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Online gradient descent

1 Background

In this lecture, we will present Zinkevich’s Online Convex Optimization analysis of gradient descent.
As background, let us recall the definition of the gradient of a function f : Rn → R. The gradient
itself is a function ∇f : Rn → Rn, which, evaluated at x is:

∇f(x) =
(

df

dx1
(x),

df

dx2
(x), . . . ,

df

dxn
(x)
)

.

In one dimension, the gradient is just the derivative. A function is differentiable if the gradient
exists.

Also a function f : Rn → R is convex if

f(αx + (1− α)x′) ≤ αf(x) + (1− α)f(x′),∀x, y ∈ Rn, α ∈ [0, 1].

Geometrically, this means that if you draw a line segment between the vectors (x, f(x)) and
(x′, f(x′)), the function lies below this line segment. Also, for a convex differentiable function,
we have at any x,

f(x′)− f(x) ≥
(
∇f(x)

)
· (x′ − x). (1)

Geometrically, the above statement means that if you draw the tangent plane to the function at
point x, the function lies above it. (Think about it in one dimension....)

The gradient of a function gives the direction of steepest increase. Thus a natural minimization
algorithm is to go in the direction opposite the gradient a certain amount. For any η ∈ R, the
gradient descent algorithm (for minimizing a function f) with learning rate η, chooses a sequence
of points x1, x2, . . . , such that,

xt+1 = xt − η∇f(xt).

In many cases we are restricted to a bounded convex set S ⊂ Rn, which is the range of f : S → R.
In this case, the above rule may lead us to choose a point x 6∈ S, which is a problem. A common
trick is to move to the closest point to x in the set S, which we call ΠS(x), i.e.,

ΠS(x) = arg minx′∈S‖x− x′‖.

So the official gradient descent update is,

xt+1 = ΠS(xt − η∇f(xt)).

The parameter η is often called the learning rate and the set S is the feasible set.

CMSC 39600 Autumn 2004, Online Algorithms - 1



2 Foreground

Zinkevich gave a nice analysis of online gradient descent. He showed the following. Assume S ⊂ Rn

is a closed convex set of diameter at most D. This means that for every x, x′ ∈ S, ‖x − x′‖ ≤ D.
Then,

Theorem 1 (Zinkevich 02) Consider any sequence of differentiable functions f1, f2, . . . , fT :
S → R such that ‖∇f t(x)‖ ≤ G for any 1 ≤ t ≤ T, x ∈ S, i.e. G is an upper bound on the gradient
magnitudes (known in advance). Then for the following sequence, x1, x2, . . . , xT ,

xt+1 = ΠS(xt − η∇f t(xt)),

where η = D
G
√

T
, the total of the functions is,

T∑
t=1

f t(xt) ≤ min
x∈S

(
T∑

t=1

f t(x)

)
+ DG

√
T

Proof. The convex function has a minimum (at least 1) somewhere in S. Translate space so that
0 is this minimum. This is without loss of generality because translations will not change how the
algorithm works. We now need to bound the regret with respect to

∑
f t(0).

We use the “potential function” method of proof. Define the potential Φt = − 1
2η‖x

t‖2. We will
show that,

f t(xt)− f t(x?) + Φt+1 − Φt ≤ ηG2/2. (2)

Intuitively, we cannot guarantee that on any particular function f t(xt) won’t be much larger than
f t(x?). However, if it is, this means that xt+1 will be much closer to x? than xt was.

Summing from t = 1 to T , the sum telescopes and we have,
T∑

t=1

(
f t(xt)− f t(0)

)
+ ΦT+1 − Φ1 ≤ ηG2T/2.

Since −D2

2η ≤ Φt ≤ 0, this gives,

T∑
t=1

f t(xt) ≤
T∑

t=1

f t(0) +
D2T

2η
+

ηG2T

2

Plugging in η = D
G
√

T
gives the theorem.

It remains to prove (2). This requires two parts. First, we argue that ‖ΠS(x)‖ ≤ ‖x‖. This will
follow from the convexity of S and the fact that the origin is assumed to be in S.

Using the vector law of cosines, ‖u + v‖2 = ‖u‖2 + ‖v‖2 + 2u · v,

Φt+1 − Φt =
1
2η

(‖xt+1‖2 − ‖xt‖2)

≤ 1
2η

(‖xt − η∇f t(xt)‖2 − ‖xt‖2)

=
1
2η

(‖xt‖2 + η2‖∇f t(xt)‖2 − 2η∇f t(xt) · xt − ‖xt‖2)

≤ 1
2
ηG2 −∇f t(xt) · xt
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Using (1), we have that
f t(0)− f t(xt) ≥ ∇f t(xt) · (0− xt).

Combining the last two inequalities gives (2). �
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