Please see PDF version


JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS Vol. 123, No. 2, May 1, 1987.

Sharper Wiman Inequality for Entire Functions
with Rapidly Oscillating Coefficients

J. MICHAEL STEELE*

Department of Statistics, E-220 Engineering Quadrangle,
Princeton University, Prineeton, New Jersey 08544

Submitted by R. P. Boas

Received January 27, 1982

For entire functions of the form $\sum_{n=0}^\infty a_n \exp(i \theta_n t) z^n$ where the $\theta_n$ are integers satisfying
the Hadamard gap condition it is proved that Wiman's inequality can be improved
to $M(r) \leq \mu (r) (\log \mu (r))^(1/4) (\log \log \mu (r)) ^{1/2+ \delta} for almost every t and all r except a
set $E_\delta (t)$ of finite logarithmic measure.



REFERENCES

1 . P. ERD6S AND A. MNY1, On random entire functions. Zastosowania Matematyki 10 (1969), 4755. (Also, Selected Papers of A. RMyi III, ED. P. TurAn, Akad6mia Kaid6, Budapest. pp. 542550.)
2. J. JAKUBOWSKI AND S. KWAPIE&, On multiplicative systems of functions. Bulletin de L'Academie Polonaise des Sciences. 27 (1979), 689694.
3. 0. P. JUNEJA AND G. P. KAPOOR, "Analytic FunctionsGrowth Aspects," Research Notes in Mathematics, Pitman Advanced Publishing Program, Boston, 1985.
4. J. P. KAHANE, "Some Random Series of Functions" (Second ed.) Cambridge Studies in Advanced Mathematics Vol. 5, Cambridge Univ. Press, Cambridge, 1985.
5. P. UvY, Sur la croissance de fonctions enti~re. Bull. Soc. Math. France, 58 (1930), 2959, 127149; "auvres de Paul Uvy Il," (D. Dugu6, Ed.), pp. 62114, GauthierVillars, 1930.
6. P. C. ROSENBLOOM, Probability and entire functions, in "Studies in Mathematical Analysis and related topics, Essays in Honor of G. P61ya (D. Gilbarg, H. Solomon, and others, Eds.), pp. 325332, Stanford Univ. Press, Stanford, 1962.
7. M. TAKAFUMI, The central limit theorem for trigonometric series, Nagoya Math J. 87 (1982), 7994.
8. M. TAKAFUMi, The boundary behavior of Hadamard lacunary series, Nagoya Math. J. 89 (1983),6576.
9. A. WIMAN, Ober dern Zuzammenhang zwischen dern Maximalbetrage einer analytischen Funktion und dern grbssten Gliede der Zugchbrigeni Taylorschen Rcibe, Acta Math. 37 (1914),305326.

Printed by the St. Catherine Press Ltd., Tempelhof 41, Bruges, Belgium