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SUMMARY

A modification of the Bonferroni procedure for testing multiple hypotheses is presented. The
method, based on the ordered p-values of the individual tests, is less conservative than the classical
Bonferroni procedure but is still simple to apply. A simulation study shows that the probability
of a type I error of the procedure does not exceed the nominal significance level, a, for a variety
of multivariate normal and multivariate gamma test statistics. For independent tests the procedure
has type I error probability equal to a. The method appears particularly advantageous over the
classical Bonferroni procedure when several highly-correlated test statistics are involved.
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1. INTRODUCTION

The Bonferroni inequality is often used when conducting multiple tests of significance to set an
upper bound on the overall significance level « (Miller, 1981, pp. 67-70). If T,,..., T, is a set
of n statistics with corresponding p-values P,,..., P, for testing hypotheses H,,..., H,, the
classical Bonferroni multiple test procedure is usually performed by rejecting Hy={H,, ..., H,}
if any p-value is less than a/ n. Furthermore the specific hypothesis H, is rejected for each P,<a/n
(i=1,..., n). The Bonferroni inequality,

pr{g (P,.sa/n)}sa (O<as<1),

ensures that the probability of rejecting at least one hypothesis when all are true is no greater
than a.

Although several multivariate methods have been developed for multiple statistical inference,
the Bonferroni procedure is still valuable, being simple to use, requiring no distributional assump-
tions and enabling individual alternative hypotheses to be identified. Nevertheless, the procedure
is conservative and lacks power if several highly correlated tests are undertaken.

This paper introduces a modified Bonferroni procedure, based on the ordered p-values of the
individual tests, which has an actual significance level closer to the nominal level in a wide range
of circumstances and which has a lower type II error rate for a given nominal significance level
than the classical procedure. Section 2 describes the procedure and shows that the probability of
a type I error for the test procedure equals a for independent test stastistics. Simulation studies
in § 3 show that a is an upper bound on the type I error probability for a variety of multivariate
normal and chi-squared distributions. The powers of the classical and modified procedures are
compared for some alternative hypotheses in § 4.

2. MoDIFIED BONFERRONI PROCEDURE

Let P), ..., P be the ordered p-values for testing hypotheses Hy={Hy), ..., H(n}. Then H,
is rejected if P(,)sja/n for any j=1,...,n.

This test procedure has type I error probablhty equal to a for 1ndependent tests as shown by
the following result.
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THEOREM. Let Py, . . ., P, be the order statistics of n independent uniform (0, 1) random variables
and let A,(a)=pr{P,>ja/n;j=1,...,n} (0<sa<1). Then A,(a)=1-a.

Proof. The result is clearly true for n=1. For n>1, {Pq/ Py, - - - » Pia—1y/ P(ny} are the order
statistics of n— 1 independent uniform random variables on (0, 1), independent of P, and P,
has distribution function p” (0<p<1). Hence

A(a)= j A,._l{——"‘(" - 1)}np"—‘ dp.
pn

If A,_,(a)=1—a then A,(a)=1-a follows. Hence the result is proved by induction. O

The modified test procedure is conservative provided
n
pr{U P(j)sja/n} <a.
Jj=1

This inequality is not true in general as counterexamples, albeit pathological, can be found.
Nevertheless, it may well be true for a large family of pultivariate distributions as suggested by
the simulation studies below.

3. SIMULATION STUDIES

Test statistics T;,..., T, were simulated from an n-variate normal distribution, N(0, Q) with
unit variances and common correlation coefficients p (0<p<1). Two-sided p-values were
obtained from each univariate normal statistic as P,=2min (Y;, 1—Y;), where Y;=®(T;), and
® is the standard normal distribution function. Then the classical and modified Bonferroni test
procedures were applied to each set of simulated p-values.

Random variables with a multivariate gamma distribution were constructed from linear combina-
tions of independent gamma variables. The degree of dependence between the resulting random
variables was determined by the number of gamma variables used in common for each sum. Let
{X} be a set of independent gamma (6,, 6,) variables. Then Tj,..., T,, defined by

1 m—lI
T,=)Y, Xoj + Z X, (i=1,...,n),
j=1 j=1

is a set of gamma (m#,, 6,) variables with common correlation coefficient p =1/m. Individual
chi-squared test statistics with 1 and 5 degrees of freedom were constructed by choosing m =10
and 6, =0-05 and 0-25 respectively. Then P-values corresponding to the right-hand tail of each
gamma variate were obtained: P,=1—G(Y;) for i=1,...,n, where G is the gamma (m#,, 6,)
distribution function. )

Simulations were carried out on a vax 11/780 computer using IMSL subroutines GGNsM for
multivariate normal and GGAMR for gamma variables. The results of the type I error rates for the
modified and classical Bonferroni procedures are shown in Table 1 using n =5 and 10 simultaneous

Table 1. Type I error rates* for modified, M, and classical, c, Bonferroni test procedures; p, correlation

coefficient .
Distribution Distribution
p Normal X3 X3 Normal X3 X2
M C M C M C M C M c M C
Number of tests =35 Number of tests =10
00 0-049 0-048 0-050 0-049 0-049 0-048 0-049 0-048 0-049 0-048 0-049 0-048
0-3 0-049 0-048 0-045 0-040 0-044 0-040 0-047 0-045 0-043 0-037 0-042 0-039
06  0-043 0-039 0-044 0-029 0-039 0-033 0-039 0-034 0-042 0-026 0-035 0-029
09 0-033 0-024 0-048 0-016 0-041 0-019 0-028 0-017 0-047 0-012 0-039 0-014

* Based on 100000 simulations each; estimated standard error <0-007
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tests, p=0-0, 0-3, 0-6 and 0-9 and « =0-05. The results for the modified procedure, based on
100000 simulations in each case, are consistent with an upper bound on the type I error probability
of 0-05. The estimated error rate drops as low as-0-028 for highly correlated multivariate normal
statistics but is in the range 0-04-0-05 for most conditions simulated. The results for the classical’
Bonferroni procedure demonstrate that it has a similar type I error rate for independent tests but
is appreciably more conservative than the modified procedure for highly correlated tests. This is
particularly so for the x? distribution.

4. POWER COMPARISONS

Since the modified Bonferroni test procedure contains the classical Bonferroni procedure it is
clear that the power of the modified procedure is greater than the classical procedure at the same
nominal significance level. A simulation study, undertaken to evaluate the relative power of the
procedures for a range of alternative hypotheses, is illustrated in Table 2 for the multivariate
normal case with 10 simultaneous tests. Alternative hypotheses examined were of the form H,:
wi=p(i=1,...,k<m), u;=0 othérwise, with choices of 8 =1, 1 or 11. The results are expressed
as the ratio of the powers of the classical to modified procedures for each alternative.

Table 2. Power of classical Bonferroni test procedure relative to modified procedure®; multivariate
normal, n =10; p, correlation coefficient

No. of correct No. of correct
alternatives p u=3 w=1 w=1}  alternatives u=3 w=1 u=1}
5 0-0 0-97 0-97 096 10 0-97 0-95 0-94
0-3 0-96 0-95 0-96 0-94 0-92 0-94
06 0-90 0-92 0-94 0-87 - 0-90 0-91
09 0-73 0-81 0-85 0-64 0-71 0-75

* Based on 15000 simulations; each estimate of relative power has standard error less than 1%.

The results for multivariate normal tests indicate little advantage to the modified test procedure
over the classical method when the test statistics are independent or poorly correlated. However,
the modified procedure is considerably more powerful when the test statistics are highly correlated
and several alternative hypotheses are correct, particularly when the magnitude of the alternatives
is small. Presumably, this is due mainly to the unduly small true type I error of the classical
procedure.

5. DiSCUSSION

A criticism of the classical Bonferroni test procedure is that it is too conservative for highly-
correlated test statistics. Then the modified procedure should be advantageous by having an actual
significance level much closer to the nominal level and a consequent lower type II error probability.
Even when the advantage is small, the only disadvantage seems to be a slight increase in
computation.

Since the Bonferroni inequality leads to a conservative test procedure, there have been several
attempts to improve on the method. Sidak (1968, 1971) has shown that the significance level for
each test a/n can be improved by using 1—(1—a)"" under certain conditions, although the
degree of improvement for n <10 and a =0-05 is slight. Worsley (1982) found an upper bound
on the probability of a type I error which is an improvement over both the Bonferroni and Sidak
upper bounds, but it requires knowledge of the joint probabilities of pairs of events and thus is
not directly applicable here.
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If the overall null hypothesis H, is rejected, statements about individual hypotheses can be
made using the classical Bonferroni test procedure: any individual null hypothesis H; can be
rejected provided P;<a/n. An improvement on this method suggested by Holm (1979) is the
sequentially rejective Bonferroni test. This procedure rejects the specific hypothesis H(;, for
i=1,...,n, provided both Pyh,<a/(n—i+1) and H,,..., H;_;, have all been rejected. The
sequential test procedure has multiple level of-significance a for free combinations of null
hypotheses. A question arises as to what statements about individual hypotheses can be made
using the modified Bonferroni test procedure. One possiblity is to reject the individual hypotheses
Hgy, ..., H;), where j =max {j: P(;,<ja/n}. However, since there is no formal basis for rejecting
the individual hypotheses H(;.,), . . ., H;, not rejected by the sequentially rejective test, statements
about these latter hypotheses should be considered exploratory and preferably confirmed in
subsequent studies.
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