7. Let n be a positive integer, $a_{1}, a_{2}, \ldots, a_{n}$ positive real numbers and $s=a_{1}+a_{2}+\cdots+a_{n}$. Prove that

$$
\sum_{i=1}^{n} \frac{a_{i}}{s-a_{i}} \geq \frac{n}{n-1} \quad \text { and } \quad \sum_{i=1}^{n} \frac{s-a_{i}}{a_{i}} \geq n(n-1)
$$

