Note about Exercise 6.8 on page 101 and solution on page 249/250.
Show that for all $0 \leq x, y, z \leq 1$, one has

$$
L(x, y, z)=\frac{x^{2}}{1+y}+\frac{y^{2}}{1+z}+\frac{z^{2}}{1+x+y}+x^{2}\left(y^{2}-1\right)\left(z^{2}-1\right) \leq 2
$$

In the list of errata it is pointed out that $L(x, y, z)$ is not convex in the z direction. I find that L is not convex in y , either (for example, $x=1, y=1$ and $z=1 / 3$). However, we only need $L(x, y, z)$ strictly convex in the x direction. This is easy to show.

After that, L can only attain maximum at $x=0$ or $x=1$. If $x=0$, since $0 \leq y, z \leq 1$,

$$
L=\frac{y^{2}}{1+z}+\frac{z^{2}}{1+y} \leq y^{2}+z^{2} \leq 2
$$

in which the equalities cannot both hold. If $x=1$,

$$
\begin{align*}
L & =\frac{1}{1+y}+\frac{y^{2}}{1+z}+\frac{z^{2}}{2+y}+y^{2} z^{2}-y^{2}-z^{2}+1 \tag{1}\\
& =\frac{1}{1+y}+\left(\frac{y^{2}}{1+z}-y^{2}\right)+\left(\frac{z^{2}}{2+y}-z^{2}\right)+y^{2} z^{2}+1 \tag{2}\\
& \leq 1+0+0+0+1=2 \tag{3}
\end{align*}
$$

equality only holds when $y=z=0$. Done.

