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SAMUELSON'S FALLACY OF LARGE NUMBERS 
AND OPTIONAL STOPPING 
Erol A. Pekoz 

ABSTRACT 

Accepting a sequence of independent positive mean bets that are individually 
unacceptable is what Samuelson called a fallacy of large numbers. Recently, 
utility functions were characterized where this occurs rationally, and exam- 
ples were given of utility functions where any finite number of good bets 
should never be accepted.1 Here the author shows how things change if you 
are allowed the option to quit early: Subject to some mild conditions, you 
should essentially always accept a sufficiently long finite sequence of good 
bets. Interestingly, the strategy of quitting when you get ahead does not per- 
form well, but quitting when you get behind does. This sheds some light on 
more possible behavioral reasons for Samuelson's fallacy, as well as strategies 
for handling a series of sequentially observed good investments. 

INTRODUCTION AND OVERVIEW 

Samuelson (1963) told a story in which he offered a colleague a better than 50-50 chance 
of winning $200 or losing $100. The colleague rejected the bet, but said he would be 
willing to accept a string of 100 such bets. Samuelson argued that the colleague was 
irrationally applying the law of averages to a sum, and this perhaps has led to a more 
widely held perception that accepting a sequence of good bets when a single one 
would be rejected is a "fallacy of large numbers." 

Since then a number of authors have studied this phenomenon. Samuelson (1989) 
gave examples of utility functions where a single bet is unacceptable but a sufficiently 
long finite sequence of good bets will be accepted. Also given were utility functions 
where a long sequence of good bets is never acceptable: Consider the utility function 
U(x) = -2-x and bets giving a 50 percent chance of losing $1 or winning $(1 + E), 
for a sufficiently small e > 0. It can be shown that expected utility decreases with 
each additional bet made, even though the bets are favorable and the utility function 
is increasing. Pratt and Zeckhauser (1987) studied the related property they labeled 
"proper risk aversion," where investors unwilling to make a single bet will also be 
unwilling to make more than one independent bet of the same type. 
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referee. 
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Nielsen (1985) found necessary and sufficient conditions for a gambler with a concave 
utility function to eventually accept a sequence of bounded good bets, and Lippman 
and Mamer (1988) extended this to unbounded, identically distributed bets. Recently 
Ross (1999) extended this to independent but nonidentically distributed bets. The 
essential idea given in Lippman and Mamer (1988) and Ross (1999) is that if the utility 
function decreases faster than exponentially in the negative direction, the small risk of a 
loss can be magnified enough to overwhelm the benefits of a gain even for arbitrarily 
long sequences of good bets. Gollier (1996) gave some related results on how the 
availability of future optional bets can increase the attractiveness of a current bet, but 
the eventual attractiveness of a sufficiently large number of optional good bets has 
not been directly studied. See Bodie (1995) for a discussion of related phenomena 
surrounding long-term stock market investing. 

Here the author shows what happens when the gambler has the option to quit early: 
A sufficiently long sequence of good bets should always be accepted, meaning that 
given a sequence of positive mean bets, for sufficiently large n you should always 
agree to sequentially make the first n of them with the option to quit early. This holds 
provided the gambler's utility function is not bounded from above, the expected utility 
of a single bet is finite, and a condition on the bet means and variances holds. 

This result does not hold in the setting of Ross (1999) without a stopping option. There 
the total number of bets to be made is viewed as fixed in advance, while in the setting 
herein it is viewed as variable up to some maximum number that is fixed in advance. 
Note that the gambler is not allowed to play as long as it takes to get ahead, but is 
only allowed a maximum of n bets, which must be fixed in advance. 

It is interesting to note that the strategy of quitting when you reach some large wealth 
level does not perform well. This is because even with arbitrarily long sequences 
of good bets, there can always be some small chance that the game ends with a very 
large loss, and a utility function can always be found that magnifies this loss more than 
enough to make the game unacceptable. One uses the strategy of quitting whenever the 
gambler's wealth goes below the starting wealth, and for sufficiently long sequences 
of good bets, the benefit of large gains always eventually overwhelms the risk of 
losses. 

As a final note, much controversy exists over Samuelson's fallacy and the behavioral 
issues surrounding it. Benartzi and Thaler (1999), for example, used it as an example 
illustrating the limitations of expected utility theory in explaining behavior. This article 
shows that if faced with the opportunity to play a long sequence of favorable bets with 
the option to quit early, accepting the game is rational from an expected utility point 
of view. 

The organization of the article is as follows. The next section contains the main 
result. The "Multiplicative Gambles" section has an analogous result for multiplicative 
payoffs. The "Summary" section summarizes the conclusions, and the "Appendix" 
section provides the proofs. 

MAIN RESULT 

Consider an infinite sequence of available bets, and let Sn be the wealth of a gambler 
who makes the first n bets. Ross (1999) defines a utility function U to have the Eventual 
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Acceptance Property (EAP) if 

E[U(S,)] > U(0) for some n > 0, 

meaning for some n the gambler will be willing to make the first n bets. Expanding on 
this notion, say that the utility function has the Eventual Acceptance with Stopping 
Option Property (EASOP) if 

E[U(STAn)] > U(0) for some n > 0 and stopping time T, 

where x A y denotes min(x,y), meaning that for some fixed n the gambler will be 
willing to make the first n bets with the option to stop early at any time, knowing the 
outcomes of all previous bets. Note that in the former case the gambler is required to 
agree to make all n bets in advance, whereas in the latter case the gambler agrees to 
make up to n sequential bets with the option to stop at any time along the way. 

Here the concern is only with sequences of positive mean bets, which are represented 
as a sequence of independent random variables X1,X2,... with means g/i satisfying 
/i = infi [/i > 0, and first let Sn = 1-inl Xi denote the wealth of a gambler after the nth 
bet is made. Ross (1999) studied sequences of such positive mean bets and showed, 
subject to some additional side conditions, that the EAP holds if and only if a concave 
utility function, U, satisfies 

lim U(x)eYx 0 
X-00+ -O 

for all y > 0. This type of condition was also previously given in Lippman and Mamer 
(1988, Theorem 4). The related side condition requiring finite bet variance is discussed 
in Lippman and Mamer (1988, Example 2). 

More examples where the EAP does not hold can be easily created from this, such as 
when U(x) = -e-x on (-oo,0) and is arbitrary above 0, preserving concavity. Letting, 
for example, Xi - N(, 1), a straightforward computation (see Ross, 1999), shows that 
the expected utility of the sequence Sn approaches -oc exponentially in n. 

A consequence of the main result below is that the story is different for EASOP: With 
a sequence of good bets (and some side conditions), essentially all unbounded utility 
functions satisfy the EASOP. For sufficiently large n a gambler should always be willing 
to sequentially make the first n bets with the option to stop early. The author now 
formally states the main result. 

Theorem 1. Let X1,X2, ... be a sequence of independent random variables with means Ai and 
variances ai2, and let the wealth after the nth bet be Sn = 1i=_ Xi. Suppose 

/, = inf/ii > 0 (1) 

and 

00 

i2 / i2 < oo. (2) 
i=1 
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If a utility function, U, satisfies 

lim U(x) = oo (3) 
X-> 00 

and 

a = inf E[U(Xi)]> -oo, (4) 
i 

then the EASOP holds. 

Proof: See Appendix. 

This means that, while for some utility functions it is rational to reject even an arbi- 

trarily large number of sequential good bets, it is usually not rational if you have the 
option to quit early. This has implications for any sequentially observed investment 
situations-including, for example, investments made over a lifetime. 

The intuition for the result is as follows. For the EAP not to hold, the utility function 
must decrease faster than an exponential function in the negative direction. This means 
that when losses are extremely costly, even with an arbitrarily long sequence of good 
bets the risk of incurring losses overwhelms the benefits of the gains. If early stopping 
is allowed, the gambler can always stop before losses get too severe, and this cuts the 
risk far enough to make a sufficiently long sequence of good bets attractive. 

Note 1. Condition (2) is satisfied when there is a uniform bound on the variances; i.e., 
when 

o2 < o, Vi. 

Note 2. For the proof, use the rule of stopping when wealth first goes below zero. 
Some condition like (2) is needed for this rule because if the variances increase too 
quickly, it may be too easy to go below zero even at high wealth levels. For example, 
suppose 

log2x x>0 
U(x)= -10 x<0 

10 x=0 

and 

X f +2i with probability 2/3 

X 
~ 

-2' with probability 1/3. 

In this case the rule will not work well. Starting with zero, it is easy to see that any time 
you lose a bet, your total wealth will be negative, and then expected utility equals 

log2(2n+1 - 1)(2/3)n - 10(1 -(2/3)n), 

which can be seen to be negative for all n > 1. 

MULTIPLICATIVE GAMBLES 

In many situations, gambles are multiplicative rather than additive. The same result 
as Theorem 1 essentially holds. 
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Theorem 2. Let X1,X2, ... be a sequence of independent random variables with Li = 
E[log(Xi)] and 0a2 = Var(log(Xi)), and let the wealth after the nth bet be Sn = lit1 Xi. 
Suppose /u = infi /zi > 0 and i-1 a2 / i2 < oo. If a utility function, U, satisfies Equations (3) 
and (4) above, then the EASOP holds for any such sequence of multiplicative bets. 

Proof: See Appendix. 

SUMMARY 

While examples of utility functions exist in which very large numbers of good bets 
should not be accepted, no such utility functions exist if stopping early is allowed. A 
good stopping strategy for this turns out to be "quit while you're behind" rather than 
the perhaps more intuitive "quit while you're ahead." This is subject to the condition 
that utility functions are not bounded from above, any single bet has finite expected 
utility, and a mild condition on the payoff means and variances holds. 

The author also mentions the idea that if someone given the option to make a suf- 
ficiently large number of good bets believes he or she has the option to stop early, 
accepting the game is rational. This may partly explain Samuelson's fallacy, the per- 
ception that a large sequence of good bets should always be accepted. 

APPENDIX 

Proof of Theorem 1: Without loss of generality, assume that the gambler starts at 
wealth level 0 with U(0) = 0. Define the stopping time T so that the gambler makes 
up to a total of n bets but will quit if the wealth ever goes below zero. Thus 

T = n A min{i > 1 : Si < 0}, 

where XAy denotes min(x, y). It will be shown that for sufficiently large n, E[U(ST)] > 0 
and hence the EASOP holds. 

First, let 

A = {ST > L} 

denote the event the gambler's wealth ends above L, for some fixed L. Compute the 
expected utility of the final wealth by conditioning using 

E[U(ST)] = E[U(ST)IA]P(A) + E[U(ST)IAc]P(Ac), (Al) 

where Ac denotes the complement of A. 

Use a slight generalization of the strong law of large numbers, which appears, for 
example, in Durrett (1996, p. 69, Exercise 8.4), stating that if X1,X2, ... are independent 
mean 0 random variables satisfying condition (2) then Sk/ k --- 0 as k -- oo, where -> 
denotes convergence with probability 1. 

Applying this to the mean-zero variables (Xi - wi) obtains 

k 
(Sk- Ei)/k -- 0 

i=1 
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and thus 
k 

Sk/k - Y ,lti/k > lt, 
i=l 

which implies 

VI > O, 3m: P(Sk > k/t, Vk > m) > 1 - E. (A2) 

Let e = 1/2 and use Equation (A2) to find an m so that 

P(Sk > k,/, Vk > m) > 1/2. (A3) 

Using this choice of m, let 

1 m 
P = -Il P(Xi > it), (A4 (A4) 2 i=1 

and note that E[Xi] > it implies p > 0. Then by Equation (3), pick L sufficiently large 
so that 

U(L) > -a/p, (A5) 

and finally pick n sufficiently large so that n > max(m, L/,t). 

Now, because this choice of n gives nit > L, 

P(A) > P(Sn > L,Sk > kit, ?k > 1) 
= P(Sk > ki, ?k > 1) 
> P(B)P(CIB), 

where 
B = {Xk > 1,Vk: 1 < k_< m} 

and 
C = {Sk > k,a, Vk > m}. 

A straightforward coupling argument gives P(CIB) > P(C), and by Equation (A3), 
P(C) > 1/2. In addition, clearly P(B) = 2p, and combining these, P(A) > p. 
Because U is nondecreasing in x, one must have E[U(ST)JA] > U(L), and condition (4) 
also gives E[U(ST)IAC] > a. Thus by Equation (Al) we have 

E[U(ST)] > a + U(L)p > 0, (A6) 

where the final inequality follows from the choice of L in Equation (A5). Note that 
for the first inequality of Equation (A6), assume a < 0; otherwise the theorem would 
trivially hold with T = 1. This establishes the result. ? 

Proof of Theorem 2: Follows by applying Theorem 1 to the logarithms of the 
variables Xi. ? 
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