POSITIVE DEFINITE MATRIX PROBLEM

Abstract

The self-imposed rule of the Cauchy-Schwarz Master Class was to keep matrix algebra to a bare minimum. This decision was made to impose a discipline of simplicity, but many babies were thrown out with the bath water. Here is one that baby that is simple enough to have been included, even as a warm-up problem. It's also useful - as a tool and as a metaphor.

Problem: Give a necessary and sufficient condition on α and β in order that

$$
T^{2}+\alpha T+\beta I
$$

be positive definite for each self-adjoint matrix T.

Comment: One of the things I like about this problem is that it gives us a nice class of positive definite matrices from which we can construct other examples. It also speaks to the metaphor of a positive definite matrix as an analog of a positive real number.
J. Michael Steele, Department of Statistics, Wharton School, University of Pennsylvania, Philadelphia PA 19104, http://www-stat.wharton.upenn.edu/~steele

