Solutions by Mansur Boase, student, St. Paul's School, London, England and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, Ontario. We give the solution by Boase.

$$
\begin{gathered}
\sum_{i=1}^{n} \frac{s-a_{i}}{a_{i}}=\sum_{i=1}^{n}\left(\frac{s}{a_{i}}-1\right)=\sum_{i=1}^{n} \frac{s}{a_{i}}-n \\
\sum_{i=1}^{n} \frac{a_{i}}{s}=1 \quad \text { and } \quad \sum_{i=1}^{n} \frac{s}{a_{i}} \sum_{i=1}^{n} \frac{a_{i}}{s} \geq\left(\sum 1\right)^{2}=n^{2}
\end{gathered}
$$

by the Cauchy-Schwarz inequality.
Thus

$$
\sum_{i=1}^{n} \frac{s}{a_{i}} \geq n^{2}
$$

Hence $\sum_{i=1}^{n} \frac{s-a_{i}}{a_{i}} \geq n^{2}-n=n(n-1)$.
To prove the first inequality, first note that

$$
\sum_{i=1}^{n} 1 \sum_{i=1}^{n} a_{i}^{2} \geq\left(\sum_{i=1}^{n} a_{i}\right)^{2}=s^{2}
$$

Hence $\sum_{i=1}^{n} a_{i}^{2} \geq \frac{s^{2}}{n}$.
By the Cauchy-Schwarz inequality,

$$
\sum_{i=1}^{n} a_{i}\left(s-a_{i}\right) \sum_{i=1}^{n} \frac{a_{i}}{s-a_{i}} \geq\left(\sum_{i=1}^{n} a_{i}\right)^{2}=s^{2}
$$

Therefore

$$
\begin{aligned}
\sum_{i=1}^{n} \frac{a_{i}}{s-a_{i}} & \geq \frac{s^{2}}{\sum_{i=1}^{n} a_{i}\left(s-a_{i}\right)}=\frac{s^{2}}{s \sum_{i=1}^{n} a_{i}-\sum_{i=1}^{n} a_{2}^{2}} \\
& \geq \frac{s^{2}}{s^{2}-\frac{s^{2}}{n}}=\frac{1}{1-\frac{1}{n}}=\frac{n}{n-1}
\end{aligned}
$$

So, both inequalities are proved.

