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This article presents simple expressions for the bias of estimators of the coefficients of an autoregressive model of arbitrary,
but known, finite order. The results include models both with and without a constant term. The effects of overspecification of
the model order on the bias are described. The emphasis is on least-squares and Yule-Walker estimators, but the methods
extend to other estimators of similar design. Although only the order T-! component of the bias is captured, where T is the
series length, this asymptotic approximation is shown to be very accurate for least-squares estimators through some numerical
simulations. The simulations examine fourth-order autoregressions chosen to resemble some data series from the literature.
The order T~ bias approximations for Yule-Walker estimators need not be accurate, especially if the zeros of the associated
polynomial have moduli near 1. Examples are given where the approximation is accurate and where it is useless. The bias
expressions are very simple in the case of least squares, being linear combinations of the unknown true coefficients. No
interaction among the coefficients occurs. For example, if the data are a time series from a fourth-order autoregressive model
with coefficients (@, @, a3, ;) and no constant term, the order 7-! bias of the least-squares coefficient estimator is (— e, 1
— 20, — @, o) — 4a5, 1 — 50,)/T. The results differ slightly for a model with a constant term. An easily programmed algorithm
for generating these expressions for any finite-order autoregressive model is given, with or without a constant term. The
structure of the order T~ bias for Yule-Walker estimators is not so readily represented, but it is easily evaluated for any
model. Thus one can quickly incorporate these results into the study of other time-series problems, such as the effects of
estimation error on the mean squared prediction error. Direct methods of analysis are employed to obtain the expressions. By
analysis of bias in the frequency domain, infinite series representations that obscure the simple form of the bias are avoided.
The key results are several lemmas regarding sums of elements within the inverse covariance matrix of P consecutive observations
from an autoregression of order p. The bias approximations follow directly from these lemmas. The derivations are straight-

forward and yield useful insight into the structure of the estimators.
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1. INTRODUCTION

The bias of least-squares and Yule—Walker estimators
of coefficients in an autoregression is well-known to de-
pend on the unknown coefficients. For example, in a first-
order autoregression, bias tends to shrink the least-squares
estimator toward 0. The larger the coefficient becomes,
the greater is the bias. In short series with considerable
serial correlation the shrinkage can have a pronounced
effect on the estimator.

In applications it is often important to consider the ef-
fects of the bias of autoregressive coefficient estimators.
In practice, sample estimates & replace unknown coeffi-
cients a in expressions for spectral estimators, prediction
error, prediction mean squared error (PMSE), and hy-
pothesis tests, for example. Autoregressive spectral esti-
mators of the form f (1) = (6%/(27))|1 + =, &e|~2 have
bias that depends in part on that of the vector of coeffi-
cients @, and the bias of the estimator & can hide peaks
in the spectrum (Lysne and Tjgstheim 1987). Similarly, a
common estimate of the PMSE for a forecast f periods
into the future is PMSE(f) = 6%(Z{Z; &? + #,/T), where
T is the number of observations, the &; are coefficients in
the moving average process defined by the autoregressive
process with coefficients &, and #; > 0 compensates for
the increased prediction error due to estimation (Fuller
and Hasza 1981). Finding the bias of PMSE(f) requires
an expression for the bias of &. As with spectral estimators,
the bias of & can have a noticeable effect, even to the
extent of canceling out the effect of the additional cor-
rection term 7, (Stine 1987). Also, the bias of coefficient
estimators is a factor in the error of predicting a future

observation with a misspecified model (Kunitomo and Ya-
mamoto 1985). Granger—Sims tests of causality (Granger
1969; Sims 1972) are used to explore causal relationships
between different time series. Construction of the tests
involves the use of least-squares estimators of autoregres-
sive parameters. The bias of these estimators can adversely
affect the test result.

A further consideration that requires attention is the
difference in bias between the least-squares and Yule—
Walker methods of estimation. The aim of this article is
to derive useful expressions for the bias in least-squares
and Yule—Walker estimation for autoregressive models of
known order.

Much research has been devoted to estimating the bias.
Most efforts have considered the O(1/T) term, the first-
order term of the bias. Marriott and Pope (1954) found
this first-order term for a model with a single autoregres-
sive coefficient. They showed that the bias of the least-
squares estimator is —2/T times the true coefficient when
the mean is known and increases to —3/7 when the mean
is estimated. Kendall (1954) also derived the latter result.
Bhansali (1981) obtained a general expression for the bias
of least-squares estimators in models of arbitrary fitted
order with known mean. His result does not require that
the order of the fitted model be that of the true model.
Although his result reduces to that of Marriott and Pope
in the case of a first-order model, its complexity conceals
a simple pattern that was revealed in numerical studies of
the expression (Stine 1982). In particular, the first-order
term of the bias of the least-squares estimator is a linear
function of the unknown coefficients. Kunitomo and Ya-
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mamoto (1985) also developed a representation for the
bias when the order of the fitted model does not coincide
with that of the true model. Further consideration of the
bias was given by A. M. Walker in an unpublished manu-
script. Walker obtained the formula given by Bhansali
when the fitted and true orders coincide. He also consid-
ered the Yule—-Walker estimator.

Several approaches have been employed in deriving
expressions for the bias. Tanaka (1984) obtained a bias
approximation as a by-product of an Edgeworth expansion
for the distribution of maximum likelihood estimators in
autoregressive moving average models. In a more direct
approach, Tjgstheim and Paulsen (1983) used a Taylor
series expansion for an estimator viewed as a function of
correlation estimators to obtain expressions for the first-
order bias of both least-squares and Yule—Walker es-
timators. Similarly, Yamamoto and Kunitomo (1984)
obtained the same bias approximations from series ex-
pansions formulated for autoregressive models expressed
in vector form. In each case, the authors presented some
explicit results for models with at most three autoregres-
sive coefficients; however, these methods are hard to ex-
tend to higher-order models. For example, Tjgstheim and
Paulsen and Yamamoto and Kunitomo exploited the re-
lationship of the coefficients of the process to the roots of
the associated characteristic equation. As the order of the
model increases, the algebraic complexity encountered
limits such approaches to low-order models.

We present explicit expressions for the first-order term
of the bias of both least-squares and Yule—Walker esti-
mators. We also include expressions for the effects of es-
timating the mean with both types of estimators.

Notation and assumptions are given in Section 2. A
general expression for the bias of an estimator of the coef-
ficients in an autoregression is given in Section 3. We also
describe the differences between least-squares and Yule—
Walker procedures and the effect of estimating the mean.
In Section 4, we provide three lemmas about the structure
of the inverse of the p X p covariance matrix of an au-
toregressive process. These lemmas are used in Section 5
to obtain the results for the least-squares estimator. In
Section 6, we discuss the Yule—Walker estimator. We close
with a discussion of the implications of our results in Sec-
tion 7, which includes some numerical calculations of the
first-order bias approximation and derivation of the ad-
ditional bias stemming from overspecification of the model
order.

2. AUTOREGRESSIVE MODELS:
NOTATION AND ASSUMPTIONS

Let {y} be a discrete-time autoregressive process of
known, finite order p,

P

E aj(yt—j - :u) = &,

i=0

a0—=‘=l,

where 4 = E(y,). Observations from this process are de-
noted by y = (y1, . . ., yr)’, and the vector of p coeffi-
cients to be estimated is @ = (@, . . . , @,)". The error
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terms {¢,} are independent and identically distributed and
have mean 0 and variance ¢2. In addition, we assume that
the zeros of the polynomial A(z) = 27_, &;2’ lie strictly
outside the unit circle so that the process is stationary.
The covariances of the process are r, = E{(y, — u)
(Y- — #)} (k = 0, =1, . . .). The covariance matrix of
(§es + + -5 Ye-p+1) is R = (R;) with R; = r,_;. The covari-
ances and coefficients are related through the well-known
equations

p

Dan.;=06k)e®, k=0,1,2,..., (21)

j=0
where d(k) = 1if k = 0 and is 0 otherwise. The spectral
density is f(1) = (6*/(2n))|A(e *)|"2(—n = A = n), and
we abbreviate the transfer function of the process as A (1)
= A(e ™).

We use ~ to denote least-squares estimators and - to

denote Yule—Walker estimators. Terms including an es-
timated mean are distinguished by *. Thus we write the

least-squares estimator for the coefficients « as
-R-1, (2.2)

where the elements of the estimated covariance matrix R
are

a =

Py = E (ye-i = #)(ye-j — w)/(T — p),

t=p+1
Lj=1,2,...,p, (2.3)
and? = (o, . . . , Fp,)’, when uis knowp. When the mean
is unknown, the estimator is &* = — R*~1#*, where the
covariances now are estimated by
T
fi;‘ = 2 (ye-i — ﬂi)(}’t—j - ﬁj)/(T - p),
t=p+1
,j=0,1,...,p,

with ; = 2 p+1Yi-i/ (T — p). The Yule~Walker estimator
when 4 is known is @ = —R™!7, where the covariance
estimators are

Fi = 2 (yt - .u)(.)’r—j - ,u)/T,

t=j+1
i=01,...,p, (24)

and R = (Fi_;), F = (F, ..., F,)'. When the mean is
unknown, the Yule—Walker estimator is @* = — R*~1F*,
where R* and 7* are formed from covariance estima-
tors 7} that have the same form as 7; with u replaced by
th=1 y t/ T.

To ensure the validity of the approximations to the bias
used in this article we assume that the errors ¢, have finite
moment of order 16 and that

E(R-' =R =0Q1) asT—», (2.5)

where |A| is the largest eigenvalue (in absolute value) of
A and R = ER. These assumptions were used by Lewis
and Reinsel (1988). See also Bhansali (1981), whose (A3)
is stronger than (2.1).
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3. PRELIMINARIES

In this section we begin derivation of expressions for
the bias of least-squares and Yule-Walker estimators of
a. The results agree with those given for the least-squares
case by Bhansali (1981, theorem 4.1) and Kunitomo and
Yamamoto (1985, theorem 1). Further development of the
bias expressions appears in Sections 5 and 6. Definitions
of the estimators are given in Section 2. Unless otherwise
stated, the order of the autoregressive process is assumed
to be correctly specified in the estimation procedure.
There are four cases to treat, least-squares and Yule—
Walker estimation, each without and with mean correc-
tion. In the development we begin with least-squares es-
timation when the mean is known. The adjustments
required for the other three cases are then described. The
assumptions specified in Section 2 are required.

To begin we use the notation of least-squares estimation
with known mean as a generic notation. Let B = (R —
R)R"'. Following Lewis and Reinsel (1988) (see also
Bhansali 1981) we may write

TE(& — a)

= — TR'E(? — r — Br) (3.1)

+ TRE[(R — R)R"!

X {(R - R)a + # — r}] (3.2)

+ O(T-1?).

In the least-squares case with known mean, (3.1) vanishes
for all T. In the other three cases, the limit of (3.1) as
T — « s not 0. For all four cases the O( T~"2?) remainder
result is valid.

For least-squares estimation with known mean, as T —
* the limit of (3.2) is easily obtained from the limiting
expression for the covariances of the scaled sample co-
variances (2.3),

lim T cov(#,, Fiy)

T-x

=2 f" (ee=m + e~ ike-m) =R ) d}

+ (lc4/a4)rg_hrk_,, (33)
where x, is the fourth cumulant of ¢,. [See, e.g., corollary
8.3.1 of Anderson (1971), which treats the covariance es-
timator (T/(T — j))7;, where F, is defined at (2.4).] The
right side of (3.3) is valid for the covariance estimators
used in connection with all four methods—least-squares
and Yule—Walker estimation, each with and without mean
correction (see Anderson 1971, pp. 468-471). That is, for
all of the methods, as T — o the limit of (3.2) is the same
expression.

Define R~! = (RY) and consider least-squares with
known mean. Then (2.1), (3.2), (3.3), and the comments
following (3.2) show that the jth element of TE(& — «)
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has limit
lim TE(&; — a))

T—o

p n
=21 E Rnghkf (eu(g—h—k) + e—il(g—h+k))
ghk=1 -n

X A(=2A)f(A) d1, ,p. (34)

That (3.4) does not depend on the fourth-order cumulant
k4 Was noted by Bhansali (1981). Expression (3.4) is equiv-
alent to (4.1) in Bhansali (1981).

Let e(4) = (1, €%, ..., e*P=D)'. Then (3.4) may be
written as
lim TE(& — &) = 27R-! f {e(2)e(=2)'R-te(~1)

Tow

ji=1,...

+ e(—A)e(2)'Rle(—A)le~*A(=D)f*(2) dA. (3.5)

Now consider least-squares estimation with unknown
mean. Since 7} = #; — (4; — p)(4; — u), we have

TE(7} ~TE(f — p)(i; — 1)
=2znf(0) + o(1)
01+ a; + - + a,)7% + 0o(1)

as T— « (e.g., Anderson 1971, theorem 8.3.1). Then the
analog of (3.1) may be written as

—TRE(?* — r — B*r)

—TR'E{* - r + (R* — R)a}

(1 + a; + = + a,)2R"Y(c + cc'a) + o(1)
(3.6)

- ri—j) =

il

o (1 + oy + = + a,) 'R 'c + o(1),

asT—> oo, wherec=(1,...,1) isp x 1.
In the case of Yule-Walker estimation with known
mean, (2.4) has expected value

E(R) = (1 - jiT)r,
and (3.1) becomes
—~TR™'E(F — r — Br)
= —TR'E{f — r + (R = R)a}

j=0,1,...,p,

= R4, 3.7)
where d is a p X 1 vector with jth element
p
d=3|j—klnaa, j=1,...,p. (3.8
k=0

When the mean is unknown,
TE('-‘;“ - rj)
—Jjri — 2nf(0) + o(1)
= —jri— ol + a; + - + a,)7? + o(1)

as T— = (e.g., Anderson 1971, theorem 8.3.2). Thus the
expression corresponding to (3.1) is the sum of the right
sides of (3.6) and (3.7).
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Additional discussion of the bias for Yule—Walker es-
timation is in Section 6.

4. THREE LEMMAS

Derivation of the explicit bias results requires evaluation
of the two bilinear forms involving R ~! that appear in (3.5)
and of the row sums of R~! in (3.6). We give these in
three lemmas. Proofs are available in Shaman and Stine
(1987). For the elements of R~! we use

min(j, k)
jk — -2
R" =0 2 (aj_,ak_, -

r=1

ap—-j+rap—k+r)7

Lk=1,...,p

(Parzen 1961, p. 968). The matrix R ~! is symmetric about
both the main and transverse diagonals; that is, R* = R¥
= Rp+i-kot1-i (j k=1, ..., p).

Lemma 1.

p P j-1
SRE=07 S w3 (- a
k=1 h=0 r=0

Lemma 2.
ag?(1) R te(=1)

= A() 2 (1 = oy

FACDS (0 -1 - e

= plA(AD) + iA(A)A'(=1) — iA(=21)A'(A).

Lemma 3. If p is even,

o%(—A)R te(—41)

12)p-1

= (AW + e PACD} 3 (@ -

a,-j)e”

X (1 + e 4 w4 g ilp-2-2)),

If p is odd,
cg%(—A)'R™e(=1)
12)(p-1)
=AQ) D (a1 — a,_;)e D

j=0
X (1 + e 4 -

12)(p-1)

+ewA(=L) > (a5 -

j=0

+ e ip-1-2)
Qpy1j)e " H0=D

X (1 + e + o 4 g ip-1-2))
where Q_1 = 0y = 0.

5. THE BIAS OF THE LEAST-SQUARES ESTIMATOR

If the mean is known the O(1/T) bias of the least-
squares estimator is given by (3.5). By Lemma 2 the second
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summand on the right side of (3.5) contributes
r p
R [* e(=0e 3 (1 = aelif(2) da,
. par
which is
—a—(0,a,20,...,(p - Day,)
= —(al, 2a2, e ,pap)', (51)

where we have used (2.1) and the fact thatforj =1, . . .,
D, the integral is equal to successive columns of R. The
first summand on the right side of (3.5) yields, by Lemma
3,

(/2)p-1

R-lfne(z)e-il DNCE

1/2)p-1-j

a,,_,-)e‘“f

X > e #kf(1)di, peven
k=0
. a2)(p-1)
R—IJ- e(/l)e_“ 2 (ai_l - ap_j)e_“(j_l)
. 0
12)(p-1)-j
X > e #*f(1)dA, podd,
k=0
(5.2)
with @_; = 0. These expressions reduce to
1/2)p-1
> (o — a,)a, p even
j=0
(12)(p~-1)
2 (aj_l - ap_j)b,-, P Odd, (5.3)
j=0
where gjisp X 1and has Isinrowsj + 2,/ + 4, ...,

p — j and Os elsewhere, and b;is p X 1 and has 1s in rows
j+1,j+3,...,p — jand Os elsewhere.

If there is mean correction, (3.6) is a summand of the
O(1/T) bias vector. By Lemma 1 the jth component of
(3.6) yields

j-1

E(ar—

r=0

a-), Jj=1,...,p. (5.4)

Table 1 displays the least-squares bias vectors for p =
1, ..., 6, as constructed from (5.1), (5.3), and (5.4). If
one adopts the convention of writing the autoregressive
model as y, — u = 2/_; a;j(y,—; — #) + &, then one must
change the algebraic sign of each constant term in our bias
expressions.

Many authors have given the first-order bias term for p
= 1. The result for known mean is in Marriott and Pope
(1954), White (1961), and Shenton and Johnson (1965);
for unknown mean it is in Marriott and Pope (1954), Ken-
dall (1954), and White (1961). For p = 2 Tanaka (1984)
and Yamamoto and Kunitomo (1984) gave the bias for
known mean; Tjgstheim and Paulsen (1983), Tanaka
(1984), Yamamoto and Kunitomo (1984), and A. M.
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Table 1. Least-Squares Bias Vectors

P Known mean: limr.. TE(&@ — «a)’ Unknown mean: limy_,.. TE(&* — a)’
1 (—2ay) (1 — 3ay)
2 (—ay, 1 — 3ay) (1 —a; — a2 — 4ay)
3 (—ay — a3, 1 — 3az, —4ay) (1 —ay —2a3,2 + ay — 4ay — a3z, 1 — 5ay)
4 (—ay, 1 — 2a; — a4, @y — 4az, 1 — Say) (1 —ay— a2+ ay — 2ap — a3 — 2a4, 1 + 2ay — 5a3 — a4, 2 — 6ay)
5 (—ay — a5, 1 — 2a; — a4, a; — 4az — a5, 1 — 5a4, —6as) (1 - a; —2a5,2 + ay — 2a; — 204 — as,
1+2a + ap — S5a3 — a5 — 2a5,2 + @y — 6ay — a5, 1 — 7as5)
6 (—ay, 1 — 2a — ag, @y — 3azg — a5, 1 + ap — Sas — as, 1 -—a— a2+ @y — 2a; — a5 — 2ag,

a; — 6as, 1 — 7ag)

1+2a) + ap —3a3 — @y — 205 — @5, 2 + ay + 2a; — 6y — a5 — 2as,
1+ 2ay — 7as — ag, 2 — 8ag)

Walker (unpublished manuscript) gave it for unknown
mean. For p = 3 Yamamoto and Kunitomo (1984) listed
the first-order bias for both mean cases, but their expres-
sions for the second component when the mean is known
and for all components when the mean is unknown are in
error.

6. THE BIAS OF THE YULE-WALKER ESTIMATOR

The development in Section 3 shows that the O(1/T)
bias for Yule—Walker estimators is obtained by adding the
vector (3.7) to the least-squares results. Thus, when there
is no mean adjustment, the O(1/T) bias of the Yule-
Walker estimator is the sum of (3.7), (5.1), and (5.3).
When there is correction for the mean, (5.4) is a fourth
summand.

Thus for p = 1 we find

lim TE(&; — &) = —3ay,

T—»

lim TE(af — oy) = 1 — 4a,,

T—w

and for p = 2 we obtain (after some simplification)

lim TE(a — a)
T
- —2(11 _ 2a2(1 + az) oy
1 - 3a, I+ a)-a|l+a
and

lim TE(&* — a)

T
- [1 - 2a1 - az] _ 2(12(1 + aZ) I: a; ]

2 - 4a, 1+ a)p-a|1l+a]

Tjgstheim and Paulsen (1983) gave these expressions for

p = 2 in terms of the zeros of the associated polynomial

A(z). They also reported the result for @f. Unlike the

least-squares case, the O(1/T) bias vector for the Yule-

Walker estimator is a rational function of the parameters,

and denominator terms are small when the zeros of A(z)
are close to 1 in absolute value.

7. DISCUSSION

We have examined the bias in autoregressive estimation
for least-squares and Yule-Walker estimation methods.
Other estimation techniques may be obtained by changing
the specification of the estimator of the covariances 7; (j
=0, 1, ..., *p). The differences between the methods

are concerned with treatment of end values in the observed
time series.

It is evident from the rational structure of the bias
expressions for the Yule—~Walker estimator that it tends to
have greater bias than the least-squares estimator. This
was explored numerically for some second-order models
by Tjgstheim and Paulsen (1983). The large bias for the
Yule—Walker estimator becomes more pronounced as the
zeros of the polynomial A(z) move closer to the circum-
ference of the unit circle. The estimator is stable in the
sense that the zeros of the estimator of A (z) are necessarily
greater than 1 in magnitude, a feature not shared by the
least-squares estimator. One of the prices of stability is
greater bias. A factor responsible for the lower bias of the
least-squares estimator is the use of summations, such as
at (2.3), with the same number of summands for all entries
in R and r. Tjgstheim and Paulsen (1983) made use of this
observation to define a modified Yule—Walker estimator
with less bias than the Yule—Walker estimator.

If the model used for estimation is a misspecification,
our results do not hold except in the special case when the
true model is autoregressive and its order is overspecified.
One simply replaces each of the unneeded high-order au-
toregressive coefficients by 0 in the bias expressions de-
rived here. In the least-squares case it is possible to give
simple expressions for the added contribution to the O (1/

T) bias stemming from overspecification. Let m denote
the true autoregressive order and p (> m) the fitted order.

Define the p X 1 vectors y,,; as
Ymik = (07 . y 0, 17 07 ce ey 0)’1

m+ k+1=p,

0, ap, g, .

where there are p — m — k — 1 Os at the top and k Os
at the bottom. If there is no mean correction, the addi-
tional bias contribution from overspecification is

[(172)(p-m~1)]

ym,Zj ’ P eVCn,

j=0
and
[(172)(p-m-2)]
Ym,2j+15

p odd,

j=0

where [x] denotes the integer part of x and 2,;10 Ym2j+1
designates the p X 1 vector with each element equal to 0
(which occurs for p odd and m = p — 1). If there is mean
correction, one further adds the sum 7;0'"_1 Vm,j» Which
arises from (5.4).
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For Yule-Walker estimation the additional bias arising
from overspecification is the least-squares additional bias
plus a contribution from (3.7).

The simplicity of the bias expressions derived in this
article suggests several areas for further study. One is the
effect of the bias on the stationarity of the estimated
model. The formulas in Table 1 show that there are cases
in which the first-order bias moves zeros of the polynomial
associated with the estimated coefficients closer to the unit
circle. The growth of the coefficient of a, in the bias of
the least-squares estimator also leads to questions about
conditions leading to large bias, especially for large p. If
weletz;(j =1, ..., p) denote the zeros of z7A(z""),
which are less than 1 in absolute value, then

o= (-1 > oz,
ky<ky<-<k,

Thus a, tends to get smaller with increasing p and mod-
erates the growth of the coefficient in the bias expression.
In contrast, coefficients near the center of the vector a
are sums of increasing numbers of products and may be-
come large as p increases. Estimators of these often have
substantial bias. Large bias relative to the size of the coef-
ficient generally occurs when the coefficient is rather
small. For the least-squares estimator of a, with p even,
one can make the relative bias arbitrarily large by simply
making a, approach 0.

Some examples of the bias calculations suggest when
these approximations are effective. In Table 2 we give the
first-order bias for least-squares and Yule-Walker pro-
cedures for each of four fourth-order autoregressive pro-
cesses with complex roots. These results are for the more
realistic case of an unknown mean; results for the case of
known mean are very similar. The roots are pe*? with 6
= 2n/ P, and the apparent period P is 5 and 8 in two series
and 24 and 29 in the other two. The magnitudes of the
roots are either .3 and .5 or .6 and .8. Thus in none of
the four cases is the process particularly close to nonsta-
tionarity. Periods 24 and 29 appear in the variable-star
data described by Bloomfield (1976) and lead to a spec-
trum with two adjacent peaks. Values of the coefficients
of these processes appear in Table 3.

The first-order bias approximations for the least-squares

Table 2. T Times the First-Order Bias for Least-Squares (LS) {TE(a*
— a)} and Yule—Walker (YW) {TE(a* — o)} Estimators With Mean
Correction in Several Fourth-Order Autoregressive Processes With
Two Pairs of Complex Roots, pe*® (§ = 2n/period)

Bias
Model Estimator a, a, ag ay
1 LS 1.87 .23 -.26 1.87
YW 3.97 -2.07 91 1.53
2 LS 2.27 -2.16 .99 .62
YW 18.18 -31.16 26.68 -9.56
3 LS 2.53 -1.18 -.97 1.87
YW 17.40 —26.86 16.34 -2.98
4 LS 3.49 -5.50 1.85 .62
YW 255489 -6,966.74 6,668.03 —2,242.67
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Table 3. Model Parameters for Several Fourth-Order Autoregressive
Processes With Two Pairs of Complex Roots, pe*® (0 = 2r/period)

Model Period p a; a, a; o,
1 58 3,.5 -.89 47 -.11 .02
2 58 .6, .8 -1.50 1.42 —.64 .23
3 24, 29 3,.5 —1.56 .91 -.23 .02
4 24, 29 6, .8 -2.72 2.81 -1.30 .23

estimator appear reasonable, and we have confirmed their
accuracy with some exploratory simulations of Gaussian
series. The least-squares approximations are generally
within about two standard errors of the simulated values,
once T is on the order of 100-200 observations. On the
other hand, the Yule-Walker approximation is clearly not
reliable. With periods 24 and 29 and magnitudes .6 and
.8, a; = —2.72; the first-order bias term is about 26 for
@i when the series length is 100. By comparison, a sim-
ulated estimate of the bias of af is 1.145 (standard error,
.003). The size of the first-order bias term stems from using
biased covariance estimators in the Yule-Walker proce-
dure. Since the first five covariances for this process (with
o? = 1) are 371, 362, 338, 302, and 259, the contribution
to the bias from (3.7) dominates the approximation. A
more accurate bias approximation would seem to require
using the guaranteed stationarity of the Yule—Walker es-
timator. Our Taylor expansion does not utilize this con-
straint and can err considerably when covariances are large
relative to g2.

[Received July 1987. Revised March 1988.]
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