A note on network reliability

Noga Alon *
Institute for Advanced Study, Princeton, NJ 08540
and Department of Mathematics
Tel Aviv University, Tel Aviv, Israel

Let $G=(V, E)$ be a loopless undirected multigraph, with a probability $p_{e}, 0 \leq p_{e} \leq 1$ assigned to every edge $e \in E$. Let G_{p} be the random subgraph of G obtained by deleting each edge e of G, randomly and independently, with probability $q_{e}=1-p_{e}$. For any nontrivial subset $S \subset V$ let (S, \bar{S}) denote, as usual, the cut determined by S, i.e., the set of all edges of G with an end in S and an end in its complement \bar{S}. Define $P(S)=\sum_{e \in(S, \bar{S})} p_{e}$, and observe that $P(S)$ is simply the expected number of edges of G_{p} that lie in the cut (S, \bar{S}). In this note we prove the following.

Theorem 1 For every positive constant b there exists a constant $c=c(b)>0$ so that if $P(S) \geq c \log n$ for every nontrivial $S \subset V$, then the probability that G_{p} is disconnected is at most $1 / n^{-b}$.

The assertion of this theorem (in an equivalent form) was conjectured by Dimitris Bertsimas, who was motivated by the study of a class of approximation graph algorithms based on a randomized rounding technique of solutions of appropriately formulated linear programming relaxations. Observe that the theorem is sharp, up to the multiplicative factor c, by the well known results on the connectivity of the random graph (see, e.g., [2]). In case our G

[^0]above is simply the complete graph on n vertices, and $p_{e}=p$ for every edge e, these known results assert that the subgraph G_{p}, which in this case is simply the random graph $G_{n, p}$, is almost surely disconnected if $p=(1-\epsilon) \log n / n$, although in this case $P(S)=\Omega(\log n)$ for all S. Theorem 1 can thus be viewed as a generalization to the case of non-uniform edge probabilities of the known fact that if $p>(1+\epsilon) \log n / n$ then the random graph $G_{n, p}$ is almost surely connected. It would be interesting to extend some other similar known results in the study of random graphs to the non-uniform case and obtain analogous results for the existence of a Hamilton cycle, a perfect matching or a k-factor.

The above theorem is obviously a statement on network reliability. Suppose G represents a network that can perform iff it is connected. If the edges represent links and the failure probability of the link e is q_{e}, then the probability that G_{p} remains connected is simply the probability that the network can still perform. The network is reliable if this probability is close to 1 . Thus, the theorem above supplies a sufficient condition for a network to be reliable, and this condition is nearly tight in several cases.

Proof of Theorem 1. Let $G=(V, E)$ be a loopless multigraph and suppose that $P(S) \geq$ $c \log n$ for every nontrivial $S \subset V$. It is convenient to replace G by a graph G^{\prime} obtained from G by replacing each edge e by $k=c \log n$ parallel copies with the same endpoints and by associating each copy e^{\prime} of e with a probability $p_{e^{\prime}}^{\prime}=p_{e} / k$. For every nontrivial $S \subset V$, the quantity $P^{\prime}(S)$ defined by $P^{\prime}(S)=\sum_{e^{\prime} \in(S, \bar{S})} p_{e^{\prime}}^{\prime}$ clearly satisfies $P^{\prime}(S)=P(S)$. Moreover, for every edge e of G, the probability that no copy e^{\prime} of e survives in $G_{p^{\prime}}^{\prime}$ is precisely $\left(1-p_{e} / k\right)^{k} \geq 1-p_{e}$ and hence G_{p} is more likley to be connected than $G_{p^{\prime}}^{\prime}$. It therefore suffices to prove that $G_{p^{\prime}}^{\prime}$ is connected with probability at least $1-n^{-b}$. The reason for considering G^{\prime} instead of G is that in G^{\prime} the edges are naturally partitioned into k classes, each class consisting of a single copy of every edge of G. Our proof proceeds in phases, starting with the trivial spanning subgraph of G^{\prime} that has no edges. In each phase we randomly pick some of the edges of G^{\prime} that belong to a fresh class which has not been considerd before, with the appropriate probability. We will show that with high probability the number of connected components of the subgraph of G^{\prime} constructed in this manner decreases by a constant factor in many phases until it becomes 1 , thus forming a connected subgraph. We need the following simple lemma.

Lemma 2 Let $H=(U, F)$ be an arbitrary loopless multigraph with a probability w_{f} assigned to each of its edges f, and suppose that for every vertex u of $H, \sum_{v \in U, u v \in E} w_{u v} \geq 1$. Let H_{w} be the random subgraph of H obtained by deleting every edge f of H, randomly and independently, with probability $1-w_{f}$. Then, if $|U|>1$, with probability at least $1 / 2$ the number of connected components of H_{w} is at most $(1 / 2+1 / e)|U|<0.9|U|$.

Proof. Fix a vertex u of H. The probability that u is an isolated vertex of H_{w} is precisely

$$
\prod_{v \in U, u v \in E}\left(1-w_{u v}\right) \leq \exp \left\{-\sum_{v \in U, u v \in E} w_{u v}\right\} \leq 1 / e
$$

By linearity of expectation, the expected number of isolated vertices of H_{w} does not exceed $|U| / e$, and hence with probability at least $1 / 2$ it is at most $2|U| / e$. But in this case the number of connected components of H_{w} is at most

$$
2|U| / e+\frac{1}{2}(|U|-2|U| / e)=(1 / 2+1 / e)|U|
$$

as needed.
Returning to our graph G and the associated graph G^{\prime}, let $E_{1} \cup E_{2} \cdots \cup E_{k}$ denote the set of all edges of G^{\prime}, where each set E_{i} consists of a single copy of each edge of G. For $0 \leq i \leq k$, define G_{i}^{\prime} as follows. G_{0}^{\prime} is the subgraph of G^{\prime} that has no edges, and for all $i \geq 1, G_{i}^{\prime}$ is the random subgraph of G^{\prime} obtained from G_{i-1}^{\prime} by adding to it each edge $e^{\prime} \in E_{i}$ randomly and independently, with probability $p_{e^{\prime}}^{\prime}$. Let C_{i} denote the number of connected components of G_{i}^{\prime}. Note that as G_{0}^{\prime} has no edges $C_{0}=n$ and note that $G^{\prime}{ }_{k}$ is simply $G_{p^{\prime}}^{\prime}$. Let us call the index $i,(1 \leq i \leq k)$, successful if either G_{i-1}^{\prime} is connected (i.e., $C_{i-1}=1$) or if $C_{i}<0.9 C_{i-1}$.
Claim: For every index $i, 1 \leq i \leq k$, the conditional probability that i is successful given any information on the previous random choices made in the defintion of G_{i-1}^{\prime} is at least $1 / 2$.
Proof: If G_{i-1} is connected then i is successful and there is nothing to prove. Otherwise, let $H=(U, F)$ be the graph obtained from G_{i-1}^{\prime} by adding to it all the edges in E_{i} and by contracting every connected component of G_{i-1}^{\prime} to a single vertex. Note that since $P^{\prime}(S) \geq c \log n=k$ for every nontrivial S it follows that for every connected component D
of G_{i-1}^{\prime}, the sum of probabilities associated to edges $e \in E_{i}$ that connect vertices of D to vertices outside D is at least 1 . Therefore, the graph H satisfies the assumptions of Lemma 2 and the conclusion of this lemma implies the assertion of the claim.

Observe, now, that if $C_{k}>1$ then the total number of successes is stricly less than $\log n / \log 0.9\left(<10 \log _{e} n\right)$. However, by the above claim, the probability of this event is at most the probability that a Binomial random variable with parameters k and 0.5 will attain a value of at most $r=10 \log _{e} n$. (The crucial observation here is that this is the case despite the fact that the events " i is successful" for differnet values of i are not independent, since the claim above places a lower bound on the probability of success given any previous history.) Therefore, by the standard estimates for Binomial distributions (c.f., e.g., [1], Appendix A, Theorem A.1), it follows that if $k=c \log n=(20+t) \log _{e} n$ then the probability that $C_{k}>1$ (i.e., that $G_{p^{\prime}}^{\prime}$ is disconnected) is at most $n^{-t^{2} / 2 c}$, completing the proof of the theorem.

Remarks

1. The assertion of Lemma 2 can be strengthened and in fact one can show that there are two positive constants c_{1} and c_{2} so that under the assumptions of the lemma the number of connected components of the random subgraph H_{w} is at most $\left(1-c_{1}\right)|U|$ with probability at least $1-e^{-c_{2} m}$. This can be done by combining the Chernoff bounds with the following simple lemma, whose proof is omitted

Lemma 3 Let $H=(U, F)$ be an arbitrary loopless multigraph with a non-negative weight w_{e} associated to each of its edges e. Then there is a partition of $U=U_{1} \cup U_{2}$ into two disjoint subsets so that for $i=1,2$ and for every vertex $u \in U_{i}$,

$$
\sum_{u v \in E, v \in U_{3-i}} w_{u v} \geq \frac{1}{2} \sum_{u v \in E, v \in U} w_{u v}
$$

For our purposes here the weaker assertion of Lemma 2 suffices.
2. It is interesting to note that several natural analogs of Theorem 1 for other graph properties besides connectivity are false. For example, it is not difficult to give an example of a graph $G=(V, E)$ and a probability function p, together with two distinguished vertices s and t, so that $P(S) \geq \Omega(n / \log n)(\gg \Omega(\log n))$ for all cuts S separating s and t and yet in the random subgraph G_{p} almost surely s and t lie in different
connected components. A simple example showing this is the graph G consisting of $n / 10 \log n$ internally vertex disjoint paths of length $10 \log n$ each between s and t, in which $p_{e}=1 / 2$ for every edge e.
3. Another, more interesting example showing that a natural analog of Theorem 1 for bipartite matching fails is the following. Let A and B be two disjoint vertex classes of cardinality n each. Let A_{1} be a subset of $c_{1} n$ vertices of A and let B_{1} be a subset of $c_{1} n$ vertices of B, where, say, $1 / 8<c_{1}<1 / 4$. Let H_{1} be the bipartite graph on the classes of vertices A and B in which every vertex of A_{1} is connected to every vertex of B and every vertex of B_{1} is connected to every vertex of A. Let H_{2} be a bipartite constantdegree expander on the classes of vertices A and B; for example, a C_{2}-regular graph so that between any two subsets X of A and Y of B containing at least $c_{1} n / 2$ vertices each there are at least $c_{1} n$ edges (it is easy to show that such a graph exists using a probabilistic construction, or some of the known constructions of explicit expanders). Finally, let $H=(V, E)$ be the bipartite graph on the classes of vertices A and B whose edges are all edges of H_{1} or H_{2}. Define, also, $p_{e}=1 /\left(4 C_{2}\right)$ for every edge e of H. It is not too difficult to check that the following two assertions hold.
(i) There exists a constant $C=C\left(c_{1}, C_{2}\right)>0$ so that for every $A^{\prime} \subset A$ and $B^{\prime} \subset B$ that satisfy $\left|A^{\prime}\right|+\left|B^{\prime}\right|>n$:

$$
\sum_{u v \in E, u \in A^{\prime}, v \in B^{\prime}} p_{u v} \geq C n
$$

(ii) The random subgraph H_{p} of H almost surely does not contain a perfect matching. The validity of (i) can be checked directly; (ii) follows from the fact that with high probability not many more than $n / 4$ edges of H_{2} will survive in H_{p} and the edges of H_{1} cannot contribute more than $2 c_{1} n<n / 2$ edges to any matching.

Acknowledgement I would like to thank Dimitris Bertsimas for bringing the problem addressed here to my attention, Joel Spencer for helpful comments and Svante Janson for fruitful and illuminating discussions.

References

[1] N. Alon and J. H. Spencer, The Probabilistic Method, Wiley, 1991.
[2] B. Bollobás, Random Graphs, Academic Press, 1985.

[^0]: *This research was supported in part by the Institute for Mathematics and its Applications with funds provided by the NSF and by the Sloan Foundation, Grant No. 93-6-6. The paper appeared in: Discrete Probability and Algorithms (D. Aldous, P. Diaconis, J. Spencer and J. M. Steele eds.), IMA Volumes in Mathematics and its applications, Vol. 72, Springer Verlag (1995), 11-14.

