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SUMMARY

This paper proposes that results from simultaneous tests be reported as adjusted P-values such that,
if the adjusted P-value for an individual hypothesis is less than the chosen significance level of «, then
the hypothesis is rejected with an experimentwise error rate of no more than «. Examples are given
of adjusted P-values for multiple comparisons in the analysis of variance and of adjusted P-values
based on the Bonferroni procedure and modifications of that procedure by Holm (1979, Scandinavian
Journal of Statistics 6, 65-70), Hochberg (1988, Biometrika 75, 800-802), and Hommel (1988,
Biometrika 75, 383-386). The modified Bonferroni-based procedures are much more powerful than
the original Bonferroni procedure, and they deserve wider use. In addition to the above, a procedure
is outlined for obtaining adjusted P-values for any closed test procedure.

1. Introduction

Without a doubt, the P-value has become the “bottom line” for many consumers of
statistical analyses. This is not without reason. A P-value provides information about
whether a statistical hypothesis test is significant or not, and it also indicates something
about “how significant” the result is: The smaller the P-value, the stronger the evidence
against the null hypothesis. Most important, it does this without committing to a particular
level of significance as traditional hypothesis tests and confidence intervals do. The dilemma
for the consulting statistician is how to convince the client that a P-value is not necessarily
“significant” just because it is less than .05 (or any other chosen level), when that P-value
is for one of a possibly large collection of tests conducted during the course of a study. One
way out of the dilemma is to report adjusted P-values which take into account that multiple
tests are being conducted. It is the purpose of this paper to encourage the use of adjusted
P-values and to extend their use to settings where they have not been used previously.
The idea of adjusted P-values is not new. In one sense, the P-value produced by a
multivariate test statistic can be thought of as being adjusted for simultaneous testing. This
is the approach taken by O’Brien (1984) as a means of handling multiple endpoints in
clinical trials. This approach, however, does not solve the problem of reaching a conclusion
about a particular test; for this, the P-value of the individual test needs to be adjusted. The
idea of adjusting individual P-values is also not new (see Rosenthal and Rubin, 1983), but
it does not seem to have gained much favor. One reason is that most adjusted P-values
have been based on the Bonferroni inequality, leading to very conservative results in most
instances. The objective of this paper is to demonstrate how adjusted P-values can be
obtained using other, less conservative procedures. Section 2 presents methods that can be
used for multiple comparisons in an analysis of variance setting. Sections 3-5 address the
more general setting for which the Bonferroni adjustment is so often used. Special emphasis
is given to recent improvements on the Bonferroni procedure by Holm (1979), Simes
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(1986), Hochberg (1988), and Hommel (1988). In Section 6, further improvements and
applications are considered.

First, before specific techniques for adjustment are given, a definition of “adjusted
P-value” is in order. The ordinary, unadjusted P-value for a single hypothesis test can be
defined in two equivalent ways: (1) The P-value is the probability, under the sampling
distribution of the test statistic when the null hypothesis is true, of obtaining a result as
extreme as or more extreme than the one observed in the sample; (2) The P-value is the
smallest level of significance that results in rejection of the null hypothesis. In applying the
P-value concept in simultaneous inference, the second definition is more useful since it can
be applied to any collection of tests. The adjusted P-value for a particular hypothesis within
a collection of hypotheses, then, is the smallest overall (i.e., “experimentwise”) significance
level at which the particular hypothesis would be rejected. An adjusted P-value can be
compared directly with any chosen significance level «: If the adjusted P-value is less than
or equal to «, the hypothesis is rejected.

2. Multiple Comparisons in the Analysis of Variance

One area in which simultaneous inference has a long history is in the use of multiple
comparisons in the analysis of variance (AOV). This is a good example of a situation in
which P-values have been little used, but would be valuable. Although P-values are routinely
reported for overall F tests of effects, they are almost never reported for individual
comparisons. Instead, confidence intervals may be constructed; or in the case of pairwise
comparisons, pairs of means that are significantly different may be reported verbally or
displayed graphically. In either case, a fixed « level must be chosen in advance; it is this
commitment to a specific « that can be avoided by using P-values.

Analysis of variance multiple comparisons can be divided into two categories: simulta-
neous test procedures (STPs) and multiple-stage tests (MSTs). In the case of STPs, in which
all comparisons are referred to a single sampling distribution, the calculation of a P-value
is straightforward. For example, in the case of the Scheffé procedure used in a one-way
AOYV with g groups or treatments, an individual, unadjusted P-value is obtained by finding
the sum of squares for the comparison (call it SS.), converting this to an F statistic
(F. = SS./MSE, where MSE is the error mean square), and finding the upper-tail area
under an F distribution with 1 and (N — g) degrees of freedom. To obtain the adjusted
P-value, the same SS. is used but is treated as if it had (g — 1) degrees of freedom.
That is, F. = (SS./(g — 1))/MSE, and the P-value is obtained from an F distribution
with (g — 1) and (N — g) degrees of freedom.

For example, consider a one-way AOV with four groups (g = 4), each with 5 observations
(so N = 20). Suppose that the four cell means are 50.0, 51.0, 55.0, and 59.0, and the error
mean square (MSE) is 16.5. The overall F statistic is then 5.126 with 3 and 16 degrees of
freedom, resulting in a P-value of .01127. Table 1 shows, for this example, one convenient
way to display the results of pairwise comparisons using P-values. The adjusted P-values
are shown as the upper-right off-diagonal elements, cell means are given along the diagonal,
and the unadjusted P-values are given below the diagonal. (These unadjusted and Scheffé
adjusted P-values also appear in Table 2 in a different format to facilitate their comparison
with adjusted P-values obtained by other procedures discussed below.)

At present, Tukey’s procedure using the Studentized range distribution is the most
powerful of the STPs for pairwise comparisons in a balanced design. In this procedure all
comparisons are referred to the same critical value. The P-value for any comparison, which
is by its nature adjusted for simultaneous inference, is simply the tail area under the
sampling distribution of the Studentized range. Table 2 shows these P-values for the one-
way AOV example.
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Table 1
A P-value matrix for pairwise comparisons in a one-way AOV using Scheffé’s procedure
Group 1 2 3 4
| 50.0 .98445 .32058 .02472
2 70222 51.0 50771 .05028
3 .06940 13903 55.0 50771
4 .00294 .00668 .13903 59.0

On the main diagonal: The mean for each group. Below the diagonal: Unadjusted P-values for pairwise
comparisons. Above the diagonal: Adjusted P-values.

Table 2
P-values for pairwise comparisons in a one-way AOV
i Means Di Dschefré PTukey Drecwr Precwaq Derer
1 1-vs-4 .00294 .02472 .01405 01127 .01405 01127
2 2-vs-4 .00668 .05028 .03057 .02259 01736 .02259
3 1-vs-3 .06940 .32058 .24873 15236 15815 15236
4 2-vs-3 .13903 50771 42907 25873 25873 15236
5 3-vs-4 .13903 50771 42907 .25873 25873 .30296
6 1-vs-2 70222 .98445 .97927 91133 91133 70222

pi: Unadjusted P-value for the t-test that the two means are equal; pseere: Adjusted P-value using Scheffé’s
procedure; prukey: Adjusted P-value using Tukey’s procedure; precwr and precwe: Adjusted P-values using REGWF
and REGWQ procedures; perer: Adjusted P-values from closed test procedure using F tests.

Obtaining adjusted P-values for MSTs is a greater problem. The problem is to determine,
for each comparison of interest (e.g., each pairwise comparison), what is the smallest
experimentwise level of significance that would result in the comparison being declared
significant. With unbalanced data, this might involve computations similar to those
described in Sections 4 and 5. For the balanced one-way AOV example, it is fairly easy to
obtain adjusted P-values. The method will be demonstrated using the MST of Ryan (1959,
1950), Einot and Gabriel (1975), and Welsch (1977) based on the F distribution. The
method has been implemented in SAS (1990), where it is referred to as the REGWF
procedure. Similar calculations using the Studentized range distribution give the REGWQ
procedure.

The REGWF procedure, like many of the balanced-data procedures, is most easily
carried out using the ordered means. For this reason, the means in the AOV example
above are intentionally listed in order from smallest (mean 1) to largest (mean 4).
REGWEF declares a pair of means significantly different by conducting F tests on subsets
of means. For example, means [ and 4 are significantly different if the null hypothesis Hy:
W = ua = u3 = g4 18 rejected by an F test. Similarly, means | and 3 are significantly different
if Hy: u, = uy = ws is rejected. The experimentwise error rate is maintained at the desired
level («) by using adjusted significance levels for different subsets of the g means. If k is the
number of means in a subset, then the F test for equality of those k means is done with
significance level « when k = gor k=g — 1, and with level | — (1 — &)** when k< g — 1
(see Hochberg and Tamhane, 1987, p. 69). For each F' test there is a corresponding
unadjusted P-value, call it pr. The hypothesis that a set of k means are equal is rejected if
the corresponding pr < « when k = g — 1 or when pr < 1 — (I — )¢ when k < g — 1.
The adjusted P-value is obtained by rearranging these expressions to obtain a quantity that
leads to rejection of the hypothesis when the quantity is « or less. Thus when k = g — 1,
the adjusted P-value (call it preewr) IS just pr. When k < g — 1, rearrangement gives
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Dreawe = 1 — (1 — pg)¥’%. Table 2 shows the results for the AOV example for the REGWF
procedure and also for the REGWQ procedure.

3. The Bonferroni Procedure and Some Simple Modifications

The appealing characteristic of the Bonferroni procedure is that it is applicable in essentially
any simultaneous inference situation. The price of this generality is a lack of power, but
recently proposed modifications to the Bonferroni procedure have improved the situation.

The classic Bonferroni procedure is well known. Given a collection of hypotheses,
H,, H,, ..., H,, and an experimentwise error rate of «, each individual hypothesis H; is
tested at a reduced significance level of «; such that ¥ «; = «. Typically, «; = «/n, but
unequal allocation can also be used. Let p; be the unadjusted P-value for testing H;; then,
using equal allocation («; = a/n), H; is rejected when np; < «. That is, the Bonferroni
adjusted P-value (call it pgoqy) 1S 1p;. The Bonferroni adjusted P-values for the AOV multiple
comparisons appear in Table 3. These P-values were intentionally not truncated to 1.0 to
emphasize their conservatism.

Holm (1979) presented a sequentially rejective Bonferroni procedure that is much less
conservative but that still maintains the experimentwise error rate at «. In Holm’s
procedure, the unadjusted P-values are ordered (as they have been in Table 3) so that
P < py< --- <p,, and each p; is compared to «/(n — i + 1) rather than «/n. That is,
the smallest p; is compared to «/n, the next smallest to «/(n — 1), etc. In other words,
itis (n — i + 1)p; that is compared to «. These values appear in the column labeled r;
in Table 3.

The r; values are not necessarily the adjusted P-values for Holm’s procedure, for in this
procedure hypotheses are tested sequentially beginning with the smallest P-value, p,. Testing
is stopped when a nonsignificant result is obtained, and all untested hypotheses are
considered nonsignificant. That is, H; is rejected if (n — [ + 1)p; < « provided that
(n —j+ 1)p; < « for all j < i. For example, the smallest significance level at which
H, would be rejected is .01766. This is the Holm adjusted P-value (call it p;gomy) for H,.
Similarly, the r; values are *he Holm adjusted P-values for H», H3, and H4. However, psoim)
is not .27806. In the first place, the unadjusted p, and ps are the same, so it would be
illogical for their adjusted P-values to differ. Even if p, and ps were different, it could still
happen that r, > rs, as it is here. In Holm’s sequentially rejective procedure, Hs cannot be
rejected unless Hy is rejected; and the smallest « that permits this is .41709.

Instead of testing sequentially starting with the smallest P-value, one might start with the

Table 3
Bonferroni-like adjusted P-values for pairwise comparisons in a one-way AOV

Means Di PBonf Fi PHolm Phoch PHommel Dsidik Fi(Sidak)
1-vs-4 .00294 01766 01766 01766 .01766 01766 01753 01753
2-vs-4 .00668 .04009 .03341 .03341 .03341 .03341 .03942 .03296
1-vs-3 .06940 41643 27762 27762 27762 20821 .35052 .25003
2-vs-3 13903 .83417 41709 41709 27806 .27806 .59268 36179
3-vs-4 .13903 83417 .27806 41709 .27806 .27806 .59268 25873
1-vs-2 70222 4.21 33‘ 70222 70222 70222 70222 99930 70222

pi Unadjusted P-value for the -test that the two means are equal; pson: Bonferroni adjusted P-value; r;: The
sequentially adjusted P-value using Bonferroni’s procedure; prom: Adjusted P-value based on Holm’s procedure;
Dhioch: Adjusted P-value based on Hochberg’s procedure; promme: Adjusted P-value based on Hommel’s procedure;
psaa: Adjusted P-value based on Sidak’s procedure; rigiasy: The sequentially adjusted P-value using Sidak’s
procedure.
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largest P-value, stopping when a significant result is obtained and declaring all untested
results to be significant. That is, H; is rejected if (n — j + 1)p; < « for any j = i. This is
Hochberg’s (1988) procedure. It is clearly more powerful than Holm’s procedure, but it
still has an experimentwise error rate of « provided that the Simes (1986) test, on which it
is based, maintains an error rate of «. (Simes’ test is discussed below.) Table 3 shows the
Hochberg adjusted P-values ( procn).

An attractive feature of the adjusted P-values based on the Holm and Hochberg
procedures is that they form a nondecreasing sequence from top to bottom. This means
that if the test of H; is “more significant” than that of H; as indicated by their unadjusted
P-values, then the test of H; cannot be “less significant” than that of H, based on the
adjusted P-values. In addition, Hochberg's procedure has the nice characteristic that no
adjusted P-value can be larger than the largest of the unadjusted P-values. Consequently,
no adjusted P-value can be larger than 1.00.

4. Adjusted P-Values for Any Closed Test Procedure

Holm’s procedure, as well as the even more powerful procedure of Hommel (1988) to be
discussed below, is based on the “closed test procedure” principle (Marcus, Peritz, and
Gabriel, 1976). The following version of the procedure is given in Hommel (1986, 1988).

Let H,, H-, ..., H, be a collection of n hypotheses. Define all possible combinations of
subsets of these hypotheses: H; = N{H;: i € I} for all I € K, where K is the set of all
nonempty subsets of {1, 2, ..., n}. Let there exist for every H, a test based on statistic 7.

For a given «, H, s rejected if every H; is rejected at level « by the corresponding 7, where
J € K and J D I (that is, subset I is included among the subsets J). The probability of
falsely rejecting one or more hypotheses when testing all H, is at most «.

To use this procedure, one would ordinarily start with the global test H; = N {H;: i = 1,
2, ..., n}. If this test is rejected at level «, one proceeds to test, still at level «, each subset
of (n — 1) hypotheses. As long as hypotheses continue to be rejected at level «, one continues
testing, eventually reaching subsets of size 1: the individual hypotheses, H;. It is not always
necessary to test every possible combination of hypotheses, however; sometimes shortcuts
are available. For example, when the aim is to test the individual hypotheses H;, if the test
statistic 77 is a Bonferroni test (i.e., reject H, for a subset of hypotheses of size m if the
smallest unadjusted P-value for hypotheses in the subset is less than or equal to «/m),
Holm’s procedure results. If the test of Simes (1986) is used for each subset, the result is
Hommel’s (1988) procedure, to be discussed in the next section.

The closed test procedure can be restated so that it generates an adjusted P-value for
each F,; as follows. Let p; be the unadjusted P-value for test 7; of hypothesis H,. H, is
rejected only if p; < « for all /, where J 2 I (again note that the set of H, includes #,).
Therefore, the adjusted P-value for H; (the smallest « at which H,; could be rejected) must
be the largest of the p, values. Unfortunately, in the general case, in order to obtain an
adjusted P-value for each individual hypothesis H;, one would have to conduct the test and
obtain the unadjusted P-value for every possible subset of hypotheses. The total number of
tests that must be conducted is therefore Y=, (/) = 2” — 1. Fortunately, in certain special
cases, shortcuts exist, such as the procedure for Holm adjusted P-values given above.

Table 2 shows the adjusted P-values from the closed test procedure for the one-way AOV
example. The 7; used in the procedure was an F test. It is noteworthy that using the closed
test procedure results in different adjusted P-values for the two hypotheses (2-vs-3 and 3-
vs-4) whose unadjusted P-values are the same. Thus, while the closed test procedure is a
powerful, general-purpose approach to simultaneous testing, it is not without its unappeal-
ing aspects, at least for certain choices of the test statistic 7.
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5. Adjusted P-Values from Hommel’s Procedure

Simes (1986) introduced the following global test for all hypotheses in a set of 7 hypotheses:
Reject Hy = {H\, H,, ..., H,} if p; < i(«/n) for at least one i (where the p; are, as before,
the ordered, unadjusted P-values). Simes proved that this test has level « when the tests are
independent and provided simulations to indicate that it also has level «, except perhaps
in unusual circumstances, when tests are dependent. Since H, is rejected if any np;/i < «,
the P-value for the global Simes test is just the smallest of the np;/i values. Simes’ test,
however, does not address the problem of testing the individual H;. Hommel’s (1988)
procedure does this by using Simes’ test as the 77 in the closed test procedure. Hommel
(1989) showed that this procedure is more powerful than Hochberg’s procedure, but it still
has level « (provided that the Simes tests have level «). The computations are more involved
than for Hochberg’s procedure, but the full closed testing procedure need not be done. For
some fixed «, Hommel (1988) showed that the following shortcut is sufficient. Let j be the
number of hypotheses in the largest subset of hypotheses for which the Simes test is not
significant. That is,

J=max{m € {1, ..., n}: Py > k(a/m) forall k=1, ..., m}.

[f there are no nonsignificant Simes tests, then all H; are rejected. Otherwise, reject //; when
pis alfj.

The computation of adjusted P-values for Hommel’s procedure is perhaps most easily
understood by referring directly to the closed test procedure. The full closed test procedure
would require that, for each hypothesis H;, the Simes test P-value be obtained for every
subset of hypotheses containing H,;. The Hommel adjusted P-value is then the largest of
these Simes test P-values. However, it is not necessary to test every subset. For subsets
containing m of the n hypotheses, it is sufficient to test the single subset containing the
largest (m — 1) P-values in addition to p,. This could be called the “least significant
subset” of size m that contains H,. Clearly, if the Simes test is significant at level « for this
subset, it will be significant at level « for all other subsets of size /# containing H,. For each
m=1,...,n,the Simes test P-value is obtained for the least significant subset that contains
H;. The largest of these n Simes test P-values is the Hommel adjusted P-value. Table 4
demonstrates these calculations for hypothesis H5 in the AOV example. While the procedure
used in Table 4 is useful for illustrating conceptually how Hommel adjusted P-values are
obtained, it still involves some duplication of effort. In practice, an algorithm that is more
efficient and easily programmed on a computer is desirable. Such an algorithm is given in
the Appendix. Table 3 shows the adjusted P-values based on Hommel’s procedure for the
one-way AOV example.

Table 4
Calculation of Hommel adjusted P-value for H; (group 1 vs 3) in the one-way AOV example

Tests in least Smallest

significant set mp;/i mp;/i
m=6 1,2.3,4,5,6 01766, .02004, .13881, .20854, .41709, .70222 01766
m=235 2,3,4,5,6 .03341, .17351, .23171, .17379, .70222 .03341
m=4 3,4.5.6 27762, 27806, .18537, .70222 18537
m=3 3,5,6 20821, 20854, 70222 20821
m=2 3, 6 13881 70222 13881
m=1 3 06941 06941

Daommen = Largest value = 20821

m: Number of hypotheses in a subset; p;: Unadjusted P-value for hypothesis /..
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6. Discussion

This paper has made two main points. The primary point is that for any fixed level-«
simultaneous inference procedure, it is possible to obtain suitably adjusted P-values. These
adjusted P-values have much to recommend them, and it is to be hoped that they will
become as much a part of accepted statistical practice as unadjusted P-values are now. A
secondary point is that, for any simultaneous inference situation where the Bonferroni
procedure is applicable, more powerful procedures exist. In particular, Holm’s procedure
is just as general in applicability as the Bonferroni procedure, it is nearly as simple to carry
out, and it is much more powerful. The procedures of Hochberg and Hommel are even
more powerful, but strictly speaking, they are known to have the desired experimentwise
error rate only for independent tests. The same is true for the more complex procedure of
Rom (1990), which is even more powerful than that of Hochberg (1988).

Despite being more powerful than the Bonferroni procedure, the procedures of Holm,
Hochberg, and Hommel still tend to be conservative. Several ways to increase their power
are available. One approach would be to base the procedures not on the Bonferroni
inequality but on the Sidak (1967) inequality. Holland and Copenhaver (1987) discuss
the circumstances (positive-orthant-dependent test statistics) when this is appropriate.
In practice, this means that in the classic Bonferroni procedure, piponn = #p; becomes
Digiaany = 1 — (1 — p;)”. In the sequentially rejective procedures of Holm and Hochberg,
1= (n—1i+ 1)p;becomes i) = 1 — (1 — pi)" " ". The pi&iaax and riaar) values for the
one-way AOV example appear in Table 3. For small P-values, which are the ones that
receive the most attention, the reduction in magnitude of the adjusted P-value (compared
to Bonferroni) is quite small.

Another route to improvement is to take advantage of logical relationships among
hypotheses, as in multiple comparisons among means, as suggested for Holm’s procedure
by Shaffer (1986). Hommel (1988) showed how to apply this modification to his procedure.

As Hommel (1988) points out, another route to improvement would be to make use of
stochastic dependencies among test statistics. This, of course, is what makes use of the
Sidak inequality more powerful than the Bonferroni inequality; it is also what gives the
Tukey, REGWF, and REGWQ procedures some of their additional power. Another
promising approach to using dependencies among statistics to obtain adjusted P-values is
the resampling approach of Westfall and Young (1989). In their approach, in exchange for
additional computational requirements, one obtains considerably more power. For exam-
ple, Westfall and Young report the three smallest unadjusted P-values, obtained from 24
Fisher exact tests on data from Brown and Fears (1981), as .035, .053, and .125. The
corresponding adjusted P-values (untruncated) using the Bonferroni procedure are .840,
1.272, 3.000; for Hommel’s procedure they are .805, .938, .944. Using the procedure of
Westfall and Young, they are .270, .362, and .732, a considerable improvement.
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RESUME

Cet article propose que les résultats de tests simultanés soient exprimés avec des P-valeurs ajustées
telles que, si la P-valeur ajustée pour une hypothése individuelle est inférieure au seuil de signification
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« choisi, alors I’hypotheése est rejetée avec un taux d’erreur expérimentale inférieur a «. Des exemples
de P-valeurs ajustées sont donnés pour des comparaisons multiples dans une analyse de variance
ainsi que des P-valeurs fondées sur la procédure de Bonferroni et des modifications de cette procédure
par Holm (1979, Scandinavian Journal of Statistics 6, 65-70), Hochberg (1988, Biometrika 75,
800-802) et Hommel (1988, Biometrika 75, 383-386). Les procédures de Bonferroni modifiées sont
plus puissantes que la procédure de Bonferroni originale, et méritent un plus large emploi. Par
ailleurs, une procédure est proposée pour obtenir des P-valeurs ajustées pour tout test de comparaisons
multiples.
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APPENDIX

The following algorithm calculates adjusted P-values based on Hommel’s procedure. As usual, the p;
are the ordered, unadjusted P-values. Let «, be the final adjusted P-values.
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1. Initially set a; = p; for all i.
2. Foreachm=n,(n—1),...,2 (in that order), do the following:

2a. For i > (n — m), (i) Calculate values ¢; = (mp;)/(m + i — n).
(i) Find the smallest of the above ¢; values; call it Cpin.
(iii) If a; < cmin, then let @, = Cuin.

2b. Fori < (n — m), (i) Let ¢; = min(Cuin, Mp;).
(ii) If @; < ¢;, then let a; = ¢;.

The basic rationale of the algorithm is to start with unadjusted P-values (step 1) and to adjust them
upward as necessary while evaluating Simes test P-values for various subsets of hypotheses. (Recall
that the adjusted P-value is the largest Simes test P-value encountered during the closed test procedure.)
The upward revisions occur in steps 2a(iii) and 2b(ii). In step 2a, “i > (n — m)” selects the largest m
P-values, which might be called the “very least significant subset of size m” or VLSS, for short. ¢pin
is just the Simes test P-value for this subset. For the hypotheses within the VLSS,,, a; can be no
smaller than cni,, thus the upward revision in step 2a(iii). Step 2b considers hypotheses that are
outside the current VLSS,,. The c; of step 2b(i) is just the Simes test P-value for the “least significant
subset of size m that contains H;,” obtained by substituting p; for the smallest unadjusted P-value in
the VLSS,,. Again, a; can be no smaller than ¢;, so upward revision occurs in step 2b(ii).





