulli
trials. This is different to the format used by the function glm where y would be a matrix with two
columns containing the number of successes and failures, respectively. The different format here
allows one to specify the number of Bernoulli trials only so that the number of successes or failures
can be simulated later.

When the density function of the response variable is from the exponential family (Charnes et al,
1976, Eq. 2.1), the likelihood function (Charnes et al, 1976, Eq. 2.4) can be maximised by using
iterative weighted least squares (Charnes et al, 1976, Eq. 1.1 and 1.2). This is the method used by
the R function glm. In this Markov modulated version of the model, the third term of the complete
data log-likelihood, as given in Harte (2006, §2.3), needs to be maximised. This is simply the sum
of the individual log-likelihood contributions of the response variable weighted by the Markov state
probabilities calculated in the E-step. This can also be maximised using iterative least squares by
passing these additional weights (Markov state probabilities) into the glm function.

Value

A list object with class "mmglm", containing the above arguments as named components.

References

Charnes, A.; Frome, E.L. & Yu, P.L. (1976). The equivalence of generalized least squares and
maximum likelihood estimates in the exponential family. JASA 71(353), 169–171. DOI: http:
//dx.doi.org/10.2307/2285762

Harte, D. (2006). Mathematical Background Notes for Package “HiddenMarkov”. Statistics Re-
search Associates, Wellington. URL: http://homepages.paradise.net.nz/david.
harte/SSLib/Manuals/notes.pdf.

McCullagh, P. & Nelder, J.A. (1989). Generalized Linear Models (2nd Edition). Chapman and
Hall, London.

Examples

delta <- c(0,1)

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

#--------------------------------------------------------
# Poisson with log link function

http://dx.doi.org/10.2307/2285762
http://dx.doi.org/10.2307/2285762
http://homepages.paradise.net.nz/david.harte/SSLib/Manuals/notes.pdf
http://homepages.paradise.net.nz/david.harte/SSLib/Manuals/notes.pdf
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x <- mmglm(NULL, Pi, delta, family="poisson", link="log",
beta=rbind(c(0.1, -0.1), c(1, 5)))

x <- simulate(x, nsim=5000, seed=10)

y <- BaumWelch(x)

hist(residuals(y))
print(summary(y))
print(logLik(y))

#--------------------------------------------------------
# Binomial with logit link function

x <- mmglm(NULL, Pi, delta, family="binomial", link="logit",
beta=rbind(c(0.1, -0.1), c(1, 5)))

x <- simulate(x, nsim=5000, seed=10)

y <- BaumWelch(x)

hist(residuals(y))
print(summary(y))
print(logLik(y))

#--------------------------------------------------------
# Gaussian with identity link function

x <- mmglm(NULL, Pi, delta, family="gaussian", link="identity",
beta=rbind(c(0.1, -0.1), c(1, 5)), sigma=c(1, 2))

x <- simulate(x, nsim=5000, seed=10)

y <- BaumWelch(x)

hist(residuals(y))
print(summary(y))
print(logLik(y))

#--------------------------------------------------------
# Gamma with log link function

x <- mmglm(NULL, Pi, delta, family="Gamma", link="log",
beta=rbind(c(2, 1), c(-2, 1.5)), sigma=c(0.2, 0.1))

x1 <- seq(0.01, 0.99, 0.01)
plot(x1, exp(x$beta[1,2] + x$beta[2,2]*x1), type="l",

xlim=c(0,1),ylim=c(0, 10), col="red", lwd=3)
points(x1, exp(x$beta[1,1] + x$beta[2,1]*x1), type="l",

col="blue", lwd=3)

x <- simulate(x, nsim=1000, seed=10)

points(x$x$x1, x$x$y)

x$beta[2,] <- c(-3, 4)
y <- BaumWelch(x, bwcontrol(posdiff=FALSE))
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hist(residuals(y))
print(summary(y))
print(logLik(y))

mmpp.misc Markov Modulated Poisson Process - 2nd Level Functions

Description

These functions have not been put into a generic format, but are called by generic functions.

Usage

forwardback.mmpp(tau, Q, delta, lambda, fortran = TRUE)
Estep.mmpp(tau, Q, delta, lambda, fortran = TRUE)

Arguments

tau vector containing the interevent times. Note that the first event is at time zero.

Q the infinitesimal generator matrix of the Markov process.

lambda a vector containing the Poisson rates.

delta is the marginal probability distribution of the m hidden states at time zero.

fortran logical, if TRUE (default) use the Fortran code, else use the R code.

Details

These functions use the algorithm given by Ryden (1996) based on eigenvalue decompositions.

mmpp.obsolete Markov Modulated Poisson Process - Obsolete Functions

Description

These functions are obsolete and will ultimately be removed from the package. Please change to the
revised versions: BaumWelch, Estep.mmpp, forwardback.mmpp, simulate or logLik.

Usage

backward0.mmpp(tau, Q, lambda)
forward0.mmpp(tau, Q, delta, lambda)

logLikmmpp(tau, Q, delta, lambda)

Estep0.mmpp(tau, Q, delta, lambda)

Baum.Welch.mmpp(tau, Q, delta, lambda, nonstat = TRUE,
maxiter = 500, tol = 1e-05, prt = TRUE,
converge = expression(diff < tol))
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Baum.Welch0.mmpp(tau, Q, delta, lambda, nonstat = TRUE,
maxiter = 500, tol = 1e-05, prt = TRUE,
converge = expression(diff < tol))

sim.mmpp(n, initial, Q, lambda)

Arguments

tau vector containing the interevent times. Note that the first event is at time zero.
Q the infinitesimal generator matrix of the Markov process.
lambda a vector containing the Poisson rates.
delta is the marginal probability distribution of the m hidden states at time zero.
n number of Poisson events to be simulated.
initial integer, being the initial hidden Markov state (1, · · · ,m).
nonstat is logical, TRUE if the homogeneous Markov chain is assumed to be non-stationary,

default.
maxiter is the maximum number of iterations, default is 500.
tol is the convergence criterion, being the difference between successive values of

the log-likelihood; default is 0.00001.
prt is logical, and determines whether information is printed at each iteration; de-

fault is TRUE.
converge is an expression giving the convergence criterion.

Details

The functions with a suffix of zero are non-scaled, and hence will have numerical problems for
series containing larger numbers of events; and are much slower.

These functions use the algorithm given by Ryden (1996) based on eigenvalue decompositions.

mmpp Markov Modulated Poisson Process Object

Description

Creates a Markov modulated Poisson process model object with class "mmpp".

Usage

mmpp(tau, Q, delta, lambda, nonstat = TRUE)

Arguments

tau vector containing the event times. Note that the first event is at time zero. Alter-
natively, tau could be specified as NULL, meaning that the data will be added
later (e.g. simulated).

Q the infinitesimal generator matrix of the Markov process.
delta is the marginal probability distribution of the m hidden states at time zero.
lambda a vector containing the Poisson rates.
nonstat is logical, TRUE if the homogeneous Markov process is assumed to be non-

stationary, default.
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Details

The Markov modulated Poisson process is based on a hidden Markov process in continuous time.
The initial state probabilities (at time zero) are specified by delta and the transition rates by the
Q matrix. The rate parameter of the Poisson process (lambda) is determined by the current state
of the hidden Markov process. Within each state, the Poisson process is homogeneous (constant
rate parameter). A Poisson event is assumed to occur at time zero and at the end of the observation
period, however, state transitions of the Markov process do not necessarily coincide with Poisson
events. For more details, see Ryden (1996).

Value

A list object with class "mmpp", containing the above arguments as named components.

References

Klemm, A.; Lindemann, C. & Lohmann, M. (2003). Modeling IP traffic using the batch Markovian
arrival process. Performance Evaluation 54(2), 149–173. DOI: http://dx.doi.org/10.
1016/S0166-5316(03)00067-1

Roberts, W.J.J.; Ephraim, Y. & Dieguez, E. (2006). On Ryden’s EM algorithm for estimating
MMPPs. IEEE Signal Processing Letters 13(6), 373–376. DOI: http://dx.doi.org/10.
1109/LSP.2006.871709

Ryden, T. (1994). Parameter estimation for Markov modulated Poisson processes. Stochastic Mod-
els 10(4), 795–829. DOI: http://dx.doi.org/10.1080/15326349408807323

Ryden, T. (1996). An EM algorithm for estimation in Markov-modulated Poisson processes. Com-
putational Statistics & Data Analysis 21(4), 431–447. DOI: http://dx.doi.org/10.1016/
0167-9473(95)00025-9

Examples

Q <- matrix(c(-2, 2,
1, -1),

byrow=TRUE, nrow=2)/10

# NULL indicates that we have no data at this point
x <- mmpp(NULL, Q, delta=c(0, 1), lambda=c(5, 1))

x <- simulate(x, nsim=5000, seed=5)

y <- BaumWelch(x)

print(summary(y))

# log-likelihood using initial parameter values
print(logLik(x))

# log-likelihood using estimated parameter values
print(logLik(y))

http://dx.doi.org/10.1016/S0166-5316(03)00067-1
http://dx.doi.org/10.1016/S0166-5316(03)00067-1
http://dx.doi.org/10.1109/LSP.2006.871709
http://dx.doi.org/10.1109/LSP.2006.871709
http://dx.doi.org/10.1080/15326349408807323
http://dx.doi.org/10.1016/0167-9473(95)00025-9
http://dx.doi.org/10.1016/0167-9473(95)00025-9
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Mstep M Step of EM Algorithm

Description

Performs the maximisation step of the EM algorithm for a dthmm process. This function is called
by the BaumWelch function. The Baum-Welch algorithm used in the HMM literature is a version
of the EM algorithm.

Usage

Mstep.beta(x, cond, pm, pn, maxiter = 200)
Mstep.binom(x, cond, pm, pn)
Mstep.exp(x, cond, pm, pn)
Mstep.gamma(x, cond, pm, pn, maxiter = 200)
Mstep.glm(x, cond, pm, pn, family, link)
Mstep.lnorm(x, cond, pm, pn)
Mstep.logis(x, cond, pm, pn, maxiter = 200)
Mstep.norm(x, cond, pm, pn)
Mstep.pois(x, cond, pm, pn)

Arguments

x is a vector of length n containing the observed process.

cond is an object created by Estep.

family character string, the GLM family, one "gaussian", "poisson", "Gamma" or "bi-
nomial".

link character string, the link function. If family == "Binomial", then one of
"logit", "probit" or "cloglog"; else one of "identity", "inverse" or "log".

pm is a list object containing the current (Markov dependent) parameter estimates
associated with the distribution of the observed process (see dthmm). These are
only used as initial values if the algorithm within the Mstep is iterative.

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

maxiter maximum number of Newton-Raphson iterations.

Details

The functions Mstep.beta, Mstep.binom, Mstep.exp, Mstep.gamma, Mstep.lnorm,
Mstep.logis, Mstep.norm and Mstep.pois perform the maximisation step for the Beta,
Binomial, Exponential, Gamma, Log Normal, Logistic, Normal and Poisson distributions, respec-
tively. Each function has the same argument list, even if specific arguments are redundant, because
the functions are called from within other functions in a generic like manner. Specific notes for
some follow.

Mstep.beta The R functions for the Beta distribution have arguments shape1 and shape2;
and the density also has ncp. We only use shape1 and shape2, i.e. ncp is assumed to
be zero. Different combinations of "shape1" and "shape2" can be “time” dependent
(specified in pn) and Markov dependent (specified in pm). However, each should only be
specified in one (see topic dthmm).
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Mstep.binom The size argument of the binomial distribution should always be specified in the
pn argument (see topic dthmm).

Mstep.gamma The R functions for the Gamma distribution have arguments shape, rate and
scale. Since scale is redundant, we only use shape and rate. Different combinations
of "shape" and "rate" can be “time” dependent (specified in pn) and Markov dependent
(specified in pm). However, each should only be specified in one (see topic dthmm).

Mstep.lnorm Different combinations of "meanlog" and "sdlog" can be “time” dependent
(specified in pn) and Markov dependent (specified in pm). However, each should only be
specified in one (see topic dthmm).

Mstep.logis Different combinations of "location" and "scale" can be “time” dependent
(specified in pn) and Markov dependent (specified in pm). However, each should only be
specified in one (see topic dthmm).

Mstep.norm Different combinations of "mean" and "sd" can be “time” dependent (specified
in pn) and Markov dependent (specified in pm). However, each should only be specified in
one (see topic dthmm).

Value

A list object with the same structure as pm (see topic dthmm).

Modifications

Consider a distribution with two parameters where both parameters are Markov dependent, but one
is known and the other requires estimation. For example, consider the Gaussian distribution. Say
we know the Markov dependent means, but we need to estimate the standard deviations. Since both
parameters are Markov dependent, they both need to be specified in the pm argument. The esti-
mation of the distribution specific parameters takes place in the Mstep, in this case Mstep.norm.
To achieve what we want, we need to modify this function. In this case it is relatively easy (see
code in “Examples” below. From the function Mstep.norm, take the code under the section if
(all(nms==c("mean", "sd"))), i.e. both of the parameters are Markov dependent. How-
ever, replace the line where the mean is estimated to mean <- pm$mean, i.e. leave it as was
initially specified. Then source this revised function so that is found by R in preference to the
standard version in the package.

One needs to take a little more care when dealing with a distributions like the beta, where the cross
derivatives of the log likelihood between the parameters, i.e. ∂2 log L/(∂α1∂α2) are non-zero.

Note

The Mstep functions can be used to estimate the maximum likelihood parameters from a simple
sample. See the example below where this is done for the logistic distribution.

See Also

BaumWelch, Estep

Examples

# Fit logistic distribution to a simple single sample

# Simulate data
n <- 20000
location <- -2
scale <- 1.5
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x <- rlogis(n, location, scale)

# give each datum equal weight
cond <- NULL
cond$u <- matrix(rep(1/n, n), ncol=1)

# calculate maximum likelihood parameter estimates
# start iterations at values used to simulate
print(Mstep.logis(x, cond,

pm=list(location=location,
scale=scale)))

# Example with Gaussian Observations
# Assume that both mean and sd are Markov dependent, but the means
# are known and sd requires estimation (See "Modifications" above).

Mstep.norm <- function(x, cond, pm, pn){
nms <- sort(names(pm))
n <- length(x)
m <- ncol(cond$u)
if (all(nms==c("mean", "sd"))){

mean <- pm$mean
sd <- sqrt(apply((matrix(x, nrow = n, ncol=m) -

matrix(mean,
nrow = n, ncol=m, byrow=TRUE))^2 * cond$u, MARGIN=2,
FUN=sum)/apply(cond$u, MARGIN = 2, FUN = sum))

return(list(mean=mean, sd=sd))
}

}

Pi <- matrix(c(1/2, 1/2, 0,
1/3, 1/3, 1/3,
0, 1/2, 1/2),

byrow=TRUE, nrow=3)
p1 <- c(1, 6, 3)
p2 <- c(0.5, 1, 0.5)
n <- 1000

pm <- list(mean=p1, sd=p2)

x <- dthmm(NULL, Pi, c(0, 1, 0), "norm", pm)

x <- simulate(x, n)

# use above parameter values as initial values
y <- BaumWelch(x)

print(y$delta)
print(y$pm)
print(y$Pi)

neglogLik Negative Log-Likelihood
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Description

Calculates the log-likelihood multiplied by negative one. It is in a format that can be used with the
functions nlm and optim, providing an alternative to the BaumWelch algorithm for maximum
likelihood parameter estimation.

Usage

neglogLik(p, object, updatep)

Arguments

p a vector of revised parameter values.

object an object of class "dthmm", "mmglm", or "mmpp".

updatep a user provided function mapping the revised parameter values p into the appro-
priate locations in object.

Details

This function is in a format that can be used with the two functions nlm and optim (see Examples
below). This provides alternative methods of estimating the maximum likelihood parameter esti-
mates to the EM provided by BaumWelch including Newton type methods and grid searches. It
can also be used to restrict estimation to a subset of parameters.

The EM algorithm is very stable when starting from poor initial values but convergence is very slow
in close proximity to the solution. Newton type methods are very sensitive to initial conditions but
converge much more quickly in close proximity to the solution. This suggests initially using the
EM and then switching to Newton type methods (see Examples below).

The function nlm requires the parameters over which the function is to be maximised to be specified
as a vector. Some functions are provided to partially achieve this (see topic Transform.Parameters).

Value

Value of the log-likelihood.

See Also

nlm, optim, Transform.Parameters, BaumWelch

Examples

# Simulate an example dataset

Pi <- matrix(c(0.8, 0.1, 0.1,
0.1, 0.6, 0.3,
0.2, 0.3, 0.5),

byrow=TRUE, nrow=3)

delta <- c(0, 1, 0)

x <- dthmm(NULL, Pi, delta, "exp", list(rate=c(5, 3, 1)))
x <- simulate(x, nsim=5000, seed=5)

#--------------------------------------------------------
# Fully estimate both Pi and rate
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allmap <- function(y, p){
# maps vector back to Pi and rate
m <- sqrt(length(p))
y$Pi <- vector2Pi(p[1:(m*(m-1))])
y$pm$rate <- exp(p[(m^2-m+1):(m^2)])
return(y)

}

# Start using the EM algorithm
x1 <- BaumWelch(x, control=bwcontrol(maxiter=1000, tol=0.01))

# use above as initial values for the nlm function
# map parameters to a single vector, fixed delta
p <- c(Pi2vector(x1$Pi), log(x1$pm$rate))

# complete estimation using nlm
z <- nlm(neglogLik, p, object=x, updatep=allmap,

print.level=2, gradtol=0.000001, iterlim=500)

# dthmm object with estimated parameter values from nlm
x2 <- allmap(x, z$estimate)

# compare log-likelihoods
print(logLik(x))
print(logLik(x1))
print(logLik(x2))

# print final parameter estimates
print(summary(x2))

#--------------------------------------------------------
# Estimate only the off diagonal elements in the matrix Pi
# Hold all others as in the simulation

# This function maps the changeable parameters into the
# dthmm object - done within the function neglogLik
# The logit-like transform removes boundaries

offdiagmap <- function(y, p){
# rows must sum to one
invlogit <- function(eta)

exp(eta)/(1+exp(eta))
y$Pi[1,2] <- (1-y$Pi[1,1])*invlogit(p[1])
y$Pi[1,3] <- 1-y$Pi[1,1]-y$Pi[1,2]
y$Pi[2,1] <- (1-y$Pi[2,2])*invlogit(p[2])
y$Pi[2,3] <- 1-y$Pi[2,1]-y$Pi[2,2]
y$Pi[3,1] <- (1-y$Pi[3,3])*invlogit(p[3])
y$Pi[3,2] <- 1-y$Pi[3,1]-y$Pi[3,3]
return(y)

}

z <- nlm(neglogLik, c(0, 0, 0), object=x, updatep=offdiagmap,
print.level=2, gradtol=0.000001)

# x1 contains revised parameter estimates
x1 <- offdiagmap(x, z$estimate)



30 Overview

# print revised values of Pi
print(x1$Pi)

# print log-likelihood using original and revised values
print(logLik(x))
print(logLik(x1))

#--------------------------------------------------------
# Fully estimate both Q and lambda for an MMPP Process

Q <- matrix(c(-8, 5, 3,
1, -4, 3,
2, 5, -7),

byrow=TRUE, nrow=3)/25
lambda <- c(5, 3, 1)
delta <- c(0, 1, 0)

# simulate some data
x <- mmpp(NULL, Q, delta, lambda)
x <- simulate(x, nsim=5000, seed=5)

allmap <- function(y, p){
# maps vector back to Pi and rate
m <- sqrt(length(p))
y$Q <- vector2Q(p[1:(m*(m-1))])
y$lambda <- exp(p[(m^2-m+1):(m^2)])
return(y)

}

# Start by using the EM algorithm
x1 <- BaumWelch(x, control=bwcontrol(maxiter=1000, tol=0.01))

# use above as initial values for the nlm function
# map parameters to a single vector, fixed delta
p <- c(Q2vector(x1$Q), log(x1$lambda))

# complete estimation using nlm
z <- nlm(neglogLik, p, object=x, updatep=allmap,

print.level=2, gradtol=0.000001, iterlim=500)

# mmpp object with estimated parameter values from nlm
x2 <- allmap(x, z$estimate)

# compare log-likelihoods
print(logLik(x))
print(logLik(x1))
print(logLik(x2))

# print final parameter estimates
print(summary(x2))

Overview Overview of Package
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Description

In this topic we give an overview of the package.

Classes of Hidden Markov Models Analysed

The classes of models currently fitted by the package are listed below. Each are defined within an
object that contains the data, current parameter values, and other model characteristics.

Discrete Time Hidden Markov Model: is described under the topic dthmm. This model can be
simulated or fitted to data by defining the required model structure within an object of class
"dthmm".

Markov Modulated Generalised Linear Model: is described under the topic mmglm. This model
can be simulated or fitted to data by defining the required model structure within an object of
class "mmglm".

Markov Modulated Poisson Process: is described under the topic mmpp. This model can be sim-
ulated or fitted to data by defining the required model structure within an object of class
"mmpp".

Main Tasks Performed by the Package

The main tasks performed by the package are listed below. These can be achieved by calling the
appropriate generic function.

Simulation of HMMs: can be performed by the function simulate.

Parameter Estimation: can be performed by the functions BaumWelch (EM algorithm), or neglogLik
together with nlm or optim (Newton type methods or grid searches).

Model Residuals: can be extracted with the function residuals.

Model Summary: can be extracted with the function summary.

Log-Likelihood: can be calculated with the function logLik.

Prediction of the Markov States: can be performed by the function Viterbi.

All other functions in the package are called from within the above generic functions, and only need
to be used if their output is specifically required.

Acknowledgement

Many of the functions contained in the package are based on those of Walter Zucchini (2005).
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probhmm Conditional Distribution Function

Description

Calculates the distribution function at each point for a dthmm process given the complete observed
process except the given point.

Usage

probhmm(x, Pi, delta, distn, pm, pn = NULL, adj = 0, ...)

Arguments

x is a vector of length n containing the observed process.
Pi is the m × m transition probability matrix of the hidden Markov chain.
delta is the marginal probability distribution of the m hidden states at the first time

point.
distn is a character string with the distribution name, e.g. "norm" or "pois".

If the distribution is specified as "wxyz" then a distribution function called
"pwxyz" should be available, in the standard R format (e.g. pnorm or ppois).

pm is a list object containing the (Markov dependent) parameter values associated
with the distribution of the observed process (see dthmm).

pn is a list object containing the observation dependent parameter values associated
with the distribution of the observed process (see dthmm).

adj zero or one, being an adjustment for discrete distributions.
... other arguments. This allows more complicated objects with the required argu-

ments, but with redundant components also, to be passed to this function.

Details

Let X(−i) denote the entire process, except with the point Xi removed. The distribution function at
the point Xi is Pr{Xi ≤ xi |X(−i) = x(−i)}. This R function calculates the distribution function
for each point Xi for i = 1, · · · , n. This is done by using the forward and backward probabilities
before and after the ith point, respectively.

In the programming code, note the subtraction of the mean. This is to stop underflow when the
exponential is taken. Removal of the mean is automatically compensated for by the fact that the
same factor is removed in both the numerator and denominator.

Value

A vector containing the probability.

References

Zucchini, W. (2005). Hidden Markov Models Short Course, 3–4 April 2005. Macquarie University,
Sydney.

See Also

residuals
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residuals Residuals of Hidden Markov Models

Description

Provides methods for the generic function residuals. There is currently no method for objects
of class "mmpp".

Usage

## S3 method for class 'dthmm':
residuals(object, ...)
## S3 method for class 'mmglm':
residuals(object, ...)

Arguments

object an object with class dthmm or mmglm. There is not yet a method for mmpp.

... other arguments.

Details

For objects of class "dthmm" or "mmglm" the calculated residuals are pseudo residuals. Under
satisfactory conditions they have an approximate standard normal distribution.

Initially the function probhmm is called. If the model fits satisfactorily, the returned values should
be approximately uniformly distributed. Hence by applying the function qnorm, the resultant
“residuals” should have an approximate standard normal distribution.

When the distribution (observed) is discrete an adjustment is made. However, if relatively few of
the possible outcomes are observed, the pseudo residuals will be rather poorly described by the
standard normal distribution; see the Poisson example below.

The code for the methods "dthmm" and "mmglm" can be viewed by typing residuals.dthmm
or residuals.mmglm, respectively, on the R command line.

Value

A vector containing the pseudo residuals.

Examples

# Example Using Beta Distribution

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

n <- 2000

x <- dthmm(NULL, Pi, c(0,1), "beta",
list(shape1=c(2, 6), shape2=c(6, 2)))

x <- simulate(x, nsim=n, seed=5)
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y <- residuals(x)

w <- hist(y, main="Beta HMM: Pseudo Residuals")
z <- seq(-3, 3, 0.01)
points(z, dnorm(z)*n*(w$breaks[2]-w$breaks[1]), col="red", type="l")
box()

qqnorm(y, main="Beta HMM: Q-Q Plot of Pseudo Residuals")
abline(a=0, b=1, lty=3)
abline(h=seq(-2, 2, 1), lty=3)
abline(v=seq(-2, 2, 1), lty=3)

#-----------------------------------------------
# Example Using Gaussian Distribution

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,
0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

x <- dthmm(NULL, Pi, c(0, 1, 0, 0, 0), "norm",
list(mean=c(1, 4, 2, 5, 3), sd=c(0.5, 1, 1, 0.5, 0.1)))

n <- 2000
x <- simulate(x, nsim=n, seed=5)

y <- residuals(x)

w <- hist(y, main="Gaussian HMM: Pseudo Residuals")
z <- seq(-3, 3, 0.01)
points(z, dnorm(z)*n*(w$breaks[2]-w$breaks[1]), col="red", type="l")
box()

qqnorm(y, main="Gaussian HMM: Q-Q Plot of Pseudo Residuals")
abline(a=0, b=1, lty=3)
abline(h=seq(-2, 2, 1), lty=3)
abline(v=seq(-2, 2, 1), lty=3)

#-----------------------------------------------
# Example Using Poisson Distribution

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

x <- dthmm(NULL, Pi, c(0, 1), "pois",
list(lambda=c(1, 5)), discrete=TRUE)

n <- 2000
x <- simulate(x, nsim=n, seed=5)

y <- residuals(x)

w <- hist(y, main="Poisson HMM: Pseudo Residuals")
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z <- seq(-3, 3, 0.01)
points(z, dnorm(z)*n*(w$breaks[2]-w$breaks[1]), col="red", type="l")
box()

qqnorm(y, main="Poisson HMM: Q-Q Plot of Pseudo Residuals")
abline(a=0, b=1, lty=3)
abline(h=seq(-2, 2, 1), lty=3)
abline(v=seq(-2, 2, 1), lty=3)

simulate Simulate Various HMM Processes

Description

These functions provide methods for the generic function simulate.

Usage

## S3 method for class 'dthmm':
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mchain':
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mmglm':
simulate(object, nsim = 1, seed = NULL, ...)
## S3 method for class 'mmpp':
simulate(object, nsim = 1, seed = NULL, ...)

Arguments

object an object with class "dthmm", "mchain", "mmglm" or "mmpp"

nsim number of points to simulate.

seed seed for the random number generator.

... other arguments.

Details

Below details about particular methods are given where necessary.

simulate.mmglm If the covariate x1 is NULL, then uniform (0,1) variables are generated as
the values for x1. When the family is "binomial" and size is NULL (i.e. the num-
ber of Bernoulli trials are not specified), then they are simulated as 100+rpois(nsim,
lambda=5).

The code for the methods "dthmm", "mmglm" and "mmpp" can be viewed by typing simulate.dthmm,
simulate.mmglm or simulate.mmpp, respectively, on the R command line.

Value

The returned object has the same class as the input object and contains the components that were
in the input object. Where object is of class "dthmm" it will also have a vector x containing
the simulated values; and when the class is "mmglm" x will be a dataframe. When the class is
"mmpp" the times of the simulated Poisson events are contained in tau. Other variables are also
added like the sequence of Markov states, and the time spent in each state ("mmpp").



36 summary

Examples

# The hidden Markov chain has 5 states with transition matrix:

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,
0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)

#--------------------------------------------
# simulate a Poisson HMM

x <- dthmm(NULL, Pi, c(0, 1, 0, 0, 0), "pois",
list(lambda=c(1, 4, 2, 5, 3)), discrete = TRUE)

x <- simulate(x, nsim=2000)

# check Poisson means
for (i in 1:5) print(mean(x$x[x$y==i]))

#--------------------------------------------
# simulate a Gaussian HMM

x <- dthmm(NULL, Pi, c(0, 1, 0, 0, 0), "norm",
list(mean=c(1, 4, 2, 5, 3), sd=c(0.5, 1, 1, 0.5, 0.1)))

x <- simulate(x, nsim=2000)

# check means and standard deviations
for (i in 1:5) print(mean(x$x[x$y==i]))
for (i in 1:5) print(sd(x$x[x$y==i]))

summary Summary Methods for Hidden Markov Model Objects

Description

Provides methods for the generic function summary.

Usage

## S3 method for class 'dthmm':
summary(object, ...)
## S3 method for class 'mmglm':
summary(object, ...)
## S3 method for class 'mmpp':
summary(object, ...)

Arguments

object an object with class "dthmm", "mmglm" or "mmpp".

... other arguments.
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Details

The code for the methods "dthmm", "mmglm" and "mmpp" can be viewed by typing summary.dthmm,
summary.mmglm or summary.mmpp, respectively, on the R command line.

Value

A list object with a reduced number of components, mainly the parameter values.

Examples

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)

x <- dthmm(NULL, Pi, c(0, 1), "beta",
list(shape1=c(2, 6), shape2=c(6, 2)))

x <- simulate(x, nsim=2000)

print(summary(x))

Transform.Parameters
Transform Transition or Rate Matrices to Vector

Description

These functions transform m by m transition probability matrices or Q matrices to a vector of
length m(m − 1), and back. See Details.

Usage

Pi2vector(Pi)
vector2Pi(p)

Q2vector(Q)
vector2Q(p)

Arguments

Pi an m by m transition probability matrix.

Q an m by m rate matrix.

p a vector of length m(m − 1).

Details

The function Pi2vector maps the m by m transition probability matrix of a discrete time HMM
to a vector of length m(m − 1), and vector2Pi has the reverse effect. They use a logit like
transformation so that the parameter space is on the whole real line thus avoiding hard boundaries
which cause problems for many optimisation procedures (see neglogLik).
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Similarly, the function Q2vector maps the m by m rate matrix Q of an MMPP process to a vector
of length m(m − 1), and vector2Q has the reverse effect. They use a log transformation so that
the parameter space is on the whole real line thus avoiding hard boundaries which cause problems
for many optimisation procedures (see neglogLik).

Value

The functions Pi2vector and Q2vector return a vector of length m(m − 1), the function
vector2Pi returns an m by m transition probability matrix, and vector2Q returns an m by m
rate matrix Q.

See Also

neglogLik

Examples

Pi <- matrix(c(0.8, 0.1, 0.1,
0.1, 0.6, 0.3,
0.2, 0.3, 0.5),

byrow=TRUE, nrow=3)

print(vector2Pi(Pi2vector(Pi)))

#------------------------------------------------

Q <- matrix(c(-8, 5, 3,
1, -4, 3,
2, 5, -7),

byrow=TRUE, nrow=3)

print(vector2Q(Q2vector(Q)))

Viterbi Viterbi Algorithm for Hidden Markov Model Objects

Description

Provides methods for the generic function Viterbi. This predicts the most likely sequence
of Markov states given the observed dataset. There is currently no method for objects of class
"mmpp".

Usage

## S3 method for class 'dthmm':
Viterbi(object, ...)
## S3 method for class 'mmglm':
Viterbi(object, ...)

Arguments

object an object with class "dthmm" or "mmglm".

... other arguments.
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Details

The purpose of the Viterbi algorithm is to globally decode the underlying hidden Markov state at
each time point. It does this by determining the sequence of states (k∗1 , · · · , k∗n) which maximises
the joint distribution of the hidden states given the entire observed process, i.e.

(k∗1 , · · · , k∗n) = argmax
k1,···,kn∈{1,2,···,m}

Pr{C1 = k1, · · · , Cn = kn |X(n) = x(n)} .

The algorithm has been taken from Zucchini (2005), however, we calculate sums of the logarithms
of probabilities rather than products of probabilities. This lessens the chance of numerical under-
flow. Given that the logarithmic function is monotonically increasing, the argmax will still be the
same. Note that argmax can be evaluated with the R function which.max.

Determining the a posteriori most probable state at time i is referred to as local decoding, i.e.

k∗i = argmax
k∈{1,2,···,m}

Pr{Ci = k |X(n) = x(n)} .

Note that the above probabilities are calculated by the function Estep, and are contained in
u[i,j] (output from Estep), i.e. k∗i is simply which.max(u[i,]).

The code for the methods "dthmm" and "mmglm" can be viewed by typing Viterbi.dthmm
or Viterbi.mmglm, respectively, on the R command line.

Value

A vector of length n containing integers (1, · · · ,m) representing the hidden Markov states for each
node of the chain.

Examples

Pi <- matrix(c(1/2, 1/2, 0, 0, 0,
1/3, 1/3, 1/3, 0, 0,
0, 1/3, 1/3, 1/3, 0,
0, 0, 1/3, 1/3, 1/3,
0, 0, 0, 1/2, 1/2),

byrow=TRUE, nrow=5)
delta <- c(0, 1, 0, 0, 0)
lambda <- c(1, 4, 2, 5, 3)
m <- nrow(Pi)

x <- dthmm(NULL, Pi, delta, "pois", list(lambda=lambda), discrete=TRUE)
x <- simulate(x, nsim=2000)

#------ Global Decoding ------

states <- Viterbi(x)
states <- factor(states, levels=1:m)

# Compare predicted states with true states
# p[j,k] = Pr{Viterbi predicts state k | true state is j}
p <- matrix(NA, nrow=m, ncol=m)
for (j in 1:m){

a <- (x$y==j)
p[j,] <- table(states[a])/sum(a)

}
print(p)
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#------ Local Decoding ------

# locally decode at i=100

print(which.max(Estep(x$x, Pi, delta, "pois", list(lambda=lambda))$u[100,]))

#---------------------------------------------------
# simulate a beta HMM

Pi <- matrix(c(0.8, 0.2,
0.3, 0.7),

byrow=TRUE, nrow=2)
delta <- c(0, 1)

y <- seq(0.01, 0.99, 0.01)
plot(y, dbeta(y, 2, 6), type="l", ylab="Density", col="blue")
points(y, dbeta(y, 6, 2), type="l", col="red")

n <- 100
x <- dthmm(NULL, Pi, delta, "beta",

list(shape1=c(2, 6), shape2=c(6, 2)))
x <- simulate(x, nsim=n)

# colour denotes actual hidden Markov state
plot(1:n, x$x, type="l", xlab="Time", ylab="Observed Process")
points((1:n)[x$y==1], x$x[x$y==1], col="blue", pch=15)
points((1:n)[x$y==2], x$x[x$y==2], col="red", pch=15)

states <- Viterbi(x)
# mark the wrongly predicted states
wrong <- (states != x$y)
points((1:n)[wrong], x$x[wrong], pch=1, cex=2.5, lwd=2)
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