
Stepwise Multiple Testing as Formalized Data Snooping

Joseph P. Romano ∗

Department of Statistics

Sequoia Hall

Stanford University

Stanford, CA 94305

U.S.A

Michael Wolf †

Department of Economics and Business

Universitat Pompeu Fabra

Ramon Trias Fargas, 25–27

08005 Barcelona

Spain

October 2003; this revision February 2005

Abstract

It is common in econometric applications that several hypothesis tests are carried out at the
same time. The problem then becomes how to decide which hypotheses to reject, accounting
for the multitude of tests. This paper suggests a stepwise multiple testing procedure which
asymptotically controls the familywise error rate at a desired level. Compared to related single-
step methods, the procedure is more powerful in the sense that it often will reject more false
hypotheses. In addition, we advocate the use of studentization when it is feasible. Unlike some
stepwise methods, the method implicitly captures the joint dependence structure of the test
statistics, which results in increased ability to detect alternative hypotheses. We prove asymptotic
control of the familywise error rate under minimal assumptions. The methodology is presented in
the context of comparing several strategies to a common benchmark and deciding which strategies
actually beat the benchmark. However, our ideas can easily be extended and/or modified to
other contexts, such as making inference for the individual regression coefficients in a multiple
regression framework. Some simulation studies show the improvements of our methods over
previous proposals. We also provide an application to a set of real data.
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“If you can do an experiment in one day, then in 10 days you can test 10 ideas, and maybe one of

the 10 will be right. Then you’ve got it made.”

– Solomon H. Snyder

1 Introduction

Much empirical research in economics and finance inevitably involves data snooping. Unlike the
physical sciences, it is typically impossible to design replicable experiments. As a consequence,
existing data sets are analyzed not once but repeatedly. Often, many strategies are evaluated on a
single data set to determine which strategy is ‘best’ or, more generally, which strategies are ‘better’
than a certain benchmark. A benchmark can be fixed or random. For example, in the problem of
determining whether a certain trading strategy has a positive CAPM alpha, the benchmark is fixed
at zero.1 On the other hand, in the problem of determining whether a trading strategy beats a
specific investment, such as a stock index, the benchmark is usually random. If many strategies are
evaluated, some are bound to appear superior to the benchmark by chance alone, even if in reality
they are all equally good or inferior. This effect is known as data snooping (or data mining).

Economists have long been aware of the dangers of data snooping. For example, see Cowles
(1933), Leamer (1983), Lovell (1983), Lo and MacKinley (1990), and Diebold (2000), among others.
However, in the context of comparing several strategies to a benchmark, little has been suggested
to properly account for the effects of data snooping. A notable exception is White (2000). The aim
of this work is to determine whether the strategy that is best in the available sample indeed beats
the benchmark, after accounting for data snooping. The concept to account for data mining is the
(asymptotic) control of the familywise error rate (FWE). The FWE is defined as the probability of
incorrectly identifying at least one strategy as superior.2

White (2000) coins his technique the Bootstrap Reality Check (BRC). Often one would like to
identify further outperforming strategies, apart from the one that is best in the sample. While the
specific BRC algorithm of White (2000) does not address this question, it could be modified to do
so. The main contribution of our paper is to provide a method that goes beyond the BRC: it can
identify strategies that beat the benchmark but which are not detected by the BRC. This is achieved
by a stepwise multiple testing method, where the modified BRC would correspond to the first step.
Further outperforming strategies can be detected in subsequent steps, while maintaining control of
the FWE. So the method we propose is more powerful than the BRC.

To motivate our main contribution, consider the following three exemplary persons who would
benefit from the more powerful stepwise method. First, a trader who backtests several quantitative
trading ideas on historical data and wants to know how many of these are worth launching for real;
then the benchmark is whichever benchmark the trader is subjected to. Second, a CEO of a multi-
strategy mutual fund family who has to choose which individual portfolio managers to promote by
comparing them with the market index. Third, the manager of a fund of hedge funds who has to
choose which individual hedge fund he wants to invest his clients’ capital in, by benchmarking them
against the risk-free rate.

1See Example 2.3 for a definition of the CAPM alpha.
2This means at least one strategy that in truth is as good as or inferior to the benchmark will get identified as

superior to the benchmark by the statistical method.
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The challenge of constructing an ‘optimal’ forecast provides another motivation. Imagine several
different forecasting strategies are available to forecast a quantity of interest. As described in Tim-
mermann (2006, Chapter 6): (i) choosing the (lone) strategy with the best track record is often a
bad idea; (ii) simple forecasting schemes, such as equal-weighting various strategies, are hard to beat;
and (iii) trimming off the worst strategies is often required. Accordingly, a sensible approach would
be to identify (hopefully) all strategies that underperfom a simple-minded benchmark3 and to then
use the equal-weighted average of the remaining strategies for out-of-sample forecasts. (Obviously,
methods that can identify outperforming strategies can also be modified to identify underperforming
strategies.4)

As a second contribution, we propose the use of studentization to improve level and power
properties in finite samples. Studentization is not always feasible, but when it is we argue that it
should be incorporated and we give several good reasons for doing so.

The remainder of the paper is organized as follows. Section 2 describes the model, the formal
inference problem, and some existing methods. Section 3 presents our stepwise method. Section 4
discusses modifications when studentization is used. Section 5 lists several possible extensions. Sec-
tion 6 briefly discusses alternatives to controlling the FWE. Section 7 proposes how to choose the
bootstrap block size in the context of time series data. Section 8 sheds some light on finite-sample
performance via a simulation study. Section 9 provides an application to real data. Section 10
concludes. An appendix contains proofs of mathematical results, an overview of the most important
bootstrap methods, some power considerations for studentization, and a brief discussion of multiple
testing versus joint testing.

2 Notation and Problem Formulation

2.1 Notation and Some Examples

One observes a data matrix xt,s with 1 ≤ t ≤ T and 1 ≤ s ≤ S +1. The data is generated from some
underlying probability mechanism P which is unknown. The row index t corresponds to distinct
observations, and there are T of them. In our asymptotic framework, T will tend to infinity. The
column index s corresponds to strategies, and there is a fixed number S of them. The final column,
S + 1, is reserved for the benchmark. We include the benchmark in the data matrix even if it is
nonstochastic. For compactness, we introduce the following notation: XT denotes the complete

T × (S + 1) data matrix; X
(T )
t,· is the (S + 1) × 1 vector that corresponds to the tth row of XT ; and

X
(T )
·,s is the T × 1 vector that corresponds to the sth column of XT .

For each strategy s, 1 ≤ s ≤ S, one computes a test statistic wT,s that measures the ‘performance’

of the strategy relative to the benchmark. We assume that wT,s is a function of X
(T )
·,s and X

(T )
·,S+1

only. Each statistic wT,s tests a univariate parameter θs. This parameter is defined in such a way
that θs ≤ 0 under the null hypothesis that strategy s does not beat the benchmark. In some
instances, we will also consider studentized test statistics zT,s = wT,s/σ̂T,s, where σ̂T,s estimates the
standard deviation of wT,s. In the sequel, we often call wT,s a ‘basic’ test statistic to distinguish
it from the studentized statistic zT,s. To introduce some compact notation: the S × 1 vector θ

3For example, when forecasting inflation the simple-minded benchmark might be the current inflation.
4The ability to detect as many underperforming strategies as possible would also be useful to a CEO of a multi-

strategy mutual fund company who has to choose which individual portfolio managers to fire.
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collects the individual parameters of interest θs; the S × 1 vector WT collects the individual basic
test statistics wT,s; and the S × 1 vector ZT collects the individual studentized test statistics zT,s.

We proceed by giving some relevant examples where several strategies are compared to a bench-
mark, giving rise to data snooping.

Example 2.1 (Absolute Performance of Investment Strategies) Historical returns of invest-

ment strategy s, say a particular mutual fund or a particular trading strategy, are recorded in X
(T )
·,s .

Historical returns of a benchmark, say a stock index or a buy-and-hold strategy, are recorded in

X
(T )
·,S+1. Depending on preference, these can be ‘real’ returns or log returns; also, returns may be

recorded in excess of the risk free rate if desired. Let µs denote the population mean of the return for
strategy s. Based on an absolute criterion, strategy s beats the benchmark if µs > µS+1. Therefore,
we define θs = µs − µS+1. Using the notation

x̄T,s =
1

N

T
∑

t=1

xt,s

a natural basic test statistic is
wT,s = x̄T,s − x̄T,S+1 (1)

As we will argue later on, a studentized statistic is preferable and given by

zT,s =
x̄T,s − x̄T,S+1

σ̂T,s
(2)

where σ̂T,s is an estimator of the standard deviation of x̄T,s − x̄T,S+1.

Example 2.2 (Relative Performance of Investment Strategies) The basic setup is as in the
previous example, but now consider a risk-adjusted comparison of the investment strategies, based
on the respective Sharpe ratios. With µs again denoting the mean of the return of strategy s and
with σs denoting its standard deviation, the corresponding Sharpe ratio is defined as SRs = µs/σs.

5

An investment strategy is now said to outperform the benchmark if its Sharpe ratio is higher than
the one of the benchmark. Therefore, we define θs = SRs − SRS+1. Let

sT,s =

√

√

√

√

1

T − 1

T
∑

t=1

(xt,s − x̄T,s)2

Then a natural basic test statistic is

wT,s =
x̄T,s

sT,s
− x̄T,S+1

sT,S+1
(3)

Again, a preferred statistic might be obtained by dividing by an estimate of the standard deviation
of this difference.

Example 2.3 (CAPM alpha) Historical returns of investment strategy s, in excess of the risk-free

rate, are recorded in X
(T )
·,s . Historical returns of a market proxy, in excess of the risk-free rate, are

5The definition of a Sharpe ratio is often based on returns in excess of the risk-free rate. But for certain applications,
such as long-short investment strategies, it can be more suitable to base it on the nominal returns.
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recorded in X
(T )
·,S+1. For each strategy s, a simple time series regression

xt,s = αs + βsxt,S+1 + εt,s (4)

is estimated by ordinary least squares (OLS). If the CAPM holds, all intercepts αs are equal to
zero.6 So the parameter of interest here is θs = αs. Since the CAPM may be violated in practice, a
financial advisor might want to identify investment strategies which have a positive αs. Hence, an
obvious basic test statistic would be

wT,s = α̂T,s (5)

Again, it can be advantageous to studentize by dividing by an estimated standard deviation of α̂T,s:

zT,s =
α̂T,s

σ̂T,s
(6)

2.2 Problem Formulation

It is assumed that depending on the underlying probability mechanism P , the parameter θs = θs(P )
either satisfies it is ≤ 0 or not. So, the parameter θs can really be viewed as a functional of the
unknown P . For a given strategy s, consider the individual testing problem

Hs : θs ≤ 0 vs. H ′
s : θs > 0

A multiple testing method yields a decision concerning each individual testing problem by either
rejecting Hs or not.7 In an ideal world, one would reject Hs exactly for those strategies for which
θs > 0. In a realistic world, and given a finite amount of data, this usually cannot be achieved
with certainty. In order to prevent us from declaring true null hypotheses to be false, we seek
control of the familywise error rate (FWE). The FWE is defined as the probability of rejecting at
least one of the true null hypotheses. More specifically, if P is the true probability mechanism, let
I0 = I0(P ) ⊂ {1, . . . , S} denote the indices of the set of true hypotheses; that is, s ∈ I0 if and only
if θs ≤ 0. The FWE is the probability under P that any Hs with s ∈ I0 is rejected:8

FWEP = ProbP{Reject at least one Hs : s ∈ I0(P )}

In case all the individual null hypotheses are false, the FWE is equal to zero by definition.

We require a method that, for any P , has FWEP no bigger than α, at least asymptotically. In
particular, this constraint must hold for all P , and therefore regardless of which hypotheses are true
and which are false. That is, we demand strong control of the FWE. A method that only controls
the FWE for a probability mechanism P such that all S null hypotheses are true is said to have weak
control of the FWE. As remarked by Dudoit et al. (2003), this distinction is often ignored. Indeed,
White (2000) only proves weak control of the FWE for his method. The remainder of the paper
equates control of the FWE with strong control of the FWE.

A multiple testing method is said to control the FWE at level α if, for the given sample size T ,
FWEP ≤ α, for any P . A multiple testing method is said to asymptotically control the FWE at

6We trust there is no possible confusion between a CAPM alpha αs and the level α of multiple testing methods
discussed later on.

7This is related to, but distinct from, the problem of joint testing; see Appendix D for a brief discussion.
8To show its dependence on P , we may write FWE = FWEP .
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level α, if lim supT FWEP ≤ α, for any P . Methods that control the FWE in finite samples can
typically only be derived in special circumstances, or they suffer from lack of power because they
do not incorporate the dependence structure of the test statistics. We therefore seek control of the
FWE asymptotically, while trying to achieve high power at the same time.

Several well-known methods that (asymptotically) control the FWE exist. The problem is that
they often have low power. What is the meaning of ‘power’ in a multiple testing framework? Unfor-
tunately, there is no unique definition as in the context of testing a single hypothesis. Some possible
notions of power are:

• ‘Minimal’ power: the probability of rejecting at least one false null hypothesis. Since our goal
is to reject as many false null hypotheses as possible, rather than just rejecting at least one of
them, this notion is not suitable for our purposes. Indeed, if we adopted this notion, then the
stepwise method we will present would not improve upon the BRC of White (2000).

• ‘Global’ power: the probability of rejecting all false null hypotheses. Arguably, this notion is
too strict for our purposes. While we aim to reject as many false null hypotheses as possible,
we do not necessarily consider it a failure to miss a single one of them.

• ‘Average’ power: the average of the individual probabilities of rejecting each false null hypoth-
esis. This is equivalent to the expected number of false null hypotheses that will be rejected.
Therefore, we consider it the most appropriate notion for our purposes.

• The expected proportion of false null hypotheses that will be rejected.

• The probability of rejecting at least γ 100% of the false null hypotheses, where γ ∈ (0, 1] is a
user-specified number.

For the sake of argument, when we use statements like “more powerful” in the remainder of the paper
we mean in the sense of better average power. But these statements would also apply to any other
reasonable notion of power that increases in the number of false hypotheses rejected. (Only with the
notion of minimal power, which is not suitable for our purposes, there is no difference between our
stepwise method and the BRC.)

A special case in comparing the power of two multiple testing methods, say methods 1 and 2,
arises in the following scenario: by design, method 1 rejects all hypotheses rejected by method 2 and
possibly some further ones. It then trivially follows that method 1 is more powerful than method 2.

2.3 Existing Methods

The most familiar multiple testing method for controlling the FWE is the Bonferroni method. It
works as follows. For each null hypothesis Hs, one computes an individual p-value p̂T,s. It is assumed
that if Hs is true, the distribution of p̂T,s is Uniform (0,1), at least asymptotically.9 The Bonferroni
method at level α rejects Hs if p̂T,s < α/S. If the null distribution of each p̂T,s is (asymptotically)
Uniform (0,1), then the Bonferroni method (asymptotically) controls the FWE at level α. The
disadvantage of the Bonferroni method is that it is in general conservative, which can result in low
power.

9Actually, the following weaker assumption would be sufficient: If Hs is true, then ProbP (p̂T,s ≤ x) ≤ x, at least
asymptotically.
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Actually, there exists a simple method which (asymptotically) controls the FWE at level α but is
more powerful than the Bonferroni method. This stepwise procedure is due to Holm (1979) and works
as follows. The individual p-values are ordered from smallest to largest: p̂T,(1) ≤ p̂T,(2) ≤ . . . ≤ p̂T,(S)

with their corresponding null hypotheses labeled accordingly: H(1),H(2), . . . , H(S). Then H(s) is
rejected at level α if p̂T,(j) < α/(S − j + 1) for all j = 1, . . . , s. In comparison with the Bonferroni
method, the criterion for the smallest p-value is equally strict, α/S, but it becomes less and less
strict for larger p-values. This explains the improvement in power. Still, the Holm method can be
quite conservative.

The reason for the conservativeness of the Bonferroni and the Holm methods is that they do
not take into account the dependence structure of the individual p-values. Loosely speaking, they
achieve control of the FWE by assuming a worst-case dependence structure. If the true dependence
structure could be accounted for, one should be able to (asymptotically) control the FWE but at
the same time increase power. To illustrate, take the extreme case of perfect dependence, where all
p-values are identical. In this case, one should reject Hs if p̂T,s < α. This (asymptotically) controls
the FWE but obviously is more powerful than both the Bonferroni and Holm methods.

In many economic or financial applications, the individual test statistics are jointly dependent.
Often, the dependence is positive. It is therefore important to account for the underlying dependence
structure in order to avoid being overly conservative. A partial solution, for our purposes, is provided
by White (2000) who coins his method the bootstrap reality check (BRC). The BRC estimates the
asymptotic distribution of max1≤s≤S(wT,s − θs), implicitly accounting for the dependence structure
of the individual test statistics. Let smax denote the index of strategy with the largest statistic wT,s.
The BRC decides whether or not to reject Hsmax at level α, asymptotically controlling the FWE. It
therefore addresses the question whether the strategy that appears ‘best’ in the observed data really
beats the benchmark.10 However, it does not attempt to identify as many outperforming strategies
as possible. The method we present in the next section does just that. In addition, we argue that
by studentizing the test statistics, in situations where studentization is feasible, one can hope to
improve size and certain power properties in finite samples. This represents a second enhancement
of White’s (2000) approach.

Hansen (2004) offers some improvements over the BRC; in addition, see Hansen (2003). First,
his method reduces the influence of ‘irrelevant’ strategies, meaning strategies that ‘significantly’
underperform the benchmark. Second, he also proposes the use of studentized test statistics zT,s

instead of basic test statistics wT,s. However, like the BRC, the method of Hansen (2004) ‘only’
addresses the question whether the strategy that appears ‘best’ in the observed data really beats the
benchmark.

3 Stepwise Multiple Testing Method

Our goal is to identify as many strategies as possible for which θs > 0. We do this by considering
individual hypothesis tests

Hs : θs ≤ 0 vs. H ′
s : θs > 0

A decision rule results in acceptance or rejection of each null hypothesis. The individual decisions
are supposed to be taken in a manner that asymptotically controls the FWE at a given level α. At
the same time, we want to reject as many false hypotheses as possible in finite sample.

10Equivalently, it addresses the question whether there are any strategies at all that beat the benchmark.
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We describe our method in the context of using basic test statistics wT,s. The extension to
the studentized case is straightforward and will be discussed later on. The method begins by re-
labeling the strategies according to the size of the individual test statistics, from largest to small-
est. Label r1 corresponds to the largest test statistic and label rS to the smallest one, so that
wT,r1 ≥ wT,r2 ≥ . . . ≥ wT,rS

. Then the individual decisions are taken in a stepwise manner.11 In
the first step, we construct a rectangular joint confidence region for the vector (θr1 , . . . , θrS

)′ with
nominal joint coverage probability 1 − α. The confidence region is of the form

[wT,r1 − c1,∞) × . . . × [wT,rS
− c1,∞) (7)

where the common value c1 is chosen in such as way as to ensure the proper joint (asymptotic)
coverage probability. It is not immediately clear how to achieve this in practice. Part of our contri-
bution is describing a data-dependent way to choose c1 in practice; details are below. If a particular
individual confidence interval [wT,rs −c1,∞) does not contain zero, the corresponding null hypothesis
Hrs is rejected.

If the above joint confidence region (7) has asymptotic joint coverage probability 1 − α, this
method asymptotically controls the FWE at level α. The method of White (2000) corresponds to
computing the confidence interval [wT,r1 −c1,∞) only, resulting in a decision on Hr1 alone. However,
his method can be easily modified to be equivalent to our first step.12 The critical advantage of our
method is that we do not stop after the first step, unless no hypothesis is rejected. Suppose we reject
the first R1 relabeled hypotheses in this step one. Then S−R1 hypotheses remain, corresponding to
the labels rR1+1, . . . , rS . In the second step, we construct a rectangular joint confidence region for the
vector (θrR1+1

, . . . , θrS
)′ with, again, nominal joint coverage probability 1 − α. The new confidence

region is of the form
[wT,rR1+1

− c2,∞) × . . . × [wT,rS
− c2,∞) (8)

where the common constant c2 is chosen in such a way as to ensure the proper joint (asymptotic)
coverage probability. Again, if a particular individual confidence interval [wT,rs − c2,∞) does not
contain zero, the corresponding null hypothesis Hrs is rejected. This stepwise process is then repeated
until no further hypotheses are rejected. By continuing after the first step, more false hypotheses
can be rejected.13 The stepwise procedure is therefore more powerful than the single-step method.
Nevertheless, the stepwise procedure still asymptotically controls the FWE at level α; the proof is in
Theorem 3.1. Hence, our stepwise multiple testing (StepM) procedure improves upon the single-step
BRC of White (2000) very much in the way that the stepwise Holm method improves upon the
single-step Bonferroni method.

Remark 3.1 By design, the StepM procedure rejects all hypotheses that the BRC rejects and
potentially some more. One consequence is that often more false null hypotheses are rejected.
Clearly, this is an advantage, resulting in improved power. However, another consequence is that
more true null hypotheses can be rejected as well. Even so, the main point here is that the resulting

11Our stepwise method is a step-down method, since we start with the null hypothesis corresponding to the largest
test statistic. The Holm method is also a step-down method. It starts with the null hypothesis corresponding to the
smallest p-value, which in return corresponds to the largest test statistic. Stepwise methods that start with the null
hypothesis corresponding to the smallest test statistics are called step-up methods; e.g., see Dunnett and Tamhane
(1992).

12Since the method of White (2000) amounts to computing the constant c1, it has the potential to identify fur-
ther outperforming strategies, apart from the one that appears best in sample. Namely, the method rejects all null
hypotheses Hrs

for which [wT,rs
− c1,∞) does not contain 0.

13The reason is that c1 > c2 > c3 > . . . typically.
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procedure can greatly increase the chance of rejecting false hypotheses while still controlling the
FWE at a prescribed (small) level. Thus, our improvement is in the same sense in which the Holm
procedure is an improvement over the Bonferroni procedure, which is well-accepted and documented
in the literature. The BRC can be viewed as a procedure to improve upon Bonferroni by using the
bootstrap to get a less conservative critical value. In the same way, our procedure improves upon the
Holm procedure by using the bootstrap to (implicitly) estimate the dependence structure of the test
statistics to achieve greater power. Table 1 summarizes the characteristics of the various procedures.
While all of them (asymptotically) control the FWE, power increases (i) in each column going down
and (ii) in each row going from left to right.

Table 1: Characteristics of various procedures that asymptotically control the FWE.

Handles Worst-Case Dependence Accounts for True Dependence Structure

Single-Step Bonferroni White (2000), Hansen (2004)
Stepwise Holm (1979) Our stepwise procedure

How should the value c1 in the joint confidence region construction (7) be chosen? Ideally,
one would take the 1 − α quantile of the sampling distribution of max1≤s≤S(wT,rs − θrs). This is
the sampling distribution of the maximum of the individual differences “test statistic minus true
parameter”. Concretely, the corresponding quantile is defined as

c1 ≡ c1(1 − α,P ) = inf{x : ProbP { max
1≤s≤S

(wT,rs − θrs) ≤ x} ≥ 1 − α}

The ideal choice of c2, c3, and so on in the subsequent steps would be analogous. For example, the
ideal c2 for (8) would be the 1−α quantile of the sampling distribution of maxR1+1≤s≤S(wT,rs − θrs)
defined as

c2 ≡ c2(1 − α,P ) = inf{x : ProbP { max
R1+1≤s≤S

(wT,rs − θrs) ≤ x} ≥ 1 − α}

The problem is that P is unknown in practice and therefore the ideal quantiles cannot be com-
puted. The feasible solution is to replace P by an estimate P̂T . For an estimate P̂T and any j ≥ 1,
let Rj−1 denote the number of hypotheses rejected in the first j − 1 steps (with R0 ≡ 0) and define

ĉj ≡ cj(1 − α, P̂T ) = inf{x : ProbP̂T
{ max

R̃j−1+1≤s≤S
(w∗

T,rs
− θ∗T,rs

) ≤ x} ≥ 1 − α} (9)

Here the notation w∗
T,rs

makes clear that we mean the sampling distribution of the test statistics

under P̂T rather than under P ; and the notation θ∗T,rs
makes clear that the true parameters are those

of P̂T rather than those of P , that is, θ∗T = θ(P̂T ).14 We can summarize our stepwise method by the

following algorithm. The algorithm is based on a generic estimate P̂T of P . Specific choices of this
estimate, based on the bootstrap, are discussed below.

14We implicitly assume here that, with probability one, P̂T will belong to a class of distributions for which the
parameter vector θ is well-defined. This holds in all of the examples in this paper.
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Algorithm 3.1 (Basic StepM Method)

1. Relabel the strategies in descending order of the test statistics wT,s: strategy r1 corresponds
to the largest test statistic and strategy rS to the smallest one.

2. Set j = 1 and R0 = 0.

3. For Rj−1 + 1 ≤ s ≤ S, if 0 6∈ [wT,rs − ĉj ,∞), reject the null hypothesis Hrs.

4. (a) If no (further) null hypotheses are rejected, stop.

(b) Otherwise, denote by Rj the total number of hypotheses rejected so far and, afterwards,
let j = j + 1. Then return to step 3.

To present our main theorem in a compact and general fashion, we make use of the following
high-level assumption. Several scenarios where this assumption is satisfied will be detailed below.
Introduce the following notation. JT (P ) denotes the sampling distribution under P of

√
T (WT − θ);

and JT (P̂T ) denotes the sampling distribution under P̂T of
√

T (W ∗
T − θ∗T ).

Assumption 3.1 Let P denote the true probability mechanism and let P̂T denote an estimate of P
based on the data XT . Assume that JT (P ) converges in distribution to a limit distribution J(P ),
which is continuous. Further assume that JT (P̂T ) consistently estimates this limit distribution:
ρ(JT (P̂T ), J(P )) → 0 in probability for any metric ρ metrizing weak convergence.

Theorem 3.1 Suppose Assumption 3.1 holds. Then the following statements concerning Algo-
rithm 3.1 are true.

(i) If θs > 0, then the null hypothesis Hs will be rejected with probability tending to one, as T → ∞.

(ii) The method asymptotically controls the FWE at level α; that is, limT FWEP ≤ α.

(iii) Assume in addition that the limiting distribution J(P ) in Assumption 3.1 has a density that is
positive everywhere.15 Then the limiting probability in (ii) is equal to α iff there exists at least
one θs with θs = 0 and no θs with θs < 0.

Theorem 3.1 is related to Algorithm 2.8 of Westfall and Young (1993). Our result is more flexible
in the sense that we do not require their subset pivotality condition (see Section 2.2).16 Furthermore,
in the context of this paper, our result is easier to apply in practice for two reasons. First, it is
based on the S individual test statistics. In contrast, Algorithm 2.8 of Westfall and Young (1993) is
based on the S individual p-values, which would require an extra round of computation. Second, the
quantiles ĉj are computed ‘directly’ from the estimated distribution P̂T . There is no need to impose
certain null hypotheses constraints as in Algorithm 2.8 of Westfall and Young (1993).

15This additional assumption is very weak and holds, for example, in the case of a limiting multivariate normal
distribution with nonsingular covariance matrix.

16For instance, this condition is violated, even asymptotically, when carrying out individual tests on the correlations
of a joint correlation matrix, but our methods apply.
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Remark 3.2 Part (iii) of the Theorem shows that it is not possible to have a limiting FWE exactly
equal to α in general. Indeed, this can only be achieved if all the nonpositive θs values are exactly
equal to zero. If there exists at least one negative θs value, then the FWE is asymptotically bounded
away from α. (On the other hand, if all the θs values are positive than the limiting FWE is trivially
equal to zero.) In contrast, a similar result17 for BRC of White (2000) establishes that its limiting
FWE is equal to α iff all the θs values are equal to 0. The impossibility of achieving a limiting
FWE exactly equal to α in general has nothing to do with the problem of multiple testing and/or
the application of the bootstrap. Instead, it occurs generally even when testing a single composite
null hypothesis for which the rejection probability depends on the exact value of the parameter in
the null hypothesis parameter space. Take the simple example of X ∼ N(θ, 1) and testing H : θ ≤ 0
vs. H ′ : θ > 0. The universally most powerful (UMP) test rejects H at nominal level α = 0.05 iff
X > 1.645. But the actual rejection probability, under the null, is strictly less than α unless θ lies on
the boundary, that is, θ = 0. For example, if θ = −0.5, then the actual rejection probability equals
0.016. Finally, when the individual tests are two-sided, namely Hs : θs = 0 vs. H ′

s : θs 6= 0, then the
limiting FWE of our stepwise method is indeed equal to α, unless all θs are nonzero (in which case
it is not possible to incorrectly reject a null hypothesis). On the other hand, the limiting FWE of
the BRC is again strictly less than α, unless all θs are equal to zero.

Remark 3.3 Our framework assumes that the probability mechanism P is fixed. In particular, the
parameters θs > 0 are fixed. Asymptotically, according to Theorem 3.1 (i), if θs > 0, then Hs will be
rejected with probability tending to one. Alternatively, one can also study the behavior of multiple
testing methods under contiguous (or local) alternatives θT,s → 0, so that not all false hypotheses
are rejected with probability tending to one. For example, one can consider sequences θT,s = hs/

√
T ,

with hs > 0 fixed. However, evidently, if alternative hypotheses are in some sense closer to their
respective null hypothesis, then the methods will typically reject even fewer hypotheses. In other
words, the probability of rejecting any set of hypotheses is smaller (asymptotically), whether they are
true or false. And so the limiting probability of rejecting any true hypotheses (i.e., the FWE) under
a sequence of contiguous alternatives will be bounded above by α, thus part (ii) of the Theorem
continues to hold. On the other hand, part (iii) no longer holds. The existence of local alternatives
generally causes the limiting FWE to be bounded away from α.

We proceed by listing some fairly flexible scenarios where Assumption 3.1 is satisfied and Theo-
rem 3.1 applies. The list is not meant to be exhaustive.

Scenario 3.1 (Smooth Function Model with I.I.D. Data) Consider the case of independent

and identically distributed (i.i.d.) data X
(T )
t,· , 1 ≤ t ≤ T . In the ‘smooth function’ model of Hall

(1992), the test statistic wT,s is a smooth function of certain sample moments of X
(T )
·,s and X

(T )
·,S+1, and

the parameter θs is the same function applied to the corresponding population moments. Examples
that fit into this framework are given by (1), (3), and (5). If the smooth function model applies and
appropriate moment conditions hold, then

√
T (WT − θ) converges in distribution to a multivariate

normal distribution with mean zero and some covariance matrix Ω. As shown by Hall (1992), one
can use the i.i.d. bootstrap of Efron (1979) to consistently estimate this limiting normal distribution;
that is, P̂T is simply the empirical distribution of the observed data.18

17The corresponding proof is analogous to the proof of part (iii) of the Theorem 3.1 and left to the reader.
18Hall (1992) also shows that the bootstrap approximation can be better than a normal approximation of the type

N(0, Ω̂T ) when the limiting covariance matrix Ω can be estimated consistently, which is not always the case.
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Scenario 3.2 (Smooth Function Model with Time Series Data) Consider the case of strictly

stationary time series data X
(T )
t,· , 1 ≤ t ≤ T . The smooth function model is defined as before and

examples (1), (3), and (5) apply. Under moment and mixing conditions on the underlying process,√
T (WT −θ) converges in distribution to a multivariate normal distribution with mean zero and some

covariance matrix Ω; e.g., see White (2001). In the time series case, the limiting covariance matrix Ω

not only depends on the marginal distribution of X
(T )
t,· but it also depends on the underlying de-

pendence structure over time. The consistent estimation of the limiting distribution now requires a
time series bootstrap. Künsch (1989) gives conditions under which the block bootstrap can be used;
Politis and Romano (1992) show that the same conditions guarantee consistency of the circular block
bootstrap; Politis and Romano (1994) give conditions under which the stationary bootstrap can be
used; also see Gonçalves and de Jong (2003).

Test statistics not covered immediately by the smooth function model can often be accommodated
with some additional effort. In many cases where the bootstrap is known to fail19, the subsampling
method can be used to consistently estimate the limiting distribution of

√
T (WT − θ). Subsampling

is known to work under weaker conditions than the bootstrap; see Politis et al. (1999).

Scenario 3.3 (Strategies that Depend on Estimated Parameters) Consider the case where
strategy s depends on a parameter vector βs. In case βs is unknown, it is estimated from the data.
Denote the corresponding estimator by β̂T,s. Denote the value of the test statistic for strategy s, as a

function of the estimated parameter vector β̂T,s, by wT,s(β̂T,s). Further, let WT (β̂T ) denote the S×1
vector collecting these individual test statistics. White (2000), in the context of a stationary time
series, gives conditions under which

√
T (WT (β̂T )−θ) converges to a limiting normal distribution with

mean zero and some covariance matrix Ω. He also demonstrates that the stationary bootstrap can be
used to consistently estimate this limiting distribution. Alternatively, the moving blocks bootstrap
or the circular blocks bootstrap can be used. Note that a direct application of our Algorithm 3.1
would use the sampling distribution of

√
T (W ∗

T (β̂∗
T ) − θ∗T ) under P̂T . That is, the βs would be

re-estimated based on data X∗
T generated from P̂T . But White (2000) shows that, under certain

regularity conditions, it is actually sufficient to use the sampling distribution of
√

T (W ∗
T (β̂T ) − θ∗T )

under P̂T . Hence, in this case it is not really necessary to re-estimate the βs parameters, at least for
first-order asymptotic consistency. Details are in White (2000).

For concreteness, we now describe how to compute the ĉj in Algorithm 3.1 via the bootstrap.20

In what follows, pseudo data matrices X∗
T are generated by a generic bootstrap mechanism, denoted

by P̂T . The true parameter vector corresponding to P̂T is denoted by θ∗T = θ(P̂T ). The specific
choice of bootstrap method depends on the context. For the reader not completely familiar with the
variety of bootstrap methods that do exist, we describe the most important ones in Appendix B.

Algorithm 3.2 (Computation of the ĉj via the Bootstrap)

1. The labels r1, . . . , rS and the numerical values of R0, R1 . . . are given in Algorithm 3.1.

19For example, this can happen when the true parameter lies on the boundary of the parameter space; see Shao and
Tu (1995) and Andrews (2000).

20Of course, one could use alternative methods to compute the ĉj , such as based on a limiting normal distribution
in conjunction with a consistently estimated covariance matrix.
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2. Generate M bootstrap data matrices X∗,1
T , . . . ,X∗,M

T . (One should use M ≥ 1, 000 in practice.)

3. From each bootstrap data matrix X∗,m
T , 1 ≤ m ≤ M , compute the individual test statistics

w∗,m
T,1 , . . . , w∗,m

T,S .

4. (a) For 1 ≤ m ≤ M , compute max∗,m
T,j = maxRj−1+1≤s≤S(w∗,m

T,rs
− θ∗T,rs

).

(b) Compute ĉj as the 1 − α empirical quantile of the M values max∗,1
T,j, . . . ,max∗,M

T,j .

Remark 3.4 For convenience, one can typically use wT,rs in place of θ∗T,rs
in step 4(a) of the algo-

rithm. Indeed, the two are the same under the following conditions: (1) wT,s is a linear statistic;

(2) θs = E(wT,s); and (3) P̂T is based on Efron’s bootstrap, the circular blocks bootstrap, or the
stationary bootstrap. Even if conditions (1) and (2) are met, wT,rs and θ∗T,rs

are not the same if

P̂T is based on the moving blocks bootstrap due to ‘edge’ effects; see Appendix B. On the other
hand, the substitution of wT,rs for θ∗T,rs

does in general not affect the consistency of the bootstrap
approximation and Theorem 3.1 continues to hold. Lahiri (1992) discusses this subtle point for the
special case of time series data and wT,rs being the sample mean. He shows that centering by θ∗T,rs

provides second-order refinements but it is not necessary for first-order consistency.

Remark 3.5 A main point of our paper is that, to avoid making parametric assumptions, we use
the bootstrap to approximate critical values. However, for testing one-sided hypotheses in some
parametric models, the stepwise procedures we propose enjoy certain optimality properties; see
Lehmann et al. (2005). (Of course, in such cases the critical values are derived from the underlying
parametric model then.)

4 Studentized Stepwise Multiple Testing Method

This section argues that the use of studentized test statistics, when feasible, is preferred. We first
present the general method and then give three good reasons for its use.

4.1 Description of Method

An individual test statistic is now of the form zT,s = wT,s/σ̂T,s, where σ̂T,s estimates the standard
deviation of wT,s. Typically, one would choose σ̂T,s in such a way that the asymptotic variance of
zT,s is equal to one, but this is actually not required for Theorem 4.1 to hold. The stepwise method
is analogous to the case of basic test statistics but slightly more complex due to the studentization.
Again, P̂T is an estimate of the underlying probability mechanism P based on the data XT . Let X∗

T

denote a data matrix generated from P̂T , let w∗
T,s denote a basic test statistic computed from X∗

T ,

and let σ̂∗
T,s denote the estimated standard deviation of w∗

T,s computed from X∗
T .21 We need an

analogue of the quantile (9) for the studentized method. It is given by

d̂j ≡ dj(1 − α, P̂T ) = inf{x : ProbP̂T
{ max

Rj−1+1≤s≤S
(w∗

T,rs
− θ∗T,rs

)/σ̂∗
T,rs

≤ x} ≥ 1 − α} (10)

21Since P̂T is completely specified, one actually knows the true standard deviation of w∗
T,s. However, the bootstrap

mimics the real world, where standard deviation of wT,s is unknown, by estimating this standard deviation from the
data. Hansen (2004) uses σ̂∗

T,s = σ̂T,s. While this results in first-order consistency, it is preferable to compute σ̂∗
T,s

from the bootstrap data; see Hall (1992).
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Algorithm 4.1 (Studentized StepM Method)

1. Relabel the strategies in descending order of the test statistics zT,s: strategy r1 corresponds to
the largest test statistic and strategy rS to the smallest one.

2. Set j = 1 and R0 = 0.

3. For Rj−1 + 1 ≤ s ≤ S, if 0 6∈ [wT,rs − σ̂T,rs d̂j ,∞), reject the null hypothesis Hrs .

4. (a) If no (further) null hypotheses are rejected, stop.

(b) Otherwise, denote by Rj the total number of hypotheses rejected so far and, afterwards,
let j = j + 1. Then return to step 3.

Assumption 4.1 In addition to Assumption 3.1, assume the following condition. For each 1 ≤ s ≤ S,
both

√
T σ̂T,s and

√
T σ̂∗

T,s converge to a (common) positive constant σs in probability.

Theorem 4.1 Suppose Assumption 4.1 holds. Then the following statements concerning Algo-
rithm 4.1 are true.

(i) If θs > 0, then the null hypothesis Hs will be rejected with probability tending to one, as T → ∞.

(ii) The method asymptotically controls the FWE at level α; that is, limT FWEP ≤ α.

(iii) Assume in addition that the limiting distribution J(P ) in Assumption 3.1 has a density that is
positive everywhere. Then the limiting probability in (ii) is equal to α iff there exists at least
one θs with θs = 0 and no θs with θs < 0.

Assumption 4.1 is stricter than Assumption 3.1. Nevertheless, it covers many interesting cases.
Under certain moment and mixing conditions (for the time series case), Scenarios 3.1 and 3.2 generally
apply. Hall (1992) shows that a studentized version of Efron’s (1979) bootstrap consistently estimates
the limiting distribution of studentized statistics in the framework of Scenario 3.1. Götze and Künsch
(1996) demonstrate that a studentized version of the moving blocks bootstrap consistently estimates
the limiting distribution of studentized statistics in the framework of Scenario 3.2. Note that their
arguments immediately apply to the circular bootstrap as well. By similar techniques the validity of
a studentized version of the stationary bootstrap can be established. Relevant examples of practical
interest are given by (2) and (6).

For concreteness, we now describe how to compute the d̂j in Algorithm 4.1 via the bootstrap.
Again, pseudo data matrices X∗

T are generated by a generic bootstrap method.

Algorithm 4.2 (Computation of the d̂j via the Bootstrap)

1. The labels r1, . . . , rS and the numerical values of R0, R1 . . . are given in Algorithm 4.1.

2. Generate M bootstrap data matrices X∗,1
T , . . . ,X∗,M

T . (One should use M ≥ 1, 000 in practice.)

3. From each bootstrap data matrix X∗,m
T , 1 ≤ m ≤ M , compute the individual test statistics

w∗,m
T,1 , . . . , w∗,m

T,S . Also, compute the corresponding standard errors σ̂∗,m
T,1 , . . . , σ̂∗,m

T,S .
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4. (a) For 1 ≤ m ≤ M , compute max∗,m
T,j = maxRj−1+1≤s≤S(w∗,m

T,rs
− θ∗T,rs

)/σ̂∗,m
T,rs

.

(b) Compute d̂j as the 1 − α empirical quantile of the M values max∗,1
T,j, . . . ,max∗,M

T,j .

Remark 3.4 applies here as well.

The method to studentize properly depends on the context. In the case of i.i.d. data there is
usually an obvious ‘formula’ for σ̂T,s, which is applied to the data matrix XT . To give an example,
the formula for σ̂T,s corresponding to the test statistic (1) based on i.i.d. data is given by

σ̂T,s =

√

∑T
t=1(xt,s − xt,S+1 − x̄T,s + x̄T,S+1)2

T − 1
(11)

In the Efron bootstrap world, the value of σ̂∗
T,s is then obtained by applying the same formula to

the bootstrap data matrix X∗
T . Things get more complex in the case of stationary time series data.

There no longer exists a simple formula to compute σ̂T,s from XT . Instead, one typically uses a
kernel variance estimator that can be described by a certain algorithm; e.g., see Andrews (1991) and
Andrews and Monahan (1992). In principle, σ̂∗

T,s can be obtained by applying the same algorithm to
the bootstrap data matrix X∗

T . When X∗
T is obtained by the moving blocks bootstrap or the circular

blocks bootstrap, Götze and Künsch (1996) suggest to use a ‘natural’ variance estimator σ̂∗
T,s. This is

due to the two facts that (1) these two methods generate a bootstrap data sequence by concatenating
blocks of data of a fixed size and that (2) the individual blocks are selected independently of each
other. For the sake of space, we refer the interested reader to Götze and Künsch (1996) and Romano
and Wolf (2003) to learn more about ‘natural’ block bootstrap variance estimators.

4.2 Reasons for Studentization

We now provide three reasons for making the additional effort of studentization.

The first reason is power. The studentized method is not ‘universally’ more powerful than the
basic method. However, it performs better for several reasonable definitions of power. Details can
be found in Appendix C.

The second reason is level. Consider for the moment the case of a single null hypothesis Hs of
interest. Under certain regularity conditions, it is well-known that (1) bootstrap confidence intervals
based on studentized statistics provide asymptotic refinements in terms of coverage level; and that
(2) bootstrap tests based on studentized test statistics provide asymptotic refinements in terms of
level. The underlying theory is provided by Hall (1992) for the case of i.i.d. data and by Götze
and Künsch (1996) for the case of stationary data. The common theme is that one should use
asymptotically pivotal (test) statistics in bootstrapping. This is only partially satisfied for our
studentized multiple testing method, since we studentize the test statistics individually. Hence,
the limiting joint distribution is not free of unknown population parameters. Such a limiting joint
distribution could be obtained by a joint studentization, taking also into account the covariances
of the individual test statistics wT,s. However, this would no longer result in the rectangular joint
confidence regions which are the basis for our stepwise testing method. A joint studentization is not
feasible for our purposes. While individual studentization cannot be proven to result in asymptotic
refinements in terms of the level, it might still lead to finite sample improvements; see Section 8.

The third reason is individual coverage probabilities. As a by-product, the first step of our
multiple testing method yields a joint confidence region for the parameter vector θ. The basic
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method yields the following region

[wT,r1 − ĉ1,∞) × . . . × [wT,rS
− ĉ1,∞) (12)

The studentized method yields the following region

[wT,r1 − σ̂T,r1 d̂1,∞) × . . . × [wT,rS
− σ̂T,rS

d̂1,∞) (13)

If the sample size T is large, both regions (12) and (13) have joint coverage probability of about 1−α.
But they are distinct as far as the individual coverage probabilities for the θrs values are concerned.
Assume that the test statistics wT,s have different standard deviations, which happens in many
applications. Say wT,r1 has a smaller standard deviation than wT,r2. Then the confidence interval
for θr1 derived from (12) will typically have a larger (individual) coverage probability compared to
the confidence interval for θr2. This is not the case for (13) where, thanks to studentization, the
individual coverage probabilities are comparable and hence the individual confidence intervals are
‘balanced’. The latter is clearly a desirable property; see Beran (1988). Indeed, we make a decision
concerning Hrs by inverting a confidence interval for θrs . Balanced confidence intervals result in
a balanced ‘power distribution’ among the individual hypotheses. Unbalanced confidence intervals,
obtained from basic test statistics, distribute the power unevenly among the individual hypotheses.

To sum up, when the standard deviations of the basic test statistics wT,s are different, the wT,s

live on different scales. Comparing one basic test statistic to another is then like comparing apples to
oranges. If one wants to compare apples to apples, one should use the studentized test statistics zT,s.

22

5 Possible Extensions

The aim of this paper is to introduce a new multiple testing methodology based on stepwise joint
confidence regions. For sake of brevity and succinctness, we have presented the methodology in a
compact yet rather flexible framework. This section briefly lists several possible extensions.

In our setup, the individual null hypotheses Hs are one-sided. This makes sense because we
want to test whether individual strategies improve upon a benchmark, rather than whether their
performance is just different from the benchmark. Nevertheless, for other multiple testing problems
two-sided tests can be more appropriate; for example, see the multiple regression example of the next
paragraph. If two-sided tests are preferred, our methods can be easily adapted. Instead of one-sided
joint confidence regions, one would construct two-sided joint confidence regions. To give an example,
the first-step region based on simple test statistics would look as follows

[wT,r1 ± ĉ1,|·|] × . . . × [wT,rS
± ĉ1,|·|]

Here ĉ1,|·| estimates the 1 − α quantile of the sampling distribution of max1≤s≤S |wT,rs − θrs |. The
corresponding modifications of Algorithms 3.1 and 3.2 are straightforward. Note that in the modified
Algorithm 3.1, the strategies would have to relabeled in descending order of the |wT,s| values instead
of the wT,s values; analogous for the modification of Algorithm 3.2

Since our focus is on comparing a number of strategies to a common benchmark, we assume that

a test statistic wT,s is a function of the vectors X
(T )
·,s and X

(T )
·,S+1 only, where X

(T )
·,S+1 corresponds to the

22Alternatively, one could compare individual p-values, but this becomes more involved.
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benchmark. This assumption is not crucial for our multiple testing methods. Take the example of a
multiple regression model with regression parameters θ1, θ2, . . . , θS . The individual null hypotheses
are of the form Hs: θs = θ0,s for some constants θ0,s. The alternatives can be (all) one-sided or
(all) two-sided. Note that there is no benchmark here, so the last column of the T × (S + 1) data
matrix XT would correspond to the response variable while the first S columns would respond to
the explanatory variables. In this setting, wT,s = θ̂T,s, where the estimation might be done by OLS
say. Obviously, wT,s is now a function of the entire data matrix. Still, our multiple testing methods
can be applied to this setting and the modifications are minor: one rejects Hrs if θ0,rs , rather than
zero, is not contained in a confidence interval for θrs .

We assume the usual
√

T convergence, meaning that
√

T (WT − θ) has a nondegenerate limiting
distribution. In nonstandard situations, the rate of convergence can be another function of T instead
of the square root. In these instances, the bootstrap often fails to consistently estimate the limiting
distribution. But if this happens, one can use the subsampling method instead; see Politis et al. (1999)
for a general reference. Our multiple testing methods can be modified for the use of subsampling
instead of the bootstrap. Examples where the rate of convergence is T 1/3 can be found in Delgado
et al. (2001).23 An example where the rate of convergence is T can be found in Gonzalo and Wolf
(2005).

6 Alternatives to FWE Control

In this paper, we propose (asymptotic) FWE control to account for data snooping, which is the
common approach. However, for certain applications, FWE control may be too strict. In particular,
when the number of hypotheses is very large, it can become very difficult to reject false hypotheses.
Therefore, it may be appropriate to relax control of the FWE in order to increase power. We briefly
discuss three alternative proposals to this end.

The first proposal is to control the probability of making k or more false rejections, which is
called the k-FWE. Here k is some integer greater than one. The second proposal is based on the
false discovery proportion (FDP), defined by the number of false rejections divided by the total
number of rejections. (And defined to be zero if there are no rejections at all.) In particular, one
might want to control ProbP{FDP > γ}, where γ is a small, user-defined number. The third proposal
is to control E(FDP), the expected value of the FDP, which is called the false discovery rate (FDR).
While different in their approaches, these three proposals share the same philosophy. By allowing a
small number or (expected) fraction of false rejections, one can improve one’s chances to reject false
hypotheses, and perhaps greatly so.

Lehmann and Romano (2005) propose stepwise methods for controlling the k-FWE and
ProbP {FDP > γ}, based on individual p-values. Their methods assume a ‘worst-case’ dependence
structure of the p-values and can therefore be viewed as generalizations of the Holm method. Current
research is devoted to incorporate the dependence structure of p-values and/or test statistics in such
methods in order to improve power.

Benjamini and Hochberg (1995) propose a stepwise method for controlling the FDR, based on in-
dividual p-values. However, they make the very strong assumption that the p-values are independent
of each other. Benjamini and Yekutieli (2001) show that the method of Benjamini and Hochberg

23This paper focuses on the use of subsampling for testing purposes. But the modifications for the construction of
confidence intervals/regions are straightforward.
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(1995) remains valid under certain types of dependence. The problem of controlling the FDR under
arbitrary dependence structures remains an open research question. For some applications of the
method of Benjamini and Hochberg (1995) to econometric problems and related discussions, see
Williams (2003).

7 Choice of Block Sizes

If the data sequence is a stationary time series, one needs to use a time series bootstrap. Each possible
choice – the moving blocks bootstrap, the circular blocks bootstrap, or the stationary bootstrap –
involves the problem of choosing the block size b. (When the stationary bootstrap is used, we denote
by b the expected block size.) Asymptotic requirements on b include b → ∞ and b/T → 0 as T → ∞,
which is of little practical help. In this section, we give concrete advice on how to select b in a data-
dependent fashion. The method we propose, in the simpler context of constructing a confidence
interval for a univariate parameter, appears in Romano and Wolf (2003), but we state it again here
for completeness. Note that the block size b has to be chosen ‘from scratch’ in each step of our
stepwise multiple testing methods, and the individual choices may well be different.

Consider the jth step of a stepwise procedure. The goal is to construct a joint confidence region
for the vector (θrRj−1+1

, . . . , θrS
)′ with nominal coverage probability of 1 − α. The actual coverage

probability in finite samples, denoted by 1 − λ, is generally not exactly equal to 1 − α. Moreover,
conditional on P and T , we can think of the actual coverage probability as a function of the block
size b. This function g : b → 1 − λ was coined the calibration function by Loh (1987). The idea is
now to adjust the ‘input’ b in order to obtain the actual coverage probability close to the desired
one. More specifically, the solution is to find b̃ that minimizes |g(b)− (1−α)| and use the value b̃ as
the block size in practice; note that |g(b) − (1 − α)| = 0 may not always have a solution.

Unfortunately, the function g(·) depends on the underlying probability mechanism P and is
unknown. We therefore propose a method to estimate g(·). The idea is that in principle we could
simulate g(·) if P were known by generating data of size T according to P and by computing joint
confidence regions for (θrRj−1+1

, . . . , θrS
)′ for a number of different block sizes b. This process is

then repeated many times and for a given b one estimates g(b) as the fraction of the corresponding
intervals that contain the true parameter vector. The method we propose is identical except that P is

replaced by a semiparametric estimate P̃T . For compact notation, define θ
(r)
Rj−1

= (θrRj−1+1
, . . . , θrS

)′.

Algorithm 7.1 (Choice of Block Sizes)

1. The labels r1, . . . , rS and the numerical values R0, R1, . . . are given in Algorithm 3.1 if the basic
method is used or in Algorithm 4.1 if the studentized method is used, respectively.

2. Fit a semiparametric model P̃T to the observed data XT .

3. Fix a selection of reasonable block sizes b.

4. Generate M data sets X̃1
T , . . . , X̃M

T according to P̃T .

5. For each data set X̃m
T , m = 1, . . . ,M , and for each block size b, compute a joint confidence

region JCRm,b for θ
(r)
Rj−1

.
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6. Compute ĝ(b) = #{θ(r)
Rj−1

(P̃T ) ∈ JCRm,b}/M .

7. Find the value of b̃ that minimizes |ĝ(b) − (1 − α)| and use this value b̃ in the construction of
the jth joint confidence region.

Remark 7.1 The motivation of fitting a semiparametric model P̃T to P is that such models do not
involve a block size of their own. In general, we suggest to use a low-order vector autoregressive
(VAR) model. While such a model will usually be misspecified, its role can be compared to the role
of a semiparametric model in the prewhitening process for prewhitened kernel variance estimation;
e.g. see Andrews and Monahan (1992). Even if the model is misspecified, it should contain some
valuable information on the dependence structure of the true mechanism P that can be exploited to
estimate g(·).

Remark 7.2 Algorithm 7.1 provides a reasonable method to select the block sizes in a practical
application. We do not claim any asymptotic optimality properties. On the other hand, in the
simpler context of constructing a confidence interval for a univariate parameter, Romano and Wolf
(2003) find that this algorithm works very well in a simulation study.

Remark 7.3 We have suggested the use of the subsampling method in nonstandard situations where
the bootstrap fails. Arguably, the choice of a good block size is then even more crucial compared
to the application of a block bootstrap. A calibration method similar to Algorithm 7.1 can also be
used with subsampling. For some simulation evidence that this approach yields good finite sample
performance in general, see Delgado et al. (2001), Giersbergen (2002), Choi (2005), and Gonzalo and
Wolf (2005).

8 Simulation Study

The goal of this section is to shed some light on the finite sample performance of our methods by
means of a simulation study. It should be pointed out that any data generating process (DGP) has a
large number of input variables, including: the number of observations T , the number of strategies S,
the number of false hypotheses, the numerical values of the parameters θs, the dependence structure
across strategies, and the dependence structure over time (in case of time series data). An exhaustive
study is clearly beyond the scope of this paper and our conclusions will necessarily be limited. The
main interest is to see how the stepwise method compares to the single-step method and to judge
the effect of studentization. Performance criteria are the empirical FWE and the average number
of false hypotheses that are rejected. To save space, only results for the nominal level α = 0.1 are
reported.24 We consider the simplest case of comparing the population mean of a strategy to that
of the benchmark, as in Example 2.1.

8.1 I.I.D. Data

We start with observations that are i.i.d. over time. The number of observations is T = 100 and
there are S = 40 strategies. A basic test statistic is given by (1) and a studentized test statistic

24The results for α = 0.05 are similar and available from the authors upon request.
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is given by (2). The studentized statistic uses the formula (11). The bootstrap method is Efron’s
bootstrap. The number of bootstrap repetitions is M = 200 due to the computational expense of
the simulation study. The number of DGP repetitions in each scenario is 5,000.

The distribution of the observation XT
t,· is jointly normal. We consider two cases for the joint

correlation matrix. In the first case, there is a common correlation ρ between the individual strategies
and also between strategies and the benchmark; we use ρ = 0 and ρ = 0.5. In the second case, we split
the strategies into two groups of size 20 each. All strategies are uncorrelated with the benchmark.
Within groups, there is a common correlation of ρ1 = 0.5. Across groups, there is a common
correlation of ρ2 = −0.2. The mean of the benchmark is always equal to 1.

In the first class of DGPs, there are four cases as far as the means of the strategies are concerned:
all means are equal to 1; six of the means are equal to 1.4 and the remaining ones are equal to 1;
twenty of the means are equal to 1.4 and the remaining ones are equal to 1; all forty means are
equal to 1.4. The standard deviation of the benchmark is always equal to 1. As far as the standard
deviations of the strategies are concerned, half of them are equal to 1 and the other half are equal
to 2. Note that the strategies that have the same mean as the benchmark always have half their
standard deviations equal to 1 and the other half equal to 2; the same for the strategies with means
greater than that of the benchmark. The results are reported in Table 2. The control of the FWE
is satisfactory for all methods (single-step vs. stepwise and basic vs. studentized). When comparing
the average number of false hypotheses rejected, one observes: (i) the stepwise method improves upon
the single-step method; (ii) the studentized method improves significantly upon the basic method.
Finally, the bootstrap successfully captures the dependence structure across strategies. When the
correlation matrix differs from the identity, more false hypotheses are rejected.

In the second class of DGPs, the strategies that are superior to the benchmark have their means
evenly distributed between 1 and 4. Again there are four cases: all means are equal to 1; six of the
means are bigger than 1 and the remaining ones are equal to 1; twenty of the means are bigger than 1
and the remaining ones are equal to 1; all forty means are bigger than 1. For example, when six of the
means are bigger than 1, those are 1.5, 2, 2.5, 3.0, 3.5 and 4.0. When twenty of the means are bigger
than 1, those are 1.15, 1.30, . . . , 3.85, 4.0. For any strategy, the standard deviation is 2 times the
corresponding mean. For example, the standard deviation of a strategy with mean 1 is 2; the standard
deviation of a strategy with mean 1.5 is 3; and so on. The results are reported in Table 3. The control
of the FWE is satisfactory for all methods (single-step vs. stepwise and basic vs. studentized). When
comparing the average number of false hypotheses rejected, one observes: (i) the stepwise method
improves significantly upon the single-step method; (ii) the studentized method improves upon the
basic method for the single-step approach, however it is worse than the basic method for the stepwise
approach. Finally, the bootstrap successfully captures the dependence structure across strategies.
When the correlation matrix differs from the identity, more false hypotheses are rejected.

In addition, we provide FWE-corrected results for the average number of false hypotheses rejected.
To this end we adjust the nominal FWE level of the single-step methods (basic and studentized) by
trial and error such that their empirical FWEs match those of the corresponding stepwise methods.
The results are reported in Tables 4 and 5 (for the two classes of DGPs). It can be seen that when
not all null hypotheses are false the FWE-corrected single-step methods perform very similarly now
to their stepwise counterparts.25 Therefore, the power gain of the stepwise methods can basically
be explained by their ability to bring the empirical FWE closer to the nominal one in general. This

25When all null hypotheses are false then the FWE is equal to zero for all methods and all nominal levels α by
definition, so it is not clear how to carry out a FWE correction is this case.
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finding is certainly of academic interest. On the other hand, a FWE-corrected single-step method is
not feasible in practice, since the proper adjustment of the nominal level would be unknown. Our
simulation show that, depending on the DGP, sometimes no adjustment is required at all while at
other times the adjustment can be tremendous, with nominal levels over 70% required!

8.2 Time Series Data

The main modification with respect to the previous DGPs is that now the observations are not i.i.d.
but rather a multivariate normal stationary time series. Marginally, each vector XT

·,s is a AR(1)
process with autoregressive coefficient ϑ = 0.6. In addition, we only consider the case of a common
correlation ρ = 0 and ρ = 0.5 for the joint correlation matrix of a XT

t,· vector. The number of
observations is increased to T = 200 to make up for the dependence over time. A basic test statistic
is given by (1) and a studentized test statistic is given by (2). The studentized statistic uses a
prewhitended kernel variance estimator based on the QS kernel and the corresponding automatic
choice of bandwidth of Andrews and Monahan (1992). The bootstrap method is the circular block
bootstrap. The studentization in the bootstrap world uses the corresponding ‘natural’ variance
estimator; for details, see Götze and Künsch (1996) or Romano and Wolf (2003). The number of
bootstrap repetitions is M = 200 due to the computational expense of the simulation study. The
number of DGP repetitions in each scenario is 2,000.

The choice of the block size is an important practical problem in applying a block bootstrap.
Unfortunately, the data-dependent Algorithm 7.1 is computationally too expensive to be incorporated
in our simulation study. (This would not be a problem in a practical application where only one
data set has to processed, instead of several thousand as in a simulation study.) We therefore found
the ‘reasonable’ block sizes b = 20 for the basic method and b = 15 for the studentized method,
respectively, by trial and error. Given that a variant of Algorithm 7.1 is seen to perform very well
in a less computer intensive simulation study of Romano and Wolf (2003), we are quite confident
that it would also perform well in the context of multiple testing. We cannot offer any simulation
evidence to this end, however.

The first class of DGPs is similar to the i.i.d. case, except that the strategy means greater than 1
are equal to 1.6 rather than 1.4. The results are reported in Table 6. The second class of DGPs
is similar to the i.i.d. case, except that the strategy means greater than 1 are evenly distributed
between 1 and 7 rather than between 1 and 4. The results are reported in Table 7.

Contrary to the findings for i.i.d. data, the basic method does not provide a satisfactory control
of the FWE in finite samples and is too liberal. (This is not because of the choice of block size b = 20
but was observed for all other block sizes we tried as well.) On the other hand, the studentized
method does a good job of controlling the FWE. Again, the stepwise method does in general reject
more false hypotheses compared to the single-step method and the magnitude of the improvement
depends on the underlying probability mechanism.

9 Empirical Application

We consider the challenge of performance analysis when a large number of investment managers are
being evaluated. In the words of Grinold and Kahn (2000, page 479): “The fundamental goal of
performance analysis is to separate skill from luck. But, how do you tell them apart? In a population
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of 1,000 investment managers, about 5 percent, or 50, should have exceptional performance by chance
alone. None of the successful managers will admit to being lucky; all of the unsuccessful managers
will cite bad luck.”

Our universe consists of all hedge funds in the CISDM data base that have a complete return
history from 01/1992 until 03/2004. There are S = 105 such funds and the number of monthly
observations is T = 147. All returns are net of management and incentive fees, that is, they are
the returns obtained by the investors. As is standard in the hedge fund industry, we benchmark
the funds against the riskfree rate26, and all returns are log returns. So we are in the general
situation of Example 2.1: a basic test statistic is given by (1); and a studentized test statistic is
given by (2). It is well known that hedge fund returns, unlike mutual fund returns, tend to exhibit
non-negligible serial correlations; for example, see Lo (2002) and Kat (2003). Indeed, the median
first-order autocorrelation of the 105 funds in our universe is 0.172. Accordingly, one has to account
for this time series nature in order to obtain valid inference. Studentization for the original data uses
a kernel variance estimator based on the prewhitened QS kernel and the corresponding automatic
choice of bandwidth of Andrews and Monahan (1992). The bootstrap method is the circular block
bootstrap, based on M = 5, 000 repetitions. The studentization in the bootstrap world uses the
corresponding ‘natural’ variance estimator; for details, see Götze and Künsch (1996) or Romano and
Wolf (2003). The block sizes for the circular bootstrap are chosen via Algorithm 7.1. The semi-
parametric model P̃T used in this algorithm is a VAR(1) model in conjunction with bootstrapping
the residuals.27

Table 8 lists the ten largest basic and studentized test statistics, together with the corresponding
hedge funds. While one expects the two lists to be different, it is striking that they are completely
disjoint. However, this result can be explained by the fact hedge funds apply very different investment
strategies and, in contrast to mutual funds, can be leveraged in addition. Therefore, many funds
that achieve a high average return do so at the expense of a (relatively) high risk, measured by the
standard deviation. Once the magnitude of the uncertainty about the basic test statistics is taking
into account through studentization, the order of the test statistics changes. The studentized list
presents the more ‘fair’ ranking, since it accounts for the varying estimation uncertainty.

We now use the various multiple testing methods to identify hedge funds that outperform the
riskfree rate, asymptotically controlling the FWE at level 0.05. The basic method does not identify
a single fund. The studentized method identifies six funds in the first step and an additional seventh
fund in the second step. The failure of the basic method to identify any outperformers can be
attributed to the highly varying risk level across funds. The upper part of Figure 1 shows a scatterplot
of the standard errors σ̂147,s against the basic test statistics w147,s. The ratio of the largest standard
error to the smallest one equals 1.057/0.0477 = 22.2! As a result the high risk hedge funds dominate
the ĉj values of the basic method. If the high risk funds corresponded to the funds with the largest
basic test statistics w147,s, then some outperformers might still be detected. However, as can be
seen from the scatterplot, this is not the case; for example, the fund with the largest standard error
actually yields a negative basic test statistic. (The lower part of Figure 1 displays the cumulative
wealth in excess of the riskfree rate over the investment period of T = 147 months for the three
funds with the highest w147,s, z147,s, and σ̂147,s statistics, respectively.) On the other hand, the
studentized method is robust in this sense because it accounts for the varying risk levels across funds

26The riskfree rate is a simple and widely accepted benchmark. But, of course, our methods also apply to alternative
benchmarks such as hedge fund indices or multi-factor hedge fund benchmarks; for example, see Kosowski et al. (2005).

27To account for leftover dependence not captured by the VAR(1) model, we use the stationary bootstrap with
average block size b = 5 for bootstrapping the residuals.
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via studentization. To look at this issue in some more detail: If the five funds with a standard
error σ̂147,s above 0.8 are deleted from the sample, then the ĉ1 value of the basic method decreases
dramatically from 2.12 to 1.48. As a result, the fund with the largest w147,s statistic, Libra Fund, is

now identified as an outperformer. In contrast, the d̂1 value of the studentized method decreases only
slightly from 5.25 to 5.18 and the total number of identified funds remains unchanged at seven.28

As a final remark, when the return data are mistakenly analyzed as i.i.d. data, then the studen-
tized method identifies 34 outperforming funds while the basic method still does not identify a single
fund.

10 Conclusion

This paper advocates a stepwise multiple testing method in the context of comparing several strate-
gies to a common benchmark. To account for the undesirable effects of data snooping, our method
asymptotically controls the familywise error rate (FWE), defined as the probability of falsely re-
jecting one or more of the true null hypotheses. Our proposal extends the bootstrap reality check
(BCR) of White (2000). The way it was originally presented, the BCR only addresses whether the
strategy that appears ‘best’ in sample actually beats the benchmark, asymptotically controlling the
FWE. But the BCR can easily be modified to potentially identify several strategies that do so. Our
stepwise method would regard this modified BCR as the first step. The crucial difference is that if
some hypotheses are rejected in this first step, our method does not stop there and it potentially will
reject further hypotheses in subsequent steps. This results in improved power, without sacrificing the
asymptotic control of the FWE. To decide which hypotheses to reject in a given step, we construct a
joint confidence region for the set of parameters pertaining to the set of null hypotheses not rejected
in previous steps. This joint confidence region is determined by an appropriate bootstrap method,
depending upon whether the observed data are i.i.d. or a time series.

In addition, we proposed the use of studentization in situations when it is feasible. There are
several reasons why we prefer studentization, one of them being that it results in a more even
distribution of power among the individual tests. We also showed that, for several sensible definitions
of power, it is more powerful compared to not studentizing.

It is important to point out that our ideas can be generalized. For example, we focused on
comparing several strategies to a common benchmark. But there are alternative contexts where
multiple testing, and hence data snooping, occurs. One instance is simultaneous inference for indi-
vidual regression coefficients in a multiple regression framework. With suitable modifications, our
stepwise testing method can be employed in such alternative contexts. To give another example,
the bootstrap may not result in asymptotic control of the FWE in nonstandard situations, such as
when the rate of convergence is different from the square root of the sample size. In many of such
situations one can use a stepwise method based on subsampling rather than on the bootstrap.

Some simulation studies investigated finite-sample performance. Of course, stepwise methods
reject more false hypotheses than their single-step counterparts. Our simulations show that the
actual size of the improvement depends on the underlying probability mechanism—for example,
through the number of false null hypotheses, their respective magnitudes, etc.—and can range from
negligible to dramatic. On the other hand, the studentized stepwise method can be less powerful or

28Needless to say, deleting strategies from a sample based on their standard errors is an ad-hoc method that is not
recommended in practice.
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more powerful than the non-studentized (or ‘basic’) stepwise method, depending on the underlying
mechanism. We still advocate the use of studentization: (i) the underlying mechanism is unknown in
practice, so one cannot find whether studentizing is more powerful or not; (ii) but studentizing always
results in a more even (or ‘balanced’) distribution of power among the individual hypotheses, which
is a desirable property. In addition, the use of studentization appears particularly important in the
context of time series data. Our simulations show that the non-studentized (or ‘basic’) method can
fail to control the FWE in finite samples when there is notable dependence over time; the studentized
method does much better.
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A Proofs of Mathematical Results

We begin by stating two lemmas. The first one is quite obvious.

Lemma A.1 Suppose that Assumption 3.1 holds. Let LT denote a random variable with distribu-
tion JT (P ) and let L denote a random variable with distribution J(P ). Let I = {i1, . . . , im} be a
subset of {1, . . . , S}. Denote by L(I) the corresponding subset of L, that is, L(I) = (Li1 , . . . , Lim)′.
Analogously, denote by LT (I) the corresponding subset of LT , that is, LT (I) = (LT,i1, . . . , LT,im)′.

Then for any subset I of {1, . . . , S}, LT (I) converges in distribution to L(I).

Lemma A.2 Suppose that Assumption 3.1 holds. Let I = {i1, . . . , im} be a subset of {1, . . . ,K}.
Define L(I) and LT (I) as in Lemma A.1 before and use analogous definitions for WT (I) and θ(I).
Also, define

ĉI ≡ cI(1 − α, P̂T ) = inf{x : ProbP̂T
{max

s∈I
(w∗

T,s − θ∗T,s) ≤ x} ≥ 1 − α} (14)

Then
[wT,i1 − ĉI ,∞) × . . . × [wT,im − ĉI ,∞) (15)

is a joint confidence region (JCR) for (θi1 , . . . , θim)′ with asymptotic coverage probability of 1 − α.

Proof To start out, note that

ProbP{(θi1 , . . . , θim)′ ∈ JCR (15)} = ProbP{max(WT (I) − θ(I)) ≤ ĉI}
= ProbP{max

√
T (WT (I) − θ(I)) ≤

√
T ĉI}

By Assumption 3.1, Lemma A.1, and the continuous mapping theorem, maxLT (I) converges weakly
to maxL(I), whose distribution is continuous. Our notation implies that the sampling distribution
under P of max

√
T (WT (I)−θ(I)) is identical to the distribution of maxLT (I), so it converges weakly

to max L(I). By analogous reasoning, the sampling distribution under P̂T of max
√

T (W ∗
T (I)−θ∗T (I))

also converges weakly to max L(I). The proof that

ProbP {max
√

T (WT (I) − θ(I)) ≤
√

T ĉI} → 1 − α

is now similar to the proof of Theorem 1 of Beran (1984). Q.E.D.

Proof of Theorem 3.1 We start with the proof of (i). Assume that θs > 0. Assumption 3.1 and
definition (9) imply that

√
T ĉ1 is stochastically bounded. So ĉ1 converges to zero in probability.

By Assumption 3.1 and Lemma A.1,
√

T (wT,s − θs), converges weakly. So wT,s converges to θs in
probability. These two convergence results imply that, with probability tending to one, wT,s − ĉ1

will be greater than θs/2, resulting in the rejection of Hs in the first step.

We now turn to the proof of (ii). The result trivially holds in case all null hypotheses Hs are false.
So assume at least one of them is true. Let I0 = I0(P ) ⊂ {1, . . . , S} denote the indices of the set of
true hypotheses; that is, s ∈ I0 if and only if θs ≤ 0. Denote the number of true hypotheses by m
and let I0 = {i1, . . . , im}. Part (i) implies that, with probability tending to one, all false hypotheses
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will be rejected in the first step. Since ĉI0 ≤ ĉ1, where ĉI0 is defined analogously to (14), we therefore
have

lim
T

FWEP = lim
T

ProbP{0 /∈ [wT,s − ĉI0 ,∞) for at least one s ∈ I0}

≤ lim
T

ProbP{θs /∈ [wT,s − ĉI0 ,∞) for at least one s ∈ I0} (16)

= 1 − lim
T

ProbP {θ(I0) ∈ [wT,i1 − ĉI0,∞) × . . . × [wT,im − ĉI0 ,∞)}

= 1 − (1 − α) (by Lemma A.2)

= α.

This proves the control of the FWE at level α. Since the argument does not assume that all S null
hypotheses are true, we have indeed proven strong control of the FWE.

To prove (iii), we claim that, under the additional assumption made, the inequality (16) is strict
iff at least one of the θs ∈ I0 is less than 0. Obviously, we have equality in (16) when all the θs ∈ I0

are equal to zero. So assume there exists at least one θs ∈ I0 that is strictly less than 0. Without
loss of generality, assume θi1 < 0 then. Adopt the notation of Lemma A.2. Since J(P ) has strictly
positive density everywhere, the same is true for the distribution of maxL(I0), which implies that
maxL(I0) has a unique 1−α quantile. Call this quantile c̄I0 ; that is, Prob{max L(I0) ≤ c̄I0} = 1−α.
Lemma A.2, together with the fact that the distribution function of maxL(I0) is strictly increasing
everywhere, imply that

√
T ĉI0 converges to c̄I0 in probability. Hence,

limT ProbP {0 /∈ [wT,s − ĉI0 ,∞) for at least one s ∈ I0}

= lim
T

ProbP {∃s ∈ I0 : 0 /∈ [wT,s − ĉI0 ,∞)}

= lim
T

ProbP {∃s ∈ I0 : wT,s > ĉI0}

= lim
T

ProbP {∃s ∈ I0 :
√

T (wT,s − θs) >
√

T (ĉI0 − θs)}

≤ lim
T

ProbP {∃s ∈ I0 :
√

T (wT,s − θs) >
√

T ĉI0 − θs} (since θs ≤ 0 ∀s ∈ I0)

= lim
T

ProbP {∃s ∈ I0 :
√

T (wT,s − θs) > c̄I0 − θs} (since
√

T ĉI0 →P c̄I0)

= Prob{∃j ∈ {1, . . . ,m} : Lij > c̄I0 − θij}
= Prob{Li1 > c̄I0 − θi1 ∪ ∃j ∈ {2, . . . ,m} : Lij > c̄I0 − θij}
< Prob{Li1 > c̄I0 ∪ ∃j ∈ {2, . . . ,m} : Lij > c̄I0 − θij}
= lim

T
ProbP {

√
T (wT,i1 − θi1) > c̄I0 ∪ ∃j ∈ {2, . . . ,m} :

√
T (wT,ij − θij ) > c̄I0 − θij}

≤ lim
T

ProbP {∃j ∈ {1, . . . ,m} :
√

T (wT,ij − θij) > c̄I0} (since θij ≤ 0 ∀j ∈ {2, . . . ,m})

= lim
T

ProbP {∃s ∈ I0 :
√

T (wT,s − θs) > c̄I0}

= lim
T

ProbP {∃s ∈ I0 :
√

T (wT,s − θs) >
√

T ĉI0} (since
√

T ĉI0 →P c̄I0)

= lim
T

ProbP {∃s ∈ I0 : wT,s − θs > ĉI0}

= lim
T

ProbP {θs /∈ [wT,s − ĉI0 ,∞) for at least one s ∈ I0}
= α.
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The lone strict inequality in this derivation follows from the fact that L(I0) has strictly positive
density everywhere combined with the assumption that θi1 < 0. Q.E.D.

Proof of Theorem 4.1 The proof is very similar to the proof of Theorem 3.1 and hence it is
omitted. Q.E.D.

B Overview of Bootstrap Methods

For readers not completely familiar with the variety of bootstrap methods that do exist, we now
briefly describe the most important ones. To recall our notation, the observed data matrix is XT ,

which can be ‘decomposed’ into the observed data sequence X
(T )
1,· ,X

(T )
2,· , . . . X

(T )
T,· . When the data are

i.i.d, the order of this sequence is of no importance. When the data is a time series, the order is
crucial.

Bootstrap B.1 (Efron’s Bootstrap)
The bootstrap of Efron (1979) is appropriate when the data are i.i.d.. The method generates random
indices t∗1, t

∗
2, . . . , t

∗
T i.i.d. from the discrete uniform distribution on the set {1, 2, . . . , T}. The boot-

strap sequence is then given by X
∗,(T )
1,· ,X

∗,(T )
2,· , . . . X

∗,(T )
T,· = X

(T )
t∗1 ,· ,X

(T )
t∗2 ,· , . . . ,X

(T )
t∗
T

,·. The corresponding

T × (S + 1) bootstrap data matrix is denoted by X∗
T . The probability mechanism generating X∗

T is

denoted by P̂T .

Bootstrap B.2 (Moving Blocks Bootstrap)
The moving blocks bootstrap of Künsch (1989) and Liu and Singh (1992) is appropriate when the
data sequence is a stationary time series. It generates a bootstrap sequence by concatenating blocks
of data which are resampled from the original series. A particular block Bt,b is defined by its starting

index t and by its length or block size b, that is, Bt,b = {X(T )
t,· ,X

(T )
t+1,· . . . ,X

(T )
t+b−1,·}. The moving blocks

bootstrap selects a fixed block size 1 < b < T . It then chooses random starting indices t∗1, t
∗
2, . . . , t

∗
l

i.i.d. from the uniform distribution on the set {1, 2, . . . , T − b+1}, where l is the smallest integer for
which l × b ≥ T . The selected blocks are concatenated as {Bt∗1 ,b, Bt∗2 ,b, . . . , Bt∗

l
,b}. If l × b > T , the

sequence is truncated at length T to obtain the bootstrap sequence X
∗,(T )
1,· ,X

∗,(T )
2,· , . . . X

∗,(T )
T,· . The

corresponding T × (S + 1) bootstrap data matrix is denoted by X∗
T . The probability mechanism

generating X∗
T is denoted by P̂T .

Bootstrap B.3 (Circular Blocks Bootstrap)
The circular blocks bootstrap of Politis and Romano (1992) is appropriate when the data sequence
is a stationary time series. It generates a bootstrap sequence by concatenating blocks of data which
are resampled from the original series. The difference with respect to the moving blocks bootstrap

is that the original data are ‘wrapped’ into a ‘circle’ in the sense of X
(T )
T+1,· = X1,·(T ) ,X

(T )
T+2,· = X

(T )
2,· ,

etc.. As before, a particular block Bt,b is defined by its starting index t and by its block size b. The
circular blocks bootstrap selects a fixed block size 1 < b < T . It then chooses random starting indices
t∗1, t

∗
2, . . . , t

∗
l i.i.d. from the uniform distribution on the set {1, 2, . . . , T}, where l is the smallest integer

for which lb ≥ T . The thus selected blocks are concatenated as {Bt∗1,b, Bt∗2 ,b, . . . , Bt∗
l
,b}. If lb > T , the

sequence is truncated at length T to obtain the bootstrap sequence X
∗,(T )
1,· ,X

∗,(T )
2,· , . . . X

∗,(T )
T,· . The
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corresponding T × (S + 1) bootstrap data matrix is denoted by X∗
T . The probability mechanism

generating X∗
T is denoted by P̂T .

The motivation of this scheme is as follows. The moving blocks bootstrap displays certain ‘edge
effects’. For example, the data points X1,· and XT,· of the original series are less likely to end up in a
particular bootstrap sequence than the data points in the middle of the series. This is because they
appear in one of the data blocks only, whereas a ‘middle’ data point appears in b of the blocks. By
wrapping up the data in a circle, each data point appears in b of the blocks. Hence, the edge effects
disappear.

Bootstrap B.4 (Stationary Bootstrap)
The stationary bootstrap of Politis and Romano (1994) is appropriate when the data sequence is a
stationary time series. It generates a bootstrap sequence by concatenating blocks of data which are
resampled from the original series. As does the circular blocks bootstrap, it wraps the original data
into a circle to avoid edge effects. The difference between it and the two previous methods is that
the block sizes are of random lengths. As before, a particular block Bt,b is defined by its starting
index t and by its block size b. The stationary bootstrap chooses random starting indices t∗1, t

∗
2, . . .

i.i.d. from the discrete uniform distribution on the set {1, 2, . . . , T}. Independently, it chooses
random block sizes b∗1, b

∗
2, . . . i.i.d. from a geometric distribution with parameter 0 < q < 1/T .29

The thus selected blocks are concatenated as {Bt∗1,b∗1
, Bt∗2 ,b∗2

, . . .} until a sequence of length greater
than or equal to T is generated. The sequence is then truncated at length T to obtain the bootstrap

sequence X
∗,(T )
1,· ,X

∗,(T )
2,· , . . . X

∗,(T )
T,· . The corresponding T × (S + 1) bootstrap data matrix is denoted

by X∗
T . The probability mechanism generating X∗

T is denoted by P̂T .

The motivation of this scheme is as follows. If the underlying data series is stationary, it might
be desirable for the bootstrap series to be stationary as well. This not true, however, for the moving
blocks bootstrap and the circular blocks bootstrap. The intuition is that stationarity is ‘lost’ where
the blocks of fixed size are pieced together. Politis and Romano (1994) show that if the blocks have
random sizes from a geometric distribution, then the resulting bootstrap series is indeed stationary
(conditional on the observed data). There is also some evidence to the fact that the dependence on
the model parameter q is not as pronounced as the dependence on the model parameter b in the two
previous methods.

Remark B.1 According to a claim of Lahiri (1999), in the context of variance estimation, the
moving blocks bootstrap can be ‘infinitely more efficient’ than the stationary bootstrap. However,
there is a mistake in the calculations of Lahiri (1999), invalidating his claim. See Politis and White
(2004) for a correction.

C Some Power Considerations

We assume a stylized and tractable model which allows us to make exact power calculations. In
particular, we consider the limiting model of Scenarios 3.1 and 3.2. Our simple setup specifies that
S = 2 and that30

w ∼ N

((

θ1

θ2

)

,

(

σ2
1 ρσ1σ2

ρσ1σ2 σ2
2

))

29So the average block size is given by 1/q.
30The argument generalizes easily for S > 2.
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with σ1, σ2, and ρ known. (The subscript T in wT is suppressed for convenience.) Thus, the results
in this section will hold approximately for quite general models where the limiting distribution is
normal. As in the rest of the paper, an individual null hypothesis is of the form Hs: θs ≤ 0. We
analyze power for the first step of our stepwise methods. The basic method is equivalent to the
following scheme:

Reject Hs if ws > c where c satisfies: Prob0,0{maxws > c} = α (17)

Here the notation Prob0,0 is shorthand for Probθ1=0,θ2=0. The studentized method is equivalent to
the following scheme:

Reject Hs if ws/σs > d where d satisfies: Prob0,0{maxws/σs > d} = α (18)

The first notion of power we consider is the ‘worst’ power over the set {(θ1, θ2) : θs > 0 for some s}.
A proper definition of this worst power is

inf
ε>0

inf
{(θ1,θ2):max θs≥ε}

Power at (θ1, θ2) (19)

Obviously, this infimum is the minimum of the two powers at (−∞, 0) and at (0,−∞).31

For the basic method, we get

min (Probθ1=0{w1 > c},Probθ2=0{w2 > c}) = min (Prob {σ1z1 > c} ,Prob {σ2z2 > c})

where z1 and z2 are two standard normal variables with correlation ρ. For the studentized method,
we get

min (Probθ1=0{w1/σ1 > d},Probθ2=0{w2/σ2 > d}) = Prob{z1 > d}
We are therefore left to show that c/σs ≥ d for some s. But assume the latter relation is false, that
is, c/σs < d for both s. Also assume without loss of generality that σ1 ≤ σ2. Then

Prob0,0{maxws > c} = Prob{max σszs > c}
= Prob{max(σs/σ1)zs > c/σ1}
≥ Prob{max zs > c/σ1}
> Prob{max zs > d}
= Prob0,0{max ws/σs > d}
= α (by (18))

resulting in a violation of (17). Hence, the infimum in (19) for the basic method is smaller than or
equal to the infimum for the studentized method. Unless σ1 = σ2, the infimum for the basic method
is strictly smaller.

The second notion of power we consider is the worst power against alternatives in the class
Cδ = {(θ1, θ2) : θs = σsδ for some s}, where δ is a positive number. Obviously, the worst power is

31The power at (−∞, 0) denotes the limit of the power at (0, θ2) as θ2 tends to −∞; and analogously for the power
at (−∞, 0).
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the minimum of the two powers at (−∞, σ2δ) and at (σ1δ,−∞). The basic method yields

Prob(−∞,σ2δ){max ws > c} = Probθ2=σ2δ{w2 > c} = 1 − Φ

(

c − σ2δ

σ2

)

= 1 − Φ

(

c

σ2
− δ

)

and

Prob(σ1δ,−∞){max ws > c} = Probθ1=σ1δ{w1 > c} = 1 − Φ

(

c − σ1δ

σ1

)

= 1 − Φ

(

c

σ1
− δ

)

The studentized method yields

Prob(−∞,σ2δ){max ws/σs > c} = Prob(σ1δ,−∞){maxws/σs > c} = 1 − Φ(d − δ)

To demonstrate that the worst power is smaller for the basic method, we must show that

maxΦ

(

c

σs
− δ

)

≥ Φ(d − δ) (20)

This is true if c/σs ≥ d for some s, which we already have demonstrated above. Hence, inequality (20)
holds; it is strict unless σ1 = σ2. So, unless σ1 = σ2, the worst power over Cδ of the basic method is
strictly smaller than the worst power of the studentized method.

D Multiple Testing versus Joint Testing

To avoid possible confusion, we briefly discuss the differences between multiple testing and the related
problem of joint testing; for a broader discussion see Savin (1984). It is helpful to consider two-sided
hypotheses in doing so. The individual hypotheses are of the sort

Hs : θs = 0 vs. H ′
s : θs 6= 0 for s = 1, . . . , S (21)

whereas the joint hypothesis states

H : θs = 0 ∀s vs. H ′ : ∃s with θs 6= 0 (22)

In principle, multiple testing is concerned with making individual decisions about the S hypotheses
in (21) whereas joint testing is concerned with testing the single hypothesis (22). But one typically
can use a joint test for multiple testing purposes, and vice versa.

For ease of exposition, consider the following simple parametric setup:

w ∼ N

((

θ1

θ2

)

,

(

1 0
0 1

))

Then the natural joint test rejects H of (22) at significance level α = 0.05 iff w2
1 +w2

2 > 5.99. Scheffé
(1959) has shown that this test can be interpreted as an induced test where there are an infinite
number of separate null hypotheses of the ‘linear combination’ form

H(a) : a′θ = a1θ1 + a2θ2 = 0 vs. H ′(a) : a′θ 6= 0 with a′a = 1

In particular, this test allows to make decisions about the individual null hypotheses in (21) by
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choosing a = (1, 0)′ or a = (0, 1)′. Therefore, the test that rejects Hs iff w2
s > 5.99, or equivalently

iff |ws| > 2.45, s = 1, 2, controls the FWE at level α = 0.05.

But if the goal is to make individual decisions only about each parameter and not about all
possible linear combinations, then the joint test is suboptimal in a multiple testing framework. A
more powerful test, which also controls the FWE at level α = 0.05, rejects Hs iff |ws| > 2.24, s = 1, 2.

A further undesirable feature of the joint test, when applied for multiple testing purposes, is that
it does not constitute a consonant testing procedure in the sense of Hommel (1986): a rejection of
the joint hypothesis H does not necessarily result in the rejection of (at least) one of the individual
hypotheses Hs. For example, in the above parametric setup, this happens if the data point (1.9, 1.9)′

is observed.

The message is that multiple testing and joint testing are related but distinct problems. While a
joint test can, in particular, be used to address a multiple testing problem, it is generally suboptimal
to do so, and vice versa.32
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Delgado, M., Rodŕıguez-Poo, J., and Wolf, M. (2001). Subsampling inference in cube root asymp-
totics with an application to Manski’s maximum score estimator. Economics Letters, 73:241–250.

Diebold, F. X. (2000). Elements of Forecasting. South-Western College Publishing, Cincinnati, Ohio,
second edition.

32A multiple testing method rejects the joint hypothesis H of (22) iff it rejects at least one of the individual hypotheses
Hs in (21).

31



Dudoit, S., Shaffer, J. P., and Boldrick, J. C. (2003). Multiple hypothesis testing in microarray
experiments. Statistical Science, 18:71–103.

Dunnett, C. W. and Tamhane, A. C. (1992). A step-up multiple test procedure. Journal of the
American Statistical Association, 87:162–170.

Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7:1–26.

Giersbergen, N. P. A. (2002). Subsampling intervals in (un)stable autoregressive models with sta-
tionary covariates. UvA-Econometrics discussion paper 2002/07, Universiteit van Amsterdam.
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Götze, F. and Künsch, H. R. (1996). Second order correctness of the blockwise bootstrap for sta-
tionary observations. Annals of Statistics, 24:1914–1933.

Grinold, R. C. and Kahn, R. N. (2000). Active Portfolio Management. McGraw-Hill, New York,
second edition.

Hall, P. (1992). The Bootstrap and Edgeworth Expansion. Springer, New York.

Hansen, P. R. (2003). Asymptotic tests of composite hypotheses. Working Paper No. 03-09, Brown
University, Department of Economics. Available at http://ssrn.com/abstract=399761.

Hansen, P. R. (2004). A test for superior predictive ability. Working Paper No. 01-06, Brown
University, Department of Economics. Available at http://ssrn.com/abstract=264569.

Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of
Statistics, 6:65–70.

Hommel, G. (1986). Multiple test procedures for arbitrary dependence structures. Metrika, 33:321–
336.

Kat, H. M. (2003). 10 things investors should know about hedge funds. AIRC
Working Paper # 0015, Cass Business School, City University. Available at
http://www.cass.city.ac.uk/airc/papers.html.

Kosowski, R., Naik, N. Y., and Teo, M. (2005). Is stellar hedge fund performance for real? Working
Paper HF-018, Centre for Hedge Fund Research and Education, London Business School.
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Table 2: Empirical FWEs and average number of false hypotheses rejected. The nominal level is
α = 10%. Observations are i.i.d., the number of observations is T = 100, and the number of strategies
is S = 40. The mean of the benchmark is 1; the strategy means are 1 or 1.4. The standard deviation
of the benchmark is 1; half of the strategy standard deviations are 1, the other half is 2. The number
of repetitions is 5,000 per scenario.

Method FWE (single) FWE (step) Rejected (single) Rejected (step)

All strategy means = 1, cross correlation ρ = 0

Basic 10.5 10.5 0.0 0.0
Stud 10.4 10.4 0.0 0.0

All strategy means = 1, cross correlation ρ = 0.5

Basic 10.6 10.6 0.0 0.0
Stud 10.6 10.6 0.0 0.0

All strategy means = 1, ρ1 = 0.5, ρ2 = −0.2

Basic 10.5 10.5 0.0 0.0
Stud 9.9 9.9 0.0 0.0

Six strategy means = 1.4, cross correlation ρ = 0

Basic 9.7 9.7 1.1 1.2
Stud 9.6 10.1 2.2 2.3

Six strategy means = 1.4, cross correlation ρ = 0.5

Basic 10.0 10.3 2.6 2.7
Stud 9.3 10.1 3.8 3.9

Six strategy means = 1.4, ρ1 = 0.5, ρ2 = −0.2

Basic 9.7 10.1 1.4 1.5
Stud 9.7 10.1 2.6 2.6

Twenty strategy means = 1.4, cross correlation ρ = 0

Basic 6.0 7.7 3.7 4.1
Stud 6.7 8.4 7.4 7.8

Twenty strategy means = 1.4, cross correlation ρ = 0.5

Basic 6.1 8.9 8.6 9.6
Stud 6.2 9.4 12.6 13.2

Twenty strategy means = 1.4, ρ1 = 0.5, ρ2 = −0.2

Basic 5.7 7.1 4.6 5.3
Stud 5.8 7.3 8.5 9.0

Forty strategy means = 1.4, cross correlation ρ = 0

Basic 0.0 0.0 7.5 10.0
Stud 0.0 0.0 14.7 17.1

Forty strategy means = 1.4, cross correlation ρ = 0.5

Basic 0.0 0.0 17.2 23.2
Stud 0.0 0.0 25.2 29.3

Forty strategy means = 1.4, ρ1 = 0.5, ρ2 = −0.2

Basic 0.0 0.0 9.5 12.8
Stud 0.0 0.0 16.9 19.5
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Table 3: Empirical FWEs and average number of false hypotheses rejected. The nominal level is
α = 10%. Observations are i.i.d., the number of observations is T = 100, and the number of strategies
is S = 40. The mean of the benchmark is 1; the strategy means that are bigger than 1 are equally
spaced between 1 and 4. The standard deviation of the benchmark is 2; the standard deviation of a
strategy is 2 times its mean. The number of repetitions is 5,000 per scenario.

Method FWE (single) FWE (step) Rejected (single) Rejected (step)

All strategy means = 1, cross correlation ρ = 0

Basic 11.3 11.3 0.0 0.0
Stud 10.4 10.4 0.0 0.0

All strategy means = 1, cross correlation ρ = 0.5

Basic 11.3 11.3 0.0 0.0
Stud 10.4 10.4 0.0 0.0

All strategy means = 1, ρ1 = 0.5, ρ2 = −0.2

Basic 10.4 10.4 0.0 0.0
Stud 10.1 10.1 0.0 0.0

Six strategy means greater than 1, cross correlation ρ = 0

Basic 0.0 9.4 3.6 4.7
Stud 8.6 9.8 3.4 3.5

Six strategy means greater than 1, cross correlation ρ = 0.5

Basic 0.0 10.2 4.1 5.3
Stud 8.5 10.1 4.3 4.5

Six strategy means greater than 1, ρ1 = 0.5, ρ2 = −0.2

Basic 0.0 9.6 3.8 4.8
Stud 8.6 10.2 3.7 3.8

Twenty strategy means greater than 1, cross correlation ρ = 0

Basic 0.0 6.3 9.0 13.7
Stud 5.3 8.2 9.7 10.6

Twenty strategy means greater than 1, cross correlation ρ = 0.5

Basic 0.0 8.4 11.0 16.3
Stud 5.5 9.3 13.1 13.9

Twenty strategy means greater than 1, ρ1 = 0.5, ρ2 = −0.2

Basic 0.0 5.5 9.9 14.4
Stud 5.0 6.7 10.8 11.6

Forty strategy means greater than 1, cross correlation ρ = 0

Basic 0.0 0.0 15.4 24.6
Stud 0.0 0.0 18.1 21.5

Forty strategy means greater than 1, cross correlation ρ = 0.5

Basic 0.0 0.0 19.7 31.5
Stud 0.0 0.0 25.6 29.2

Forty strategy means greater than 1, ρ1 = 0.5, ρ2 = −0.2

Basic 0.0 0.0 17.3 26.3
Stud 0.0 0.0 20.1 23.8
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Table 4: FWE-corrected average number of false hypotheses rejected. In each case, the nominal
level of the single-step method is adjusted so that its empirical FWE matches that of the stepwise
method. Observations are i.i.d., the number of observations is T = 100, and the number of strategies
is S = 40. The mean of the benchmark is 1; the strategy means are 1 or 1.4. The standard deviation
of the benchmark is 1; half of the strategy standard deviations are 1, the other half is 2. The number
of repetitions is 5,000 per scenario.

Method Nominal level (single) FWE (both) Rejected (single) Rejected (step)

All strategy means = 1, cross correlation ρ = 0

Basic 10.0 10.5 0.0 0.0
Stud 10.0 10.4 0.0 0.0

All strategy means = 1, cross correlation ρ = 0.5

Basic 10.0 10.6 0.0 0.0
Stud 10.0 10.6 0.0 0.0

All strategy means = 1, ρ1 = 0.5, ρ2 = −0.2

Basic 10.0 10.5 0.0 0.0
Stud 10.0 9.9 0.0 0.0

Six strategy means = 1.4, cross correlation ρ = 0

Basic 10.0 9.7 1.1 1.2
Stud 10.5 10.1 2.3 2.3

Six strategy means = 1.4, cross correlation ρ = 0.5

Basic 10.3 10.3 2.7 2.7
Stud 10.4 10.1 3.9 3.9

Six strategy means = 1.4, ρ1 = 0.5, ρ2 = −0.2

Basic 10.3 10.1 1.5 1.5
Stud 10.3 10.1 2.6 2.6

Twenty strategy means = 1.4, cross correlation ρ = 0

Basic 11.6 7.7 4.1 4.1
Stud 12.2 8.4 7.9 7.8

Twenty strategy means = 1.4, cross correlation ρ = 0.5

Basic 13.2 8.9 9.9 9.6
Stud 13.4 9.4 13.3 13.2

Twenty strategy means = 1.4, ρ1 = 0.5, ρ2 = −0.2

Basic 11.5 7.1 4.9 5.3
Stud 11.6 7.3 8.7 9.0

Forty strategy means = 1.4, cross correlation ρ = 0

Basic 10.0 0.0 7.5 10.0
Stud 10.0 0.0 14.7 17.1

Forty strategy means = 1.4, cross correlation ρ = 0.5

Basic 10.0 0.0 17.2 23.2
Stud 10.0 0.0 25.2 29.3

Forty strategy means = 1.4, ρ1 = 0.5, ρ2 = −0.2

Basic 10.0 0.0 9.5 12.8
Stud 10.0 0.0 16.9 19.5
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Table 5: FWE-corrected average number of false hypotheses rejected. In each case, the nominal
level of the single-step method is adjusted so that its empirical FWE matches that of the stepwise
method. Observations are i.i.d., the number of observations is T = 100, and the number of strategies
is S = 40. The mean of the benchmark is 1; the strategy means that are bigger than 1 are equally
spaced between 1 and 4. The standard deviation of the benchmark is 2; the standard deviation of a
strategy is 2 times its mean. The number of repetitions is 5,000 per scenario.

Method Nominal level (single) FWE (both) Rejected (single) Rejected (step)

All strategy means = 1, cross correlation ρ = 0

Basic 10.0 11.3 0.0 0.0
Stud 10.0 10.4 0.0 0.0

All strategy means = 1, cross correlation ρ = 0.5

Basic 10.0 11.3 0.0 0.0
Stud 10.0 10.4 0.0 0.0

All strategy means = 1, ρ1 = 0.5, ρ2 = −0.2

Basic 10.0 10.4 0.0 0.0
Stud 10.0 10.1 0.0 0.0

Six strategy means greater than 1, cross correlation ρ = 0

Basic 48.5 9.4 4.7 4.7
Stud 11.4 9.8 3.5 3.5

Six strategy means greater than 1, cross correlation ρ = 0.5

Basic 51.2 10.2 5.3 5.3
Stud 11.8 10.1 4.5 4.5

Six strategy means greater than 1, ρ1 = 0.5, ρ2 = −0.2

Basic 43.6 9.6 4.8 4.8
Stud 12.4 10.2 3.8 3.8

Twenty strategy means greater than 1, cross correlation ρ = 0

Basic 77.8 6.3 14.6 13.7
Stud 16.2 8.2 10.7 10.6

Twenty strategy means greater than 1, cross correlation ρ = 0.5

Basic 73.2 8.4 16.7 16.3
Stud 16.5 9.3 14.0 13.9

Twenty strategy means greater than 1, ρ1 = 0.5, ρ2 = −0.2

Basic 62.7 5.5 14.7 14.4
Stud 13.8 6.7 11.3 11.6

Forty strategy means greater than 1, cross correlation ρ = 0

Basic 10.0 0.0 15.4 24.6
Stud 10.0 0.0 18.1 21.5

Forty strategy means greater than 1, cross correlation ρ = 0.5

Basic 10.0 0.0 19.7 31.5
Stud 10.0 0.0 25.6 29.2

Forty strategy means greater than 1, ρ1 = 0.5, ρ2 = −0.2

Basic 10.0 0.0 17.3 26.3
Stud 10.0 0.0 20.1 23.8
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Table 6: Empirical FWEs and average number of false hypotheses rejected. The nominal level is
α = 10%. Observations are a multivariate time series, the number of observations is T = 200, and
the number of strategies is S = 40. The mean of the benchmark is 1; the strategy means are 1 or
1.6. The standard deviation of the benchmark is 1; half of the strategy standard deviations are 1,
the other half is 2. The number of repetitions is 2,000 per scenario.

Method FWE (single) FWE (step) Rejected (single) Rejected (step)

All strategy means = 1, cross correlation ρ = 0

Basic 15.7 15.7 0.0 0.0
Stud 5.8 5.8 0.0 0.0

All strategy means = 1, cross correlation ρ = 0.5

Basic 16.3 16.3 0.0 0.0
Stud 5.2 5.2 0.0 0.0

Six strategy means = 1.6, cross correlation ρ = 0

Basic 14.7 15.5 1.8 1.9
Stud 5.0 5.4 1.8 1.8

Six strategy means = 1.6, cross correlation ρ = 0.5

Basic 15.6 16.8 3.7 3.8
Stud 6.8 7.5 3.3 3.4

Twenty strategy means = 1.6, cross correlation ρ = 0

Basic 9.4 12.7 6.1 6.8
Stud 3.7 5.0 5.9 6.3

Twenty strategy means = 1.6, cross correlation ρ = 0.5

Basic 11.6 16.0 12.3 13.3
Stud 4.3 6.8 11.2 12.0

Forty strategy means = 1.6, cross correlation ρ = 0

Basic 0.0 0.0 12.5 16.8
Stud 0.0 0.0 11.6 14.3

Forty strategy means = 1.6, cross correlation ρ = 0.5

Basic 0.0 0.0 24.3 30.2
Stud 0.0 0.0 22.3 27.9
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Table 7: Empirical FWEs and average number of false hypotheses rejected. The nominal level is
α = 10%. Observations are a multivariate time series the number of observations is T = 200, and
the number of strategies is S = 40. The mean of the benchmark is 1; the strategy means that are
bigger than 1 are equally spaced between 1 and 7. The standard deviation of the benchmark is 2; the
standard deviation of a strategy is 2 times its mean. The number of repetitions is 2,000 per scenario.

Method FWE (single) FWE (step) Rejected (single) Rejected (step)

All strategy means = 1, cross correlation ρ = 0

Basic 15.1 15.1 0.0 0.0
Stud 7.4 7.4 0.0 0.0

All strategy means = 1, cross correlation ρ = 0.5

Basic 17.9 17.9 0.0 0.0
Stud 7.4 7.4 0.0 0.0

Six strategy means greater than 1, cross correlation ρ = 0

Basic 0.0 12.4 3.4 4.9
Stud 5.5 6.0 2.0 2.1

Six strategy means greater than 1, cross correlation ρ = 0.5

Basic 0.0 13.0 3.8 5.4
Stud 4.5 5.3 2.5 2.6

Twenty strategy means greater than 1, cross correlation ρ = 0

Basic 0.0 6.1 8.0 13.3
Stud 2.7 3.5 5.2 5.9

Twenty strategy means greater than 1, cross correlation ρ = 0.5

Basic 0.0 12.0 9.5 15.8
Stud 2.3 4.1 7.5 8.5

Forty strategy means greater than 1, cross correlation ρ = 0

Basic 0.0 0.0 13.0 22.1
Stud 0.0 0.0 9.4 11.5

Forty strategy means greater than 1, cross correlation ρ = 0.5

Basic 0.0 0.0 16.5 29.4
Stud 0.0 0.0 14.9 19.3
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Table 8: The ten largest basic and studentized test statistics, together with the corresponding hedge
funds, in our empirical application. The return unit is 1 percent. Funds identified in the first
step are indicated by the superscript * and funds identified in the second step are indicated by the
superscript **.

x̄T,s − x̄T,S+1 Fund (x̄T,s − x̄T,S+1)/σT,s Fund

1.70 Libra Fund 10.63 Market Neutral ∗

1.41 Private Investment Fund 9.26 Market Neutral Arbitrage ∗

1.36 Agressive Appreciation 8.43 Univest (B) ∗

1.27 Gamut Investments 6.33 TQA Arbitrage Fund ∗

1.26 Turnberry Capital 5.48 Event-Driven Risk Arbitrage ∗

1.14 FBR Weston 5.29 Gabelli Associates ∗

1.11 Berkshire Partnership 5.24 Elliott Associates ∗∗

1.09 Eagle Capital 5.11 Event Driven Median
1.07 York Capital 4.97 Halcyon Fund
1.07 Gabelli Intl. 4.65 Mesirow Arbitrage Trust
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Figure 1: The top part shows a scatter plot of the standard errors σ̂147,s against the basic test statistics
w147,s in the empirical application of Section 9. The point (0.0476, 0.5062) which corresponds to the
largest studentized statistic z147,s = w147,s/σ̂147,s is marked by the symbol ∗. The bottom part
displays the cumulative wealth in excess of the riskfree rate, given an initial investment of 1, over
the investment period of 01/1992 until 03/2004 for three hedge funds: the one with the largest basic
test statistic w147,s (solid line), the one with the largest studentized statistic z147,s (dotted line), and
the one with the largest standard error σ̂147,s (dashed line).
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