A HARDY-STYLE CONVOLUTION INEQUALITY

Abstract

Inequalities involving convolutions are somewhat under represented in The Cauchy-Schwarz Master Class and, if there is a second edition, Young's inequality and other convolution problems like the one given below are serious candidates for a chapter of their own.

Problem. Show that for nonnegative a_{k} and b_{k} one has

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{c_{k}^{2}}{k+1} \leq \sum_{k=0}^{\infty} a_{k}^{2} \sum_{k=0}^{\infty} b_{k}^{2} \tag{1}
\end{equation*}
$$

where for $0 \leq k<\infty$ we have set

$$
c_{k}=\sum_{j=0}^{k} a_{j} b_{k-j} .
$$

Remarks.

This is indeed a "Cauchy-Schwarz" problem. It is taken from Ransford (1995), p. 48 , where it is applied to prove an inequality for analytic functions, specifically

$$
\frac{1}{\pi r^{2}} \int_{\Delta(0, r)}|f(z) g(z)|^{2} d A \leq \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{2} d \theta \frac{1}{2 \pi} \int_{0}^{2 \pi}\left|g\left(r e^{i \theta}\right)\right|^{2} d \theta
$$

where $\Delta(0, r)$ is the disk of radius r and $d A=r d r d \theta$ is area measure.

References

[1] Ransford, T., Potential Theory in the Complex Plane, Cambridge University Press, Cambridge UK, 1995.
J. Michael Steele, Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia PA 19104, http://www-stat.wharton.upenn.edu/~steele

