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Abstract� The areas of On�Line Algorithms and Machine Learning are
both concerned with problems of making decisions about the present
based only on knowledge of the past� Although these areas di�er in terms
of their emphasis and the problems typically studied� there are a collec�
tion of results in Computational Learning Theory that 	t nicely into the

on�line algorithms� framework� This survey article discusses some of the
results� models� and open problems from Computational Learning The�
ory that seem particularly interesting from the point of view of on�line
algorithms�
The emphasis in this article is on describing some of the simpler� more in�
tuitive results� whose proofs can be given in their entirity� Pointers to the
literature are given for more sophisticated versions of these algorithms�

� Introduction

The areas of On�Line Algorithms and Machine Learning are both concerned with
problems of making decisions from limited information� Although they di�er in
terms of their emphasis and the problems typically studied� there are a collection
of results in Computational Learning Theory that �t nicely into the �on�line al�
gorithms� framework� This survey article discusses some of the results� models�
and open problems from Computational Learning Theory that seem particularly
interesting from the point of view of on�line algorithms� This article is not meant
to be comprehensive� Its goal is to give the reader a sense of some of the inter�
esting ideas and problems in this area that have an �on�line algorithms� feel to
them�

We begin by describing the problem of �predicting from expert advice�� which
has been studied extensively in the theoretical machine learning literature� We
present some of the algorithms that have been developed and that achieve quite
tight bounds in terms of a competitive ratio type of measure� Next we broaden
our discussion to consider several standard models of on�line learning from exam�
ples� and examine some of the key issues involved�We describe several interesting
algorithms for on�line learning� including the Winnow algorithm and an algo�
rithm for learning decision lists� and discuss issues such as attribute�e�cient
learning and the in�nite attribute model� and learning target functions that
change over time� Finally� we end with a list of important open problems in the
area and a discussion of how ideas from Computational Learning Theory and
On�Line Algorithms might be fruitfully combined�

To aid in the �ow of the text� most of the references and discussions of history
are placed in special �history� subsections within the article�



� Predicting from Expert Advice

We begin with a simple� intuitive problem� A learning algorithm is given the
task each day of predicting whether or not it will rain that day� In order to
make this prediction� the algorithm is given as input the advice of n �experts��
Each day� each expert predicts yes or no� and then the learning algorithm must
use this information in order to make its own prediction 	the algorithm is given
no other input besides the yes
no bits produced by the experts�� After making
its prediction� the algorithm is then told whether or not� in fact� it rained that
day� Suppose we make no assumptions about the quality or independence of
the experts� so we cannot hope to achieve any absolute level of quality in our
predictions� In that case� a natural goal instead is to perform nearly as well as the
best expert so far� that is� to guarantee that at any time� our algorithm has not
performed much worse than whichever expert has made the fewest mistakes to
date� In the language of competitive analysis� this is the goal of being competitive
with respect to the best single expert�

We will call the sequence of events in which the algorithm 	� receives the
predictions of the experts� 	�� makes its own prediction� and then 	�� is told
the correct answer� a trial� For most of this discussion we will assume that
predictions belong to the set f�� g� though we will later consider more general
sorts of predictions 	e�g�� many�valued and real�valued��

��� A Simple Algorithm

The problem described above is a basic version of the problem of �predicting from
expert advice� 	extensions� such as when predictions are probabilities� or when
they are more general sorts of suggestions� are described in Section ��� below��
We now describe a simple algorithm called the Weighted Majority algorithm�
This algorithm maintains a list of weights w�� � � �wn� one for each expert� and
predicts based on a weighted majority vote of the expert opinions�

The Weighted Majority Algorithm 	simple version�

� Initialize the weights w�� � � � � wn of all the experts to �
�� Given a set of predictions fx�� � � � � xng by the experts� output the pre�

diction with the highest total weight� That is� output  if
X

i�xi��

wi �
X

i�xi��

wi

and output � otherwise�
�� When the correct answer � is received� penalize each mistaken expert

by multiplying its weight by ��� That is� if xi �� �� then wi � wi��� if
xi � � then wi is not modi�ed�
Goto ��

Theorem�� The number of mistakes M made by the Weighted Majority algo�

rithm described above is never more than ���	m� lgn�� where m is the number

of mistakes made by the best expert so far�



Proof� Let W denote the total weight of all the experts� so initiallyW � n� If
the algorithmmakes a mistake� this means that at least half of the total weight of
experts predicted incorrectly� and therefore in Step �� the total weight is reduced
by at least a factor of ��� Thus� if the algorithm makes M mistakes� we have�

W � n	����M � 	�

On the other hand� if the best expert has made m mistakes� then its weight is
��m and so clearly�

W � ��m� 	��

Combining 	� and 	�� yields ��m � n	����M and therefore�

M � �
lg�����	m � lgn�

� ���	m� lgn�ut

��� A Better Algorithm

We can achieve a better bound than that described above by modifying the
algorithm in two ways� The �rst is by randomizing� Instead of predicting the
outcome with the highest total weight� we instead view the weights as probabil�
ities� and predict each outcome with probability proportional to its weight� The
second change is to replace �multiply by ��� with �multiply by �� for a value
� to be determined later�

Intuitively� the advantage of the randomized approach is that it dilutes the
worst case� Previously� the worst case was that slightly more than half of the
total weight predicted incorrectly� causing the algorithm to make a mistake and
yet only reduce the total weight by ��� Now� there is roughly a ����� chance
that the algorithm will predict correctly in this case� and more generally� the
probability that the algorithm makes a mistake is tied to the amount that the
weight is reduced�

A second advantage of the randomized approach is that it can be viewed as
selecting an expert with probability proportional to its weight� Therefore� the
algorithm can be naturally applied when predictions are �strategies� or other
sorts of things that cannot easily be combined together� Moreover� if the �ex�
perts� are programs to be run or functions to be evaluated� then this view speeds
up prediction since only one expert needs to be examined in order to produce
the algorithm�s prediction 	although all experts must be examined in order to
make an update of the weights�� We now formally describe the algorithm and
its analysis�

The Weighted Majority Algorithm 	randomized version�
� Initialize the weights w�� � � � � wn of all the experts to �
�� Given a set of predictions fx�� � � � � xng by the experts� output xi with

probability wi�W � where W �
P

iwi�



�� When the correct answer � is received� penalize each mistaken expert by
multiplying its weight by ��
Goto ��

Theorem�� On any sequence of trials� the expected number of mistakes M
made by the Randomized Weighted Majority algorithm described above satis�es�

M � m ln	��� � lnn

� �

where m is the number of mistakes made by the best expert so far�

For instance� for � � ��� we get an expected number of mistakes less than
���m�� lnn� and for � � ��� we get an expected number of mistakes less than
��m � � lnn� That is� by adjusting �� we can make the �competitive ratio�
of the algorithm as close to  as desired� at the expense of an increase in the
additive constant� In fact� by adjusting � dynamically using a typical �guess and
double� approach� one can achieve the following�

Corollary �� On any sequence of trials� the expected number of mistakes M
made by a modi�ed version of the Randomized Weighted Majority algorithm

described above satis�es�

M � m � lnn�O	
p
m lnn�

where m is the number of mistakes made by the best expert so far�

Proof of Theorem �� De�ne Fi to be the fraction of the total weight on the wrong
answers at the ith trial� Say we have seen t examples� Let M be our expected
number of mistakes so far� so M �

Pt
i��Fi�

On the ith example� the total weight changes according to�

W �W 	� 	� ��Fi�

since we multiply the weights of experts that made a mistake by � and there is
an Fi fraction of the weight on these experts� Hence the �nal weight is�

W � n

tY

i��

	� 	� ��Fi�

Let m be the number of mistakes of the best expert so far� Again� using the
fact that the total weight must be at least as large as the weight on the best
expert� we have�

n

tY

i��

	� 	� ��Fi� � �m 	��



Taking the natural log of both sides we get�

lnn�
tX

i��

ln	� 	� ��Fi� � m ln �

� lnn�
tX

i��

ln	� 	� ��Fi� � m ln	���

� lnn � 	� ��
tX

i��

Fi � m ln	���

M � m ln	��� � lnn

� �

Where we get the third line by noting that � ln	 � x� � x� and the fourth by
using M �

Pt
i�� Fi� ut

��� History and Extensions

Within the Computational Learning Theory community� the problem of pre�
dicting from expert advice was �rst studied by Littlestone and Warmuth �����
DeSantis� Markowsky and Wegman ���� and Vovk ����� The algorithms described
above as well as Theorems  and � are from Littlestone and Warmuth ����� and
Corollary �� as well as a number of re�nements� are from Cesa�Bianchi et al�
���� Perhaps one of the key lessons of this work in comparison to work of a
more statistical nature is that one can remove all statistical assumptions about
the data and still achieve extremely tight bounds 	see Freund ����� This prob�
lem and many variations and extensions have been addressed in a number of
di�erent communities� under names such as the �sequential compound decision
problem� ���� ���� �universal prediction� ���� �universal coding� ����� �univer�
sal portfolios� ���� and �prediction of individual sequences�� the notion of the
competitiveness is also called the �min�max regret� of an algorithm� A web page
uniting some of these communities and with a discussion of this general problem
now exists at http���www�stat�wharton�upenn�edu�Seq���

A large variety of extensions to the problem described above have been stud�
ied� For example� suppose that each expert provides a real number between �
and  as its prediction 	e�g�� interpret a real number p as the expert�s belief
in the probability of rain� and suppose that the algorithm also may produce a
real number between � and � In this case� one must also specify a loss function
� what is the penalty for predicting p when the outcome is x� Some common
loss functions appropriate to di�erent settings are the absolute loss� jp� xj� the
square loss� 	p�x��� and the log loss� �x ln p� 	�x� ln	� p�� Papers of Vovk
���� ���� Cesa�Bianchi et al� ��� �� and Foster and Vohra ��� describe optimal
algorithms both for these speci�c loss functions and for a wide variety of general
loss functions�

A second extension of this framework is to broaden the class of algorithms
against which the algorithm is competitive� For instance� Littlestone� Long� and



Warmuth ���� show that modi�cations of the algorithms described above are
constant�competitive with respect to the best linear combination of experts�
when the squared loss measure is used� Merhav and Feder ���� show that one can
be competitive with respect to the best o��line strategy that can be implemented
by a �nite state machine�

Another variation on this problem is to remove all semantics associated with
speci�c predictions by the experts and to simply talk about losses� In this vari�
ation� the learning algorithm is required in each iteration to select an expert to
�go with�� For instance� suppose we are playing a ��player matrix game as the
row player� Each row can be viewed as an expert� To play the game we proba�
bilistically select some expert 	row� to use� and then� after the game is done� we
�nd out our loss and that of each expert� If we are playing repeatedly against
some adversary� we then would get another opportunity to probabilistically se�
lect an expert to use and so forth� Freund and Schapire show that extensions
of the randomized Weighted Majority Algorithm discussed above can be made
to �t nicely into this scenario ��� 	see also the classic work of Blackwell �����
Another scenario �tting this framework would be a case where each expert is
a page�replacement algorithm� and an operating system needs to decide which
algorithm to use� Periodically the operating system computes losses for the var�
ious algorithms that it could have used and based on this information decides
which algorithm to use next�

Ordentlich and Cover ��� ���� describe strategies related to the random�
ized Weighted Majority algorithm for a problem of on�line portfolio selection�
They give an on�line algorithm that is optimally competitive against the best
�constant�rebalanced portfolio� 	CRP�� Their algorithm can be viewed as cre�
ating one expert for every CRP and then allocating its resources among them�
This setting has the nice property that the market automatically adjusts the
weights� so the algorithm itself just initially divides its funds equally among all
in�nitely�many CRPs and then lets it sit� A simple analysis of their algorithm
with extensions to transaction costs is given in ����

� On�Line Learning from Examples

The previous section considered the problem of �learning from expert advice��
We now broaden our focus to consider the more general scenario of on�line learn�
ing from examples� In this setting there is an example space X � typically f�� gn�
Learning proceeds as a sequence of trials� In each trial� an example x � X is
presented to the learning algorithm� The algorithm then predicts either  or �
	whether the example is positive or negative� and �nally the algorithm is told
the true label � � f�� g� The algorithm is penalized for each mistake made� i�e��
whenever its prediction di�ers from �� Our goal is to make as few mistakes as
possible� Typically� the presentation of examples will be assumed to be under the
control of an adversary� This setting is also broadly called the Mistake Bound
learning model�

The scenario described so far is not too di�erent from the standard framework



of On�Line Algorithms� we are given an on�line sequence of tasks and we want
our penalty to be not too much larger than that of the best o��line algorithm�
However� for the task of predicting labels� the �best we could do if there was no
hidden information� would be to make zero mistakes� whereas no on�line algo�
rithm could do better than make mistakes half the time if the labels were chosen
randomly� Thus� some further restriction on the problem is necessary in order to
make nontrivial statements about algorithms� Several natural restrictions are�
	� to restrict the labels to being determined by some �reasonable� function of
the examples� 	�� to restrict the o��line algorithms being compared against to
some �reasonable� class of algorithms� and 	�� to restrict the adversary to having
some sort of randomness in its behavior� Each of these restrictions corresponds
to a standard model studied in Computational Learning Theory� and we describe
these in more detail below�

To describe these models� we need the notion of a concept class� A concept

class C is simply a set of Boolean functions over the domain X 	each Boolean
function is sometimes called a concept�� along with an associated representa�
tion of these functions� For instance� the class of disjunctions over f�� gn is the
class of all functions that can be described as a disjunction over the variables
fx�� � � � � xng� The class of DNF formulas contains all Boolean functions� each
with a description length equal to the size of its minimum DNF formula repre�
sentation� In the discussion below� we will use n to denote the description length
of the examples� and size	c� to denote the description length of some concept
c � C�

We now describe three standard learning problems�

Learning a concept class C �in the Mistake Bound model�� In this set�
ting� we assume that the labels attached to examples are generated by some
unknown target concept c � C� That is� there is some hidden concept c be�
longing to the class C� and in each trial� the label � given to example x is
equal to c	x�� The goal of the learning algorithm is to make as few mistakes
as possible� assuming that both the choice of target concept and the choice
of examples are under the control of an adversary� Speci�cally� if an algo�
rithm has the property that for any target concept c � C it makes at most
poly	n� size	c�� mistakes on any sequence of examples� and its running time
per trial is poly	n� size	c�� as well� then we say that the algorithm learns

class C in the mistake bound model� If� furthermore� the number of mistakes
made is only poly	size	c�� � polylog	n� � that is� if the algorithm is robust
to the presence of many additional irrelevant variables � then the algorithm
is also said to be attribute e�cient�
Algorithms have been developed for learning a variety of concept classes in
the Mistake Bound model� such as disjunctions� k�DNF formulas� decision
lists� and linear threshold functions� Below we will describe a very elegant and
practical algorithm called the Winnow Algorithm� that learns disjunctions
in the mistake bound model and makes only O	r logn� mistakes� where r
is the number of variables that actually appear in the target disjunction�
Thus� Winnow is attribute�e�cient� This algorithm also has the property



that it can be used to track a target concept that changes over time� and
we will describe a sense in which the algorithm can be viewed as being
O	logn� competitive for this task� We will also discuss a few general results
on attribute�e�cient learning and a model known as the in�nite�attribute
model�

Agnostic Learning � Being Competitive with the class C� In this model�
we make no assumptions about the existence of any relationship between the
labels and the examples� Instead� we simply set our goal to be that of per�
forming nearly as well as the best concept in C� This is sometimes called
the agnostic learning model and can be viewed as the problem of learning
a concept class in the presence of adversarial noise� In this article� to use
the terminology from On�Line Algorithms� we will call this the goal of being
competitive with respect to the best concept in C� Speci�cally� let us say that
an algorithm is ��competitive with respect to C if there exists a polynomial p
such that for any sequence of examples and any concept c � C� the number of
mistakes made by the algorithm is at most �mc� p	n� size	c��� where mc is
the number of mistakes made by concept c� The algorithm should have run�
ning time per trial polynomial in n and size	c� where c is the best concept
in C on the data seen so far�
If we consider the class C of single�variable concepts over f�� gn 	that is� C
consists of n concepts fc�� � � � � cng where ci	x� � xi�� then this is really the
same as the problem of �learning from expert advice� discussed in Section
� 	just think of the example as the list of predictions of the experts�� and
the algorithms of Section � show that for all � � �� one can achieve 	 � ���
competitiveness with respect to the best concept in this class�
It is worth noting that if we do not care about computational complexity
	i�e�� we remove the restriction that the algorithm run in polynomial time
per trial� then we can achieve 	 � ���competitiveness for any concept class
C over f�� gn� Speci�cally� we have the following theorem�

Theorem�� For any concept class C over f�� gn and any � � � there is

a non�polynomial time algorithm that on any sequence of examples� for all

c � C� makes at most 	 � ��mc �O	size	c�� mistakes�

Proof� We simply associate one �expert� with each concept c � C� and run
the Randomized Weighted Majority algorithm described in Section � with
the modi�cation that the initial weight given to a concept c is ���size�c��
This assignment of initial weights means that initially� the total weight W
is at most � Therefore� inequality 	�� is replaced by the statement that for
any concept c � C� after t trials we have�

tY

i��

	� 	� ��Fi� � �mc���size�c�

where mc is the number of mistakes make by c� Solving this inequality as
in the proof of Theorem � yields the guarantee that for any c � C� the total



number of mistakes M made by the algorithm satis�es�

m � mc ln	��� � �size	c�

� �
�

On the other hand� this algorithm clearly does not run in polynomial time
for most interesting concept classes since it requires enumerating all of the
possible concepts c � C�� ut
A second fact worth noting is that in many cases there are NP�hardness
results if we require the learning algorithm to use representations from the
class C� For instance� it is NP�hard� given a set S of labeled examples� to
�nd the disjunction that minimizes the number of disagreements with this
sample� However� this does not necessarily imply that it is NP�hard to achieve
a competitive ratio approaching  for learning with respect to the class of
disjunctions� since the hypothesis used by the learning algorithm need not
be a disjunction�

As mentioned in the Open Problems section� it is unknown whether it is
possible to achieve a good competitive ratio with respect to the class of
disjunctions with a polynomial time algorithm�

Learning C in the presence of random noise� This model lies somewhat in
between the two models discussed so far� In this model� we assume that
there is a target concept c � C just like in the standard Mistake Bound
model� However� after each example is presented to the learning algorithm�
the adversary �ips a coin and with probability � 	 ��� gives the algorithm
the wrong label� That is� for each example x� the correct label c	x� is seen
with probability ��� and the incorrect label �c	x� is seen with probability
�� independently for each example� Usually� this model is only considered for
the case in which the adversary itself is restricted to selecting examples
according to some �xed 	but unknown� distribution D over the instance
space� We will not elaborate further on this model in this article� since the
results here have less of an �on�line algorithms� feel to them� except to say
that a very nice theory has been developed for learning in this setting� with
some intriguing open problems� including one we list in Section ��

One �nal point worth mentioning is that there are a collection of simple re�
ductions between many standard concept classes� For instance� if one has an algo�
rithm to learn the class of monotone disjunctions 	functions such as x��x	�x
��
then one can also learn non�monotone disjunctions 	like x� � x	�� conjunctions�
k�CNF formulas for constant k� and k�DNF formulas for constant k� by just per�
forming a transformation on the input space� Thus� if several classes are related
in this way� we need only discuss the simplest one�

� In the PAC learning setting� there is a similar but simpler fact that one can learn
any concept class in the presense of malicious noise by simply 	nding the concept in
C that has the fewest disagreements on the sample�



��� Some Simple Algorithms

As an example of learning a class in the Mistake Bound model� consider the
following simple algorithm for learning monotone disjunctions� We begin with
the hypothesis h � x��x�� � � ��xn� Each time a mistake is made on a negative
example x� we simply remove from h all the variables set to  by x� Notice that
we only remove variables that are guaranteed to not be in the target function�
so we never make a mistake on a positive example� Since each mistake removes
at least one variable from h� this algorithm makes at most n mistakes�

A more powerful concept class is the class of decision lists� A decision list is
a function of the form� �if �� then b�� else if �� then b�� else if �� then b�� ����
else bm�� where each �i is a literal 	either a variable or its negation� and each
bi � f�� g� For instance� one possible decision list is the rule� �if x� then positive�
else if x	 then negative� else positive�� Decision lists are a natural representation
language in many settings and have also been shown to have a collection of useful
theoretical properties�

The following is an algorithm that learns decision lists� making at mostO	rn�
mistakes if the target function has r relevant variables 	and therefore has length
O	r��� The hypotheses used by the algorithm will be a slight generalization of
decision lists in which we allow several �if
then� rules to co�exist at the same
level� if several �if� conditions on the same level are satis�ed� we just arbitrarily
choose one to follow�

� Initialize h to the one�level list� whose level contains all �n � � possible
�if
then� rules 	this includes the two possible ending rules��

�� Given an example x� look at the �rst level in h that contains a rule whose
�if� condition is satis�ed by x� Use that rule for prediction 	if there are
several choices� choose one arbitrarily��

�� If the prediction is mistaken� move the rule that was used down to the next
level�

�� Return to step ��

This algorithm has the property that at least one �if
then� rule moves one
level lower in h on every mistake� Moreover� notice that the very �rst rule in
the target concept c will never be moved� and inductively� the ith rule of c will
never move below the ith level of h� Therefore� each �if
then� rule will fall at
most L levels� where L is the length of c� and thus the algorithm makes at most
O	nL� � O	nr� mistakes�

��� The Winnow Algorithm

We now describe a more sophisticated algorithm for learning the class of 	mono�
tone� disjunctions than that presented in the previous section� This algorithm�
called the Winnow Algorithm� is designed for learning with especially few mis�
takes when the number of relevant variables r is much less than the total number
of variables n� In particular� if the data is consistent with a disjunction of r out



of the n variables� then the algorithm will make at most O	r logn� mistakes� Af�
ter describing this result� we then show how the Winnow algorithm can be used
to achieve in essence an O	logn� competitive ratio for learning a disjunction
that changes over time� We also discuss the behavior of Winnow in the agnostic
setting� Variations on this algorithm can be used to learn Boolean threshold
functions as well� but we will stick to the problem of learning disjunctions to
keep the analysis simpler�

Like the Weighted Majority algorithm discussed earlier� the Winnow algo�
rithm maintains a set of weights� one for each variable�

The Winnow Algorithm 	a simple version�
� Initialize the weights w�� � � � � wn of the variables to �
�� Given an example x � fx�� � � � � xng� output  if

w�x� � w�x� � � � �� wnxn � n

and output � otherwise�
�� If the algorithm makes a mistake�

	a� If the algorithm predicts negative on a positive example� then for
each xi equal to � double the value of wi�

	b� If the algorithm predicts positive on a negative example� then for
each xi equal to � cut the value of wi in half�

�� Goto ��

Theorem	� The Winnow Algorithm learns the class of disjunctions in the Mis�

take Bound model� making at most � � �r	 � lgn� mistakes when the target

concept is a disjunction of r variables�

Proof� Let us �rst bound the number of mistakes that will be made on positive
examples� Any mistake made on a positive example must double at least one of
the weights in the target function 	the relevant weights�� and a mistake made
on a negative example will not halve any of these weights� by de�nition of a
disjunction� Furthermore� each of these weights can be doubled at most  � lgn
times� since only weights that are less than n can ever be doubled� Therefore�
Winnow makes at most r	 � lgn� mistakes on positive examples�

Now we bound the number of mistakes made on negative examples� The
total weight summed over all the variables is initially n� Each mistake made on
a positive example increases the total weight by at most n 	since before doubling�
we must have had w�x�� � � �wnxn 	 n�� On the other hand� each mistake made
on a negative example decreases the total weight by at least n�� 	since before
halving� we must have had w�x�� � � ��wnxn � n�� The total weight never drops
below zero� Therefore� the number of mistakes made on negative examples is at
most twice the number of mistakes made on positive examples� plus �� That is�
���r	� lgn�� Adding this to the bound on the number of mistakes on positive
examples yields the theorem� ut

How well does Winnow perform when the examples are not necessarily all
consistent with some target disjunction� For a given disjunction c� let us de�ne



mc to be the number of mistakes made by concept c� and let Ac be the number
of attribute errors in the data with respect to c� which we de�ne as follows�
For each example labeled positive but that satis�es no relevant variables of c�
we add  to Ac� for each example labeled negative but that satis�es k relevant
variables of c� we add k to Ac� So� if concept c is a disjunction of r variables�
then mc � Ac � rmc� It is not hard to show that Winnow has the following
behavior for agnostic learning of disjunctions�

Theorem
� For any sequence of examples and any disjunction c� the number of

mistakes made by Winnow is O	Ac � r logn�� where r is the number of relevant

variables for c� Since Ac � rmc� this means that Winnow is O	r��competitive

with respect to the best disjunction of r variables�

In fact� by randomizing and tuning the Winnow algorithm to the speci�c
value of r� one can achieve the following stronger statement�

Theorem�� Given r� one can tune a randomized Winnow algorithm so that

on any sequence of examples and any disjunction c of r variables� the expected

number of mistakes made by the algorithm is

Ac � 	� � o	��
p
Acr ln	n�r�

as Ac�	r ln
n
r ��	�

These kinds of theorems can be viewed as results in a generalization of the
�experts� scenario discussed in Section �� Speci�cally� consider an algorithmwith
access to n �specialists�� On every trial� each specialist may choose to make a
prediction or it may choose to abstain 	unlike the �experts� scenario in which
each expert must make a prediction on every trial�� That is� we can think of the
specialists as only making a prediction when the situation �ts their �specialty��
Using a proof much like that used to prove Theorem �� one can show that a
version of the Winnow algorithm is constant�competitive with respect to the
best set of specialists� where we charge a set one unit for every mistake made by
a specialist in the set� and one unit whenever all specialists in the set abstain�

��� Learning drifting disjunctions

For the problem of learning a static target concept with no noise in the data�
there is no real notion of �competitiveness�� The algorithm just makes some
�xed upper bounded number of mistakes� However� a natural variation on this
scenario� which is also relevant to practice� is to imagine that the target function
is not static and instead changes with time� For instance� for the case of learning
a disjunction� we might imagine that from time to time� variables are added to or
removed from the target function� In this case� a natural measure of �adversary
cost� is the number of additions and deletions made to the target function� and
the obvious goal is to make a number of mistakes that is not too much larger
than the adversary�s cost�



Speci�cally� consider the following game played against an adversary� There
are n variables and a target concept that initially is the disjunction of zero of
them 	it says everything is negative�� Then� each round of the game proceeds as
follows�

Adversary�s turn� The adversary may change the target concept by adding or
removing some variables from the target disjunction� The adversary pays a
cost of  for each variable added� 	Since the number of variables removed over
time is bounded by the number added over time� we may say that removing
variables is free�� The adversary then presents an example to the learning
algorithm�

Learner�s turn� The learning algorithm makes a prediction on the example
given� and then is told the correct answer 	according to the current target
concept�� The algorithm is charged a cost of  if it made a mistake�

Consider the variation on the Winnow algorithm that never allows any weight
to decrease below ��� that is� when a mistake is made on a negative example�
only weights of value  or more are cut in half� Surprisingly� this Winnow variant
guarantees that its cost is at most O	logn� times the adversary cost� So in a
sense it is O	logn��competitive for this problem� Note that Theorem � can be
viewed as a special case of this in which in its �rst move� the adversary adds r
variables to the target function and then makes no changes from then on�

Theorem� The Winnow variant described above� on any sequence of examples�

makes at most O	cA logn� mistakes� where cA is the adversary�s total cost so far�

Proof� Consider the total weight on all the variables� The total weight is initially
n� Each mistake on a positive example increases the total weight by at most n
and each mistake on a negative example decreases the total weight by at least
n�� 	because

P
wixi � n and at most n�� of this sum can come from weights

equal to ��� so at least n�� of the sum gets cut in half�� Therefore� the number
of mistakes on negative examples is bounded by �	 � Mp� where Mp is the
number of mistakes made on positive examples� So� we only need to bound the
number of mistakes on positives�

Let R denote the set of variables in the current target function 	i�e�� the
currently relevant variables�� and let r � jRj� Consider the potential function


 � r log	�n��
X

i�R

lgwi�

Consider now how our potential function 
 can change� Each time we make
a mistake on a positive example� 
 decreases by at least � Each time we make
a mistake on a negative example� 
 does not change� Each time the adversary
adds a new relevant variable� 
 increases by at most log	�n� �  	log	�n� for
the increase in r and  for the possibility that the new weight wi equals �� so
lgwi � ��� Each time the adversary removes a relevant variable� 
 does not
increase 	and may decrease if the variable removed has weight less than �n��
In summary� the only way that 
 can increase is by the adversary adding a



new relevant variable� and each mistake on a positive example decreases 
 by
at least � furthermore� 
 is initially zero and is always non�negative� Therefore�
the number of mistakes we make on positive examples is bounded by log	�n��
times the adversary�s cost� proving the theorem� ut

��� Learning from String�Valued attributes and the In�nite
Attribute Model

The discussion so far has focused on learning over the instance space X � f�� gn�
I�e�� examples have Boolean�valued attributes� Another common setting is one
in which the attributes are string�valued� that is� X � 	���n� For instance�
one attribute might represent an object�s color� another its texture� etc� If the
number of choices for each attribute is small� we can just convert this to the
Boolean case� for instance by letting �x� � red� be a Boolean variable that is
either true or false in any given example� However� if the number of choices for
an attribute is large or is unknown apriori� this conversion may blow up the
number of variables�

This issue motivates the �in�nite attribute� learning model� In this model�
there are in�nitely many boolean variables x�� x�� x�� � � �� though any given ex�
ample satis�es only �nite number of them� An example is speci�ed by listing the
variables satis�ed by it� For instance� a typical example might be fx�� x
� x��g�
meaning that these variables are true and the rest are false in the example� Let
n be the size of 	the number of variables satis�ed by� the largest example seen
so far� The goal of an algorithm in this setting is to make a number of mistakes
polynomial in the size of the target function and n� but independent of the to�
tal number of variables 	which is in�nite�� The running time per trial should
be polynomial in the size of the target function and the description length of
the longest example seen so far� It is not hard to see that this can model the
situation of learning over 	���n�

Some algorithms in the standard Boolean�attribute setting fail in the in�nite
attribute model� For instance� listing all variables and then crossing o� the ones
found to be irrelevant as in the simple disjunction�learning algorithm presented
in Section �� clearly does not work� The decision�list algorithm presented fails as
well� in fact� there is no known polynomial�time algorithm for learning decision
lists in this setting 	see the Open Problems section��

On the other hand� algorithms such as Winnow can be adapted in a straight�
forward way to succeed in the in�nite attribute model� More generally� the fol�
lowing theorem is known�

Theorem�� Let C be a projection and embedding�closed concept class�� If there

is an attribute�e�cient algorithm for learning C over f�� gn� then C can be

learned in the In�nite�Attribute model�

� This is just a 
reasonableness condition� saying that one can take a concept in C

de	ned on n� variables and embed it into a space with n� � n� variables and still
stay within the class C� and in the reverse direction� one can 	x values of some of
the variables and still have a legal concept� See �� for details�



��	 History

The Winnow algorithm was developed by Littlestone in his seminal paper �����
which also gives a variety of extensions and introduces the Mistake�Bound learn�
ing model� The Mistake Bound model is equivalent to the �extended equivalence
query� model of Angluin ��� and is known to be strictly harder for polynomial�
time algorithms than the PAC learning model of Valiant ���� ��� in which 	among
other di�erences� the adversary is required to select examples from a �xed dis�
tribution ���� Agnostic learning is disussed in �����

Littlestone ���� gives a variety of results on the behavior of Winnow in the
presence of various kinds of noise� The improved bounds of Theorem � are from
Auer and Warmuth ���� The use of Winnow for learning changing concepts is
folklore 	and makes a good homework problem�� Auer and Warmuth ��� provide
a more sophisticated algorithm and analysis� achieving a stronger result than
Theorem �� in the style of Theorem �� The Winnow algorithm has been shown
to be quite successful in practical tasks as well� such as predicting links followed
by users on the Web ���� and a calendar scheduling application ����

The algorithm presented for learning decision lists is based on Rivest�s algo�
rithm for the PAC model ���� adapted to the Mistake Bound model by Little�
stone ���� and Helmbold� Sloan and Warmuth ����� The In�nite�Attribute model
is de�ned in Blum ��� and Theorem � is from Blum� Hellerstein� and Littlestone
����

� Open Problems

� Can the bounds of Corollary � be achieved and improved with a
smooth algorithm� The bound of Corollary � is achieved using a �guess
and double� algorithm that periodically throws out all it has learned so far
and restarts using a new value of �� It would seem more natural 	and likely
to work better in practice� to just smoothly adjust � as we go along� never
restarting from scratch� Can an algorithm of this form be shown to achieve
this bound� preferably with even better constants� 	See ��� for the precise
constants��

�� Can Decision Lists be learned Attribute�E�ciently�Recall from Sec�
tion �� that a decision list is a function of the form� �if �� then b�� else if
�� then b�� else if �� then b�� ���� else bm�� where each �i is a literal 	ei�
ther a variable or its negation� and each bi � f�� g� We saw in Section
�� that decision lists with r relevant variables can be learned with at most
O	rn� mistakes in the mistake�bound model� An alternative approach using
the Winnow algorithm makes O	r�r logn� mistakes� Can decision lists be

learned attribute�e�ciently� I�e�� with mistake bound poly	r� � polylog	n��
�� Can Parity functions be learned Attribute�E�ciently� Let Cparity

denote the class of functions over f�� gn that compute the parity of some
subset of variables� For instance� a typical function in Cparity would be x�




x	 
 x��� It is easy to learn Cparity in the mistake�bound model making
at most n mistakes� by viewing each labeled example as a linear equality
modulo � 	each new example either is linearly dependent on the previous
set and therefore its label can be deduced� or else it provides a new linearly
independent vector�� Can Cparity be learned attribute�e�ciently�

�� Can Decision Lists or Parity functions be learned in the In�nite
Attributemodel� Can either the class of decision lists or the class of parity
functions be learned in the In�nite Attribute model� For the case of decision
lists� you may assume� if you wish� that none of the literals �i are negations
of variables�

�� Is there a converse to Theorem ��

�� Can tolerance to random noise be boosted� Suppose for some concept
class C and some �xed constant noise rate � � � there exists a polynomial
time algorithm A with the following property� for any target concept c � C
and any distribution D on examples� A achieves an expected mistake rate
less than ����p	n� for some polynomial p after seeing polynomiallymany
examples� Does this imply that there must exist a polynomial time algorithm
B that succeeds in the same sense for all constant noise rates � 	 ��� 	See
Kearns ��� for related issues��

�� What Competitive Ratio can be achieved for learning with re�
spect to the best Disjunction� Is there a polynomial time algorithm
that given any sequence of examples over f�� gn makes a number of mis�
takes at most cmdisj � p	n�� where mdisj is the number of mistakes made
by the best disjunction� for some constant c and polynomial p� How about
c � n� or c � r� for some � 	 � where r is the number of relevant vari�
ables in the best disjunction� 	Making nmdisj mistakes is easy using any of
the standard disjunction�learning algorithms� and we saw that the Winnow
algorithm makes O	rmdisj� mistakes��

�� Can Disjunctions be Weak�Learned in the presence of adversarial
noise� For some polynomial p	n� and some constant c � �� does there
exist an algorithm with the following guarantee� Given any sequence of t
examples over f�� gn such that at least a 	� c� fraction of these examples
are consistent with some disjunction over f�� gn� the algorithm makes at
most t��� � �

p�n� � mistakes 	in expectation� if the algorithm is randomized��

That is� given that there exists a disjunction that is �nearly correct� 	say
���� on the data� can the algorithm achieve a performance that is slightly
	�poly� better than guessing� The algorithm may require that t � q	n� for
some polynomial q�

�� Can Linear Threshold Functions be Weak�Learned in the presence
of adversarial noise� Same question as above� except replace �disjunc�
tions� with �linear threshold functions�� An a�rmative answer to this ques�
tion would yield a quasi�polynomial 	npolylog�n�� time algorithm for learning



DNF formulas� and more generally for learning AC� functions� in the PAC
learning model� This implication follows from standard complexity theory
results that show that AC� can be approximated by low�degree polynomi�
als�

� Conclusions

This article has surveyed a collection of problems� models� and algorithms in
Computational Learning Theory that look particularly interesting from the point
of view of On�Line Algorithms� These include algorithms for combining the ad�
vice of experts� the model of on�line agnostic learning 	or learning in the pres�
ence of worst�case noise� and the problem of learning a drifting target concept�
It seems clear that a further crossover of ideas between Computational Learning
Theory and On�Line Algorithms should be possible� Listed below are a few of
the respective strengths and weaknesses of these areas where this crossover may
prove to be especially fruitful�

The notion of state� The notion of an algorithm having a state� where there
is a cost associated with changing state� is central to the area of On�Line
Algorithms� This allows one to study problems in which the decisions made
by an algorithm involve �doing something� rather than just predicting� and
where the decisions made in the present 	e�g�� whether to rent or buy� a�ect
the costs the algorithm will pay in the future� This issue has been virtually
ignored in the Computational Learning Theory literature since that litera�
ture has tended to focus on prediction problems� In prediction problems the
state of an algorithm is usually just its current hypothesis and there is no
natural penalty for changing state� Nonetheless� as Computational Learning
Theory moves to analyze more general sorts of learning problems� it seems
inevitable that the notion of state will begin to play a larger role� and ideas
from On�Line Algorithms will be crucial� Some work in this direction appears
in ����

Limiting the power of the adversary� In the On�Line Algorithms literature�
it is usually assumed that the adversary has unlimited power to choose a
worst�case sequence for the algorithm� In the machine learning setting� it is
natural to assume there is some sort of regularity to the world 	after all� if
the world is completely random� there is nothing to learn�� Thus� one often
assumes that the world produces labels using a function from some limited
concept class� or that examples are are drawn from some �xed distribution�
or even that this �xed distribution is of some simple type� One can then
parametrize one�s results as a function of the adversary�s power� producing
especially good bounds when the adversary is relatively simple� This sort
of approach may prove useful in On�Line Algorithms 	in fact� it already
has� for achieving less pessimistic sorts of bounds for many of the problems
commonly studied�



Limiting the class of o��line algorithms being compared to� In the typ�
ical machine learning setup� if one does not restrict the adversary� then to
achieve any non�trivial bound one must limit the class of o��line algorithms
against which one is competing� This sort of approach may also be useful in
On�Line Algorithms for achieving more reasonable bounds�
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