Comments on The Cauchy-Schwarz Master Class

1. Page 50, Exercise 3.8. The defect R in equation (3.16) is also the defect in the inequality

$$
\sum_{j=1}^{n} \frac{a_{j} b_{j}}{a_{i}+b_{j}} \leq\left(\sum_{j=1}^{n} \frac{a_{j}^{2}}{a_{i}+b_{j}}\right)^{1 / 2}\left(\sum_{j=1}^{n} \frac{b_{j}^{2}}{a_{i}+b_{j}}\right)^{1 / 2}
$$

2. Page 65 , lines 7 and 8 . In the two inequalities, the term B should be B^{2}.
3. Page 118, Exercise 7.11. Inequality (7.27) is worse than Jensen's inequality applied to the function $\ln f(X)$ of the random variable X that is distributed on $[a, b]$ with density $w(x)$.
4. Page 129, line -14. "apply continuous version" should be "apply the continuous version".
5. Page 158, line 1. The function $f(x)=m^{2 \lambda} x^{2 \lambda}(m+x)^{-1}$ is missing a minus sign in the exponent of $x^{2 \lambda}$.
6. Page 165 , line 13 . The double sum on the right for I is missing a factor of $1 / i$.
7. Page 175 , line 2. In formula (11.17) the subscript of a should be n rather than k.
8. Page 205, Exercise 13.5, line -1 . The function $-\sum_{k=1}^{n} p_{k} \ln p_{k}$ is Schur concave.
9. Page 212, equations (14.11) and (14.12). The denominator $\sin (\pi h \alpha)$ is missing a factor of 2 in its argument. This propagates to a missing 2 in the denominator of $\|h \alpha\|$ and possibly further in the problem.
10. Page 222, Exercise 14.5. Formula (14.36) requires that j and m have greatest common divisor 1 , not that m does not divide j.
11. Page 233, line 4. Replace "both" with "all three".
12. Page 236, lines 4 and 5. I was able to use Cauchy's trick of padding a sequence.
13. Page 241, line 2. The inequality should read

$$
\left|\frac{1}{z_{1}}-\frac{1}{z_{3}}\right| \leq\left|\frac{1}{z_{1}}-\frac{1}{z_{2}}\right|+\left|\frac{1}{z_{2}}-\frac{1}{z_{3}}\right| .
$$

14. It took me "all day" to come up with the following solution:

It is easy to show by convexity or algebra that

$$
\frac{1}{1+u} \leq 1-\frac{u}{2}
$$

for $u \in[0,1]$ and

$$
\frac{1}{1+u} \leq 1-\frac{u}{3}
$$

for $u \in[0,2]$. Hence,

$$
\begin{aligned}
& \frac{x^{2}}{1+y}+\frac{y^{2}}{1+z}+\frac{z^{2}}{1+x+y}+x^{2}\left(y^{2}-1\right)\left(z^{2}-1\right) \\
\leq & x^{2}\left(1-\frac{y}{2}\right)+y^{2}\left(1-\frac{z}{2}\right)+z^{2}\left(1-\frac{x+y}{3}\right)+x^{2}\left(y^{2}-1\right)\left(z^{2}-1\right) \\
= & g(x, y, z)
\end{aligned}
$$

on the stated domain $x, y, z \in[0,1]$. The second derivative test demonstrates that $g(x, y, z)$ is convex in x for y and z fixed. Hence, $g(x, y, z)$ attains its maximum at $x=0$ or $x=1$. Now

$$
\begin{aligned}
& g(1, y, z)=1-\frac{y}{2}+y^{2}\left(1-\frac{z}{2}\right)+z^{2}\left(\frac{2}{3}-\frac{y}{3}\right)+\left(y^{2}-1\right)\left(z^{2}-1\right) \\
& g(0, y, z)=y^{2}\left(1-\frac{z}{2}\right)+z^{2}\left(1-\frac{y}{3}\right),
\end{aligned}
$$

and so

$$
\begin{aligned}
g(1, y, z)-g(0, y, z) & =1-\frac{y}{2}-\frac{z^{2}}{3}+\left(y^{2}-1\right)\left(z^{2}-1\right) \\
& \geq 0
\end{aligned}
$$

since $1 \geq \frac{1}{2} y+\frac{1}{3} z^{2}$ and the product $\left(y^{2}-1\right)\left(z^{2}-1\right)$ is nonnegative. Finally, $g(1, y, z) \leq 2$, if and only if

$$
1-\frac{y}{2}+y^{2}\left(1-\frac{z}{2}\right)+z^{2}\left(\frac{2}{3}-\frac{y}{3}\right)+y^{2} z^{2}-y^{2}-z^{2}+1 \leq 2
$$

if and only if

$$
-\frac{1}{2} y-\frac{1}{2} y^{2} z-\frac{1}{3} z^{2} y+y^{2} z^{2}-\frac{1}{3} z^{2} \leq 0 .
$$

The last inequality is true because

$$
y^{2} z^{2} \leq \frac{1}{2} y+\frac{1}{2} y^{2} z
$$

15. Page 252, line - 11. The domain of $f(x)$ should be $-\pi / 2<\theta<\pi / 2$.
16. Page 257, line - 2. "Fist" should be "first."
17. Page 283, line 7. Why is it possible to include all points rather than just those in the halfplane S_{θ} ? The limits of integration on the integral also do not make sense.
18. Page 283, line 11. The reference Bledsoe (1970) is missing in the references.
