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1. Looking at More than Means

The reward Rn(π∗n) that one receives by following an optimal policy π∗n for a Markov decision

problem (MDP) with n <∞ decision periods is a random variable, and, for many MDPs, the

expected value of Rn(π∗n) is well understood. Still, just knowing the mean of Rn(π∗n) leaves much

that is unknown, and, given the extensive literature on MDPs, it is striking that one seldom has

a substantial understanding of the distribution of Rn(π∗n). Even the variance of Rn(π∗n) often goes

unstudied.

This situation deserves to be addressed since in many MDPs the reward Rn(π∗n) has a direct

economic interpretation, and any well-founded judgment about a policy needs to take into account

the riskiness (or uncertainty) of the reward. Our main goal here is to identify a substantial class

of MDPs for which one has general, explicit bounds on the variance of Rn(π∗n). Specifically, we

characterize an example-rich class of MDPs for which the variance of Rn(π∗n) can be bounded by a
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small constant multiple of its expectation — or, in some instances, a simple affine function of the

expectation. Useful consequences of this bound include practical constraints on the riskiness of the

realized reward and a straightforward weak law of large numbers for Rn(π∗n).

Our main result offers positive encouragement for MDP modelers whose objective is to maximize

the expected total reward over a finite time horizon with n periods. If the MDP satisfies three

natural properties — reward non-negativity and boundedness, existence of a do-nothing action,

and optimal action monotonicity — then the total reward that one obtains is (probably) close to

what one expects, provided that n is sufficiently large. Thus, one has an ex-ante justification for

viewing the expected total reward as a reliable objective function.

1.1. An Informative Example

To fix ideas and to build intuition, we first consider a sequential knapsack problem. We view the

knapsack capacity C ∈ (0,∞) as given, and we sequentially consider n items with sizes Y1, Y2, . . . , Yn.

Moreover, we assume that the item sizes are independent non-negative random variables with a

common distribution F , and, for specificity, we assume that F is regular at 0 in the sense that

there are constants A> 0 and α> 0 such that F (x)∼Axα as x→ 0. (Here, given two real-valued

functions f and g, we write f(x) ∼ g(x) as x→ x0, and we say that f and g are asymptotically

equivalent as x → x0 if limx→x0 f(x)/g(x) = 1.) In the simplest case, when the item sizes are

uniformly distributed on [0,1], we have A= 1, α= 1, and F (x) = x for x∈ [0,1].

At time t∈ {1,2, . . . , n}, when a newly presented item of size Yt is first seen, the decision maker

must decide to include or exclude the item from the knapsack. In the version of the problem that

we consider here, the decision maker’s goal is to maximize the expected number of items that can

be included without the sum of the sizes of the accepted items exceeding a capacity constraint.

We let Π(n) denote the set of all non-anticipating Markov deterministic knapsack policies, and

for any policy π ∈ Π(n) we let τi ∈ {1, . . . , n} denote the index of the ith item that is chosen for

inclusion in the knapsack. Here by deterministic we just mean that Π(n) does not include any

randomized decision rules, and by non-anticipating we mean that decisions to include or exclude

newly presented items can use only the information (or history) of the selection process up to the

decision time. More formally, to say that π is non-anticipating is the same as saying that each τi is

a stopping time with respect to the increasing sequence of σ-fields Ft = σ{Y1, Y2, . . . , Yt}, 1≤ t≤ n.

The reward attained by the policy π is the number of inclusions, so, in terms of the stopping

times, we have

Rn(π) = max

{
k : 1≤ τ1 < τ2 < · · ·< τk ≤ n and

k∑
i=1

Yτi ≤C

}
.
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Classical results from dynamic programming (Bertsekas and Shreve, 1978, Corollary 8.5.1) assure

us that for each n there is a Markov deterministic policy that is optimal within the set of all

non-anticipating policies, i.e. there is a π∗n ∈Π(n) such that

E [Rn(π∗n)] = sup
π∈Π(n)

E [Rn(π)] = sup
π

E [Rn(π)] .

Coffman, Flatto and Weber (1987) proved that for this sequential knapsack problem the optimal

Markov deterministic policy is also unique, and they showed that

E [Rn(π∗n)]∼
[
Aα−α(α+ 1)αC n

]1/(1+α)
as n→∞. (1)

This asymptotic relation was subsequently refined by an explicit upper bound in Bruss and Robert-

son (1991) and by an explicit lower bound in Rhee and Talagrand (1991). The sequential knapsack

problem is a leading example of an MDP for which there is an almost complete understanding of

the expected value of the reward provided by the optimal policy π∗n.

1.2. First Example of the Variance Bound

As a consequence of the general variance bound that is given below in Theorem 1, one also has a

variance bound for the sequential knapsack problem:

Var [Rn(π∗n)]≤E [Rn(π∗n)] for all A> 0, α > 0, 0<C <∞, and 1≤ n<∞, (2)

and from this bound one quickly obtains a weak law of large numbers for Rn(π∗n). Specifically, from

the asymptotic result for the mean (1), the variance bound (2), and Chebyshev’s inequality one

finds that

n−1/(1+α)Rn(π∗n) converges in probability to
[
ACα−α(α+ 1)α

]1/(1+α)
as n→∞.

Here, we should note that there is a strategic nuance to the bound (2). The policy π∗n is deter-

mined by optimizing the expected reward functional π 7→ E[Rn(π)] over all π ∈ Π(n), and, since

the optimality criterion focuses unilaterally on the expected reward, there would seem to be no

a priori connection between E [Rn(π∗n)] and the variance Var[Rn(π∗n)]. What prevents the mean-

focused optimal policy π∗n from greatly inflating the variance Var[Rn(π∗n)] just to eke out a modest

increment to the mean E[Rn(π∗n)]? This is a possibility that seems perfectly feasible. Nevertheless,

there is a substantial class of natural problems for which the mean-focused optimal policies are

never so foul.
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1.3. Tools, Proofs, and Further Examples

The class of MDPs that are of concern here share three characteristics. One is the existence of a

do-nothing action, which is the general analog of not accepting an item in the sequential knapsack

problem. The other two are reward non-negativity and boundedness and optimal action monotonic-

ity. These order properties are easily checked in concrete problems, but the general definitions

require some careful notation that we develop in Sections 3 and 4. In Section 4, we also state our

main result, which we prove in Section 5.

Sections 6 and 7 discuss examples and counterexamples. In Section 6, we give an example of

an MDP that does not have optimal action monotonicity and for which the variance bound fails,

while in Section 7, we present examples of MDPs that satisfy our three natural properties. Finally,

in Section 8 we underscore some open problems.

2. A Brief Review of MDPs that Attend to Moments

The vast majority of work on Markov decision problems takes a risk-neutral perspective where one

seeks to optimize an expected total, possibly discounted, reward, or the long-run average expected

reward per time period. Nevertheless, there are numerous investigations that take a risk-aware

perspective where the optimization criterion incorporates some measure of uncertainty such as the

variance of the reward. White (1988) provides a useful review of earlier work that takes such a

point of view.

There are also several investigations that consider the possibility of mean-variance tradeoffs in

average reward models. Specifically, Sobel (1994) considers stationary (time-homogeneous) policies

that are Pareto optimal with respect to the steady-state mean and variance they generate, and,

in the same settings, Chung (1994) develops an algorithm for identifying the Pareto optima in the

unichain model. In closely related work, Sobel (1985) investigates stationary policies that maximize

the steady-state ratio of the mean to the standard deviation.

There are some natural alternatives to the Pareto optimality framework. For example, Kawai

(1987) considers variance minimization subject to a constraint on the mean, and numerous investi-

gations have considered a variance penalty in the objective function, e.g. Filar, Kallenberg and Lee

(1989), Baykal-Gürsoy and Ross (1992), and Huang and Kallenberg (1994). More recently, Haskell

and Jain (2012) studied Markov decision problems subject to stochastic domination constraints.

There are some common elements to these investigations. First, essentially all consider average

reward models for which a stationary policy is optimal. Moreover, most of these investigations

focus on the variance of the long-run reward, rather than the limiting variance of the total reward

(see Sobel, 1994, p. 178). From a probabilistic standpoint, the latter is usually more appropriate,
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while the former is almost always more tractable. As Huang and Kallenberg (1994) observe (p.

434, note 2), these two measures of uncertainty are not easily related.

Risk-aware optimization criteria have also been considered when the objective is to maximize the

expected total reward over a finite time horizon, or the expected total discounted reward over an

infinite time horizon. For instance, Jaquette (1972; 1973) proposes a method for identifying policies

with minimum variance among the set of policies that maximize expected rewards. Ruszczyński

(2010) studies Markov risk measures to formulate risk-adverse Markov decision problems; Mannor

and Tsitsiklis (2013) study the computational complexity of finite-horizon Markov decision prob-

lems where the performance measure includes both the mean and the variance of the cumulative

reward.

Sobel (1982) considers the total discounted reward in an infinite-horizon model where the decision

maker maximizes total expected discounted rewards, and, with motivations parallel to our own, he

proves a noteworthy closed-form formula for the variance of the optimal total discounted reward.

In this setting a stationary policy is optimal, and Chung and Sobel (1987) further characterize the

distribution function of the discounted reward.

Recent work of Feinberg and Fei (2009) can also be reinterpreted in discrete-time to give a useful

relation between the variance of the optimal total reward in an infinite-horizon discounted problem

(with discount factor β) and the total reward in the analogous problem with an independent random

horizon with the geometric distribution (with parameter 1− β). The expected total rewards are

equal in each problem formulation, but the variance of the former is smaller.

Finally, there are numerous instances in the theory of MDPs where one uses bounds on the total

expected reward to quantify the effectiveness of suboptimal policies, such as approximate linear

programming, martingale duality, and information relaxation (Brown, Smith and Sun, 2010; Desai,

Farias and Moallemi, 2012). Here one might also reasonably include the extensive theory of prophet

inequalities (Hill and Kertz, 1992) even though most of this work is not framed in the language of

MDPs.

3. A General MDP Framework

We now consider a general discrete-time Markov decision problem with n <∞ decision times (or

periods) indexed by t= 1,2, . . . , n. By X we denote a set that we call the state space, and, at each

decision time t, the decision maker is assumed to know the current state x∈X of the system. Also,

at time t, the decision maker is assumed to know the current value y of an exogenous sequence

{Yt : 1≤ t≤ n} of independent Y-valued random variables (or vectors) with a known sequence of

distributions DY ≡ {Ft : 1≤ t≤ n} that do not depend on the state.
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Given a pair (x, y) ∈ X × Y and a time 1 ≤ t ≤ n, we let A(t, x, y) denote the set of actions

available to the decision maker. For each 1≤ t≤ n, we consider the set of admissible state-action

pairs

Γt = {(x, y, a) : (x, y)∈X ×Y, a∈A(t, x, y)} ,

and we define the action space by setting A=
⋃
t,x,yA(t, x, y). The set of available actions A(t, x, y)

is specified by taking into account the history of the system up to time t and the state pair (x, y).

Thus, any available action a ∈ A(t, x, y) is non-anticipating, i.e. it is determined completely by

what is known to the decision maker at time t.

After action a ∈ A(t, x, y) is chosen at time t, the decision maker also sees the realization w

of another random variable (or vector) W x,a
t with known distribution Gx,a

t , that may depend on

the state value x, the action chosen a, and the decision time t, but that is independent of the

past observations, W1, . . . ,Wt−1. We assume that the support of W x,a
t is contained in a set W

for all 1 ≤ t ≤ n, x ∈ X , and a ∈ A. We also assume that the random variables Yt and W x,a
t are

independent for each 1≤ t≤ n, x∈X and a∈A, and we let DW denote the family of distributions

{Gx,a
t : 1 ≤ t ≤ n, x ∈ X , and a ∈ A}. In what follows, we drop the superscript x from W x,a

t for

economy, and the dependence on the state will be implicit.

If action a∈A(t, x, y) is chosen at time t and one has the realization W a
t =w, then the decision

maker receives the real-valued reward r(t, x, y, a,w), and the state of the system moves from x

to f(t, x, y, a,w) ∈ X . The reward function r : {1, . . . , n} × Γt ×W → R and the state-transition

function f : {1, . . . , n} × Γt ×W →X are assumed to be deterministic functions that are known

to the decision maker. We also allow for discounting of the one-period rewards accrued over time,

and we let 0< β ≤ 1 be the discount factor. As usual, we assume that the sets X , Y, and W are

Polish spaces and the functions r and f are Borel measurable (see, e.g. Bertsekas and Shreve, 1978,

Section 8.1).

A sequence (A1,A2, . . . ,An) of non-anticipating actions such that At ∈A(t, ·, ·) is called a policy

π of length n. Given the state X1 = x̄ at time t = 1 and a policy π = (A1,A2, . . . ,An), then the

state values {Xt : 1< t≤ n} are determined by the recursion

Xt+1 = f(t,Xt, Yt,At,W
A
t ), 1< t≤ n, (3)

where Yt is the t’th random variable of the process (Y1, . . . , Yn), At ∈A(t,Xt, Yt) is the action taken

at time t when the state pair is (Xt, Yt), and WA
t is the t’th element of the sequence (WA

1 , . . . ,W
A
n ),

where, as noted earlier, the distribution of each WA
t might depend on the state, Xt, and on the

action chosen, At.
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If we now let Π(n) be the set of Markov deterministic policies for our general MDP, then the

cumulative (discounted) reward gained by the policy π ∈Π(n) up to and including time k is given

by the random sum

Rk(π) =
k∑
t=1

βt−1r(t,Xt, Yt,At,W
A
t ), 1≤ k≤ n,

and our main goal is to understand the variance of Rn(π∗n) when π∗n = (A∗1,A
∗
2, . . . ,A

∗
n) is any

Markov deterministic policy that maximizes the total expected reward; i.e.

E[Rn(π∗n)] = sup
π∈Π(n)

E[Rn(π)]. (4)

Here, we limit our analysis to Markov deterministic policies, but such policies are often optimal

within the larger class of non-anticipating policies. (see, e.g. Bertsekas and Shreve, 1978, Proposition

8.5.)

In addition to the defining relation (4), there are several representations for the optimal expected

reward E[Rn(π∗n)], and it is particularly useful to make explicit the dependence of E[Rn(π∗n)] on

the initial state x̄. If π∗n = (A∗1,A
∗
2, . . . ,A

∗
n) is an optimal policy, then for 1≤ t≤ n, we define the

sequence of value functions vt :X →R by setting

vt(x) =E

[
n∑
s=t

βs−tr(s,Xs, Ys,A
∗
s,W

∗
s )
∣∣Xt = x

]
, (5)

so vt(x) represents the expected reward to-go that the decision maker collects from periods t through

n under the optimal policy when the state at time t is x. In this notation we have

E[Rn(π∗n)] = v1(x̄),

and the optimality principle of dynamic programming gives us a natural way to compute E[Rn(π∗n)].

Specifically, for 1≤ t≤ n, we have the Bellman equation

vt(x) =

∫
Y

{
sup

a∈A(t,x,y)

E [r(t, x, y, a,W a
t ) +βvt+1 (f(t, x, y, a,W a

t ))]
}
dFt(y), (6)

so backward recursion determines the value v1(x̄) = E[Rn(π∗n)] if one starts by setting vn+1(x) = 0

for all x∈X .

The Bellman equation (6) is determined by two nested integrations, the inner one with respect to

the distribution of W ∗
t , and the outer one with respect to the distribution of Yt. This form reflects

the general structure of the MDPs we study here, in which the realization Yt = y becomes available

before the decision maker chooses an optimal action a∗ ∈A(t, x, y), while the realization W ∗
t =w

becomes available after action a∗ is chosen. In general, when the decision maker chooses an optimal
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action a∗ ∈A(t, x, y), he does not know the exact reward he earns, and he does not know the exact

system state after the action is chosen. Rather, he knows the distribution of the one-period reward,

r(t, x, y, a∗,W ∗
t ), as well as the distribution of the optimal successor state, Xt+1 = f(t, x, y, a∗,W ∗

t ).

Our framework also allows for studying MDPs in which the only uncertainty that is realized at

time t happens before the action is chosen (i.e., no W a
t is relevant to the model), or MDPs in which

the only uncertainty that matters is realized after the action is chosen (i.e., no Yt is relevant). The

knapsack problem of Section 1.1 is an example of the former. Several other examples are discussed

in Section 7.

4. Bounding the Variance by the Mean: Sufficient Conditions

We can now isolate a class of Markov decision problems for which one can bound the variance

of Rn(π∗n) by an explicit linear function of its mean. The class is determined by three natural

properties that are common in MDPs.

Property 1 (Non-negative and Bounded Rewards). There is a constant K <∞ such that

0≤ r(t, x, y, a,w)≤K for all (x, y, a,w)∈ Γt×W and 1≤ t≤ n.

Property 2 (Existence of a Do-nothing Action). For each time 1≤ t≤ n and pair (x, y),

the set of actions A(t, x, y) includes an action a0 such that

f(t, x, y, a0,w) = x, for all w ∈W. (7)

Action a0 is called a do-nothing action. Moreover, the expected reward to-go, vt+1 (x), that one

obtains by selecting the do-nothing action satisfies the inequality

− r(t, x, y, a∗,w)≤ r(t, x, y, a∗,w) +βvt+1 (f(t, x, y, a∗,w))−βvt+1 (x) , for all w ∈W, (8)

where a∗ ∈A(t, x, y) is an optimal action that achieves the supremum in (6).

The existence of a do-nothing action requires two simultaneous conditions. The condition given

by (7) allows for the state of the system at time t+1 to be equal to the state of the system at time

t. The condition given by (8) provides us with an inequality that integrates into what one would

obtain in expectation from the optimality of action a∗ ∈A(t, x, y). In fact, by optimality we know

that the sum of the one-period reward and the expected reward to-go of the do-nothing action

satisfies the inequality

E
[
r(t, x, y, a0,W 0

t ) +βvt+1(x)
]
≤E [r(t, x, y, a∗,W ∗

t ) +βvt+1(f(t, x, y, a∗,W ∗
t ))] ,
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which, together with the non-negativity of the reward function (Property 1), implies

0≤E [r(t, x, y, a∗,W ∗
t ) +βvt+1(f(t, x, y, a∗,W ∗

t ))−βvt+1(x)] .

Thus, equation (8) is a sample-path constraint that limits the extent for which the integrand on

the right-hand side can be negative. At this point, it is also useful to note that the optimality of

action a∗ ∈ A(t, x, y) immediately implies (8) in MDPs in which the one-period rewards and the

state-transition functions are not affected by the random sequence W ∗
1 , . . . ,W

∗
n . The sequential

knapsack problem discussed in Section 1.1 is an important example with such property. Several

others are discussed in Section 7.

Our third criterion complements the pointwise bound (8) in a natural way.

Property 3 (Optimal Action Monotonicity). For each time 1≤ t≤ n and state x∈X one

has the inequality

vt+1(f(t, x, y, a∗,w))≤ vt+1(x) (9)

for all y ∈Y, w ∈W, and any optimal action a∗ ∈A(t, x, y).

The existence of a do-nothing action tells us that it is always possible for the state of the system

at time t+ 1 to be the same as it was at time t, so the right side of the inequality (9) is always

meaningful. Obviously, if the do-nothing action is optimal, then one has f(t, x, y, a∗,w) = x and (9)

becomes an equality.

Inequality (9) has an intuitive interpretation in the common case of an MDP without ties, i.e.

an MDP where there is a unique optimal action at each instance. In such a problem, if one has

optimal action monotonicity, then the decision maker will never choose an action that changes the

state of the system unless the decision maker gains a positive immediate reward for the action he

chooses.

In the common situation in which one has reward non-negativity and boundedness (Property 1),

the existence of a do-nothing action (Property 2), and optimal action monotonicity (Property 3),

then one can prove an easy and effective variance bound.

Theorem 1 (Variance Bound). Suppose that a Markov decision problem satisfies reward non-

negativity and boundedness, the existence of a do-nothing action, and optimal action monotonicity.

If π∗n ∈Π(n) is any Markov deterministic policy such that

E[Rn(π∗n)] = sup
π∈Π(n)

E[Rn(π)],

then

Var[Rn(π∗n)]≤K E[Rn(π∗n)], (10)

where K is the uniform bound on the one-period reward function.
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To gain intuition on the meaning of the variance bound in Theorem 1, we note that if the

optimal one-period rewards, {r(t,Xt, Yt,A
∗
t ,W

∗
t ) : 1 ≤ t ≤ n}, were independent, then one would

immediately have the variance inequality

Var[Rn(π∗n)] =
n∑
t=1

Var[βt−1r(t,Xt, Yt,A
∗
t ,W

∗
t )]≤

n∑
t=1

E[
{
βt−1r(t,Xt, Yt,A

∗
t ,W

∗
t )
}2

]≤K E[Rn(π∗n)].

The quantity on the right-hand side above is obtained assuming independence of the one-period

rewards, and it equals our variance bound in Theorem 1. With Theorem 1, we obtain the same

bound, but without assuming a condition of independence, a property that is not commonly present

in the reward process of an MDP.

Theorem 1 also yields an immediate measure of the dispersion of the optimal total reward Rn(π∗n).

Specifically, it gives us a bound on the coefficient of variation:

CoeffVar[Rn(π∗n)] =
{Var[Rn(π∗n)]}1/2

E[Rn(π∗n)]
≤
(

K

E[Rn(π∗n)]

)1/2

.

Here K bounds the one-period reward and E[Rn(π∗n)] is the multi-period optimal expected reward

which typically approaches infinity as n→∞. Hence, for the typical MDP that satisfies our three

structural properties, the coefficient of variation converges to zero as n→∞.

The variance bound (10) and Chebyshev’s inequality also provide easy estimates of concentration

for the distribution of the optimal total reward. Specifically, for any ε > 0, Chebyshev’s inequality

and the variance bound (10) tell us that

P (|Rn(π∗n)−E[Rn(π∗n)]|> ε)≤ ε−2K E[Rn(π∗n)]. (11)

If we take λ> 1 and set ε= λ{K E[Rn(π∗n)]}1/2, then we have

P
(
|Rn(π∗n)−E[Rn(π∗n)]|>λ{K E[Rn(π∗n)]}1/2

)
≤ λ−2.

In the typical case, when E[Rn(π∗n)]→∞ as n→∞, the Chebyshev bound gives us a weak law of

large numbers worth detailing as a corollary.

Corollary 1 (Weak Law for Optimal Total Rewards with Large Horizon).

Suppose that a Markov decision problem satisfies reward non-negativity and boundedness, the

existence of a do-nothing action, and optimal action monotonicity. If π∗n ∈ Π(n) is any optimal

Markov deterministic policy and if E[Rn(π∗n)]→∞ as n→∞, then

Rn(π∗n)

E[Rn(π∗n)]

p−→ 1 as n→∞.

This corollary is good news for variability-adverse decision makers. In the common case where

E[Rn(π∗n)]→∞ as n→∞, it says that the reward realized by the optimal strategy will (with

increasingly high probability) behave like its mean.



Arlotto, Gans, and Steele: Markov Decision Problems where Means bound Variances 11

5. Variance Bounds and the Proof of Theorem 1

The proof of Theorem 1 begins by noting that the Bellman equation (6) leads one to a useful

martingale that captures all of the information we need to bound the variance of the optimal total

reward. The main task is to check that one can bound the size of martingale differences with help

from our key properties: (1) reward non-negativity and boundedness, (2) existence of a do-nothing

action, and (3) optimal action monotonicity.

Lemma 1 (Bellman Martingale). For 0≤ t≤ n, the process defined by

Mt =Rt(π
∗
n) +βtvt+1(Xt+1)

is a martingale with respect to the natural filtration Ft = σ{Y1,W
∗
1 , Y2,W

∗
2 , . . . , Yt,W

∗
t } and the

trivial σ-field F0.

Proof of Lemma 1. First, by the definition of Rt(π
∗
n) and the state-transition recursion (3),

one sees that Mt is Ft-measurable, i.e. it is determined by (Y1,W
∗
1 , Y2,W

∗
2 , . . . , Yt,W

∗
t ). By reward

boundedness (Property 1) and the finiteness of the horizon n, the process {Mt : 0≤ t≤ n} is also

bounded.

We now need to verify the martingale property E[Mt+1|Ft] = Mt. Since we have Mt+1 =

Rt+1(π∗n) +βt+1vt+2(Xt+2), we immediately obtain that

E[Mt+1|Ft] =E[Rt+1(π∗n) +βt+1vt+2(Xt+2)|Ft].

We now recall that Rt+1(π∗n) =Rt(π
∗
n) + βtr(t+ 1,Xt+1, Yt+1,A

∗
t+1,W

∗
t+1) and note that Rt(π

∗
n) is

Ft-measurable, so we obtain

E[Mt+1|Ft] =Rt(π
∗
n) +βtE[r(t+ 1,Xt+1, Yt+1,A

∗
t+1,W

∗
t+1) +βvt+2(Xt+2)|Ft]. (12)

Here, we also have that the state Xt+1 is Ft-measurable since Xt+1 = f(t,Xt, Yt,A
∗
t ,W

∗
t ), so,

together with the principle of optimality of dynamic programming, we obtain that

E[r(t+ 1,Xt+1, Yt+1,A
∗
t+1,W

∗
t+1) +βvt+2(Xt+2)|Ft] =E[vt+1(Xt+1)|Ft] = vt+1(Xt+1).

Hence, it follows from (12) that

E[Mt+1|Ft] =Rt(π
∗
n) +βtvt+1(Xt+1)≡Mt,

confirming that the process {Mt : 0≤ t≤ n} is a martingale. �
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Using the notation of Section 3, we have the initial state X1 = x̄, so, for the initial and terminal

values of Mt, we have

M0 = v1(x̄) =E[Rn(π∗n)] and Mn =Rn(π∗n).

Recalling the definition of the state-transition function f , we obtain the optimal successor state

Xt+1 = f(t,Xt, Yt,A
∗
t ,W

∗
t ), and, for each 1≤ t≤ n, we have the martingale difference sequence

dt =Mt−Mt−1 = βt−1r(t,Xt, Yt,A
∗
t ,W

∗
t ) +βtvt+1(Xt+1)−βt−1vt(Xt). (13)

By telescoping the sum and using the orthogonality of the martingale differences (see, e.g. Williams,

1991, Section 12.1) we find

Mn−M0 =
n∑
t=1

dt and Var [Mn] =E

[
n∑
t=1

d2
t

]
,

where Mn =Rn(π∗n) and M0 =E[Rn(π∗n)].

At each time 1≤ t≤ n, the decision maker can always exercise the do-nothing action (Property

2) to obtain a one-period reward equal to r(t,Xt, Yt,A
0
t ,W

0
t ) and an expected reward to-go equal

to βvt+1(Xt). If we now add and subtract βtvt+1(Xt) in (13), then we can write the martingale

difference dt as

dt = βt−1{Bt +Ct},

where we define Bt and Ct by setting

Bt = βvt+1(Xt)− vt(Xt) and Ct = r(t,Xt, Yt,A
∗
t ,W

∗
t ) +βvt+1(Xt+1)−βvt+1(Xt). (14)

Since Xt = f(t,Xt−1, Yt−1,A
∗
t−1,W

∗
t−1), we see that Xt and Bt are Ft−1-measurable, and our

representation for dt gives us

E[d2
t |Ft−1] = β2(t−1){B2

t + 2BtE[Ct |Ft−1] +E[C2
t |Ft−1]}. (15)

Since 0 =E[dt |Ft−1] = βt−1{Bt+E[Ct |Ft−1]} we have E[Ct |Ft−1] =−Bt, and we obtain from (15)

that

E[d2
t |Ft−1] = β2(t−1){E[C2

t |Ft−1]−B2
t } ≤ β2(t−1)E[C2

t |Ft−1]. (16)

We next check that the following bounds hold:

− r(t,Xt, Yt,A
∗
t ,W

∗
t )≤Ct ≤ r(t,Xt, Yt,A

∗
t ,W

∗
t ). (17)

To prove the first inequality of (17), we recall that condition (8) of Property 2 gives us the bound

−r(t, x, y, a∗,w)≤ r(t, x, y, a∗,w) +βvt+1(f(t, x, y, a∗,w))−βvt+1(x), for all y ∈Y and w ∈W.
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The substitution (x, y, a∗,w) ←↩ (Xt, Yt,A
∗
t ,W

∗
t ) and the definition (14) of Ct then give us

−r(t,Xt, Yt,A
∗
t ,W

∗
t )≤Ct.

To prove the second inequality of (17), we note that optimal action monotonicity implies

βvt+1(Xt+1)−βvt+1(Xt)≤ 0, so we also obtain the desired upper bound directly from the definition

of Ct.

Reward boundedness (Property 1) and (17) now give us

C2
t ≤ r(t,Xt, Yt,A

∗
t ,W

∗
t )2 ≤K r(t,Xt, Yt,A

∗
t ,W

∗
t ), (18)

so, when we take conditional expectations, we obtain

E[C2
t |Ft−1]≤K E[r(t,Xt, Yt,A

∗
t ,W

∗
t ) |Ft−1].

Finally, we recall the bound (16), take total expectations, and sum to conclude that

Var[Rn(π∗n)]≤K E

[
n∑
t=1

βt−1r(t,Xt, Yt,A
∗
t ,W

∗
t )

]
=K E[Rn(π∗n)], (19)

as needed. �

Remark 1. Our three crucial properties and the decomposition dt = βt−1{Bt+Ct}, 1≤ t≤ n, also

combine nicely to imply that the martingale {Mt : 0≤ t≤ n} has bounded differences, and |dt| ≤ 2K.

To see this, first note from (17) that −K ≤ −r(t,Xt, Yt,A
∗
t ,W

∗
t ) ≤ Ct ≤ r(t,Xt, Yt,A

∗
t ,W

∗
t ) ≤K.

Next, recall that we have the representation E[Ct |Ft−1] =−Bt, so the bounds on Ct also give us

−K ≤Bt ≤K. Taken together, these inequalities give us the uniform bound |dt|= βt−1|Bt +Ct| ≤

2K.

The bounded difference property allows us to obtain concentration bounds for the optimal total

reward, Rn(π∗n). Specifically, the Azuma–Hoeffding inequality (see, e.g. Boucheron, Lugosi and

Massart, 2013, Section 1.1) tells us that

P (|Rn(π∗n)−E[Rn(π∗n)]|> ε)≤ 2exp

{
− ε2

8K2n

}
, (20)

which we can compare with the concentration bound (11) obtained by Chebyshev’s inequality. If

the expected optimal total reward satisfies the growth condition

n−1/2 E[Rn(π∗n)]→∞ as n→∞, (21)

then an application of (20) also implies our Corollary 1, but one should note that (21) is quite

restrictive. For example, it does not hold for the simple knapsack problem of Section 1.1 when the

item sizes have the uniform distribution on [0,1].
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Remark 2. We can also relax the assumption that there is a uniform bound on the reward function

r(t, ·), 1≤ t≤ n. The argument given here can be repeated almost word for word provided that one

assumes an L2-L1 bound of the form

E[r2(t,Xt, Yt,A
∗
t ,W

∗
t )]≤K E[r(t,Xt, Yt,A

∗
t ,W

∗
t )] for all 1≤ t≤ n. (22)

The only change in the proof of Theorem 1 is that one uses (22) when one takes expectations in (18).

The bound (22) holds rather widely; in particular, it holds when the rewards have exponentially

bounded tail probabilities: P (r(t,Xt, Yt,A
∗
t ,W

∗
t )≥ λ)≤A exp(−Bλ) for some A> 0 and B > 0 and

all λ≥ 0.

6. When Optimal Action Monotonicity Fails: A Counterexample

It is natural to anticipate that if any one of the three conditions of Theorem 1 were to fail, then

the variance bound (10) may also fail. In particular, one can use a modification of the sequential

knapsack problem of Section 1.1 to construct a novel MDP that illustrates the joint failure of

optimal action monotonicity and the variance bound (2).

We take a horizon n= 2, a capacity C ∈ (0,1/3), and independent random variables Y1 and Y2

that are uniformly distributed on [0,1]. We write the action space as A= {0,1}, where a= 0 means

we do not include the item in the knapsack and a = 1 means that we include it. The state x is

the amount of available capacity, so for any pair (x, y) and t ∈ {1,2}, the set of actions available

is A(t, x, y) = {0,1(y ≤ x)}; in particular, if x < y then A(t, x, y) is the singleton {0}. For the

reward function we make the obvious choice r(t, x, y, a) = a, but in our state-transition function we

introduce a novel twist and take

f(t, x, y, a) =

{
x if a= 0

3x if a= 1.

Thus, we have modified the knapsack problem so that the “remaining capacity” is tripled when

we accept an item. Since we have the short horizon n = 2, this capacity boost materializes in a

useful way only if we accept the first item. For this MDP, reward non-negativity and boundedness

are trivial, and a= 0 is our do-nothing action. It remains to check that we have failure of optimal

action monotonicity and failure of the variance bound (2).

We first check the failure of the variance bound (2). Here, it is easy to verify that the unique

optimal Markov deterministic policy π∗2 = (A∗1,A
∗
2) is just the greedy policy: accept any item that

is feasible. In our notation we then have (A∗1,A
∗
2) = (1(Y1 ≤X1),1(Y2 ≤X2)), where X1 =C < 1/3,

so for the optimal policy π∗2 , we have a simple representation of the total reward

R2(π∗2) = 1(Y1 ≤C) +1(Y2 ≤X2).
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Explicit computations now give

E [R2(π∗2)] = 2(C +C2) and Var (R2(π∗2)) = 2(C +C2) + 2C2(1− 4C − 2C2).

From the solution of the quadratic equation we find

Var (R2(π∗2))>E [R2(π∗2)] for all 0<C < (−2 +
√

6)/2≈ 0.225,

and this confirms the violation of the variance bound (2).

It remains to check that our MDP also violates optimal action monotonicity (Property 3). Here

we first note that if t= 2 and X2 = x, then

v2(x) =E [1(Y2 ≤ x)] = x for any x∈ [0,3C]. (23)

Now, if at time t= 1 one has the state x and an item size y≤ x, then the optimal action is a∗ = 1

and our transition function gives us x∗ = f(1, x, y, a∗) = 3x, so using (23) for x∗ gives us

v2(x∗) = 3x> v2(x) = x,

which confirms the violation of optimal action monotonicity.

The counterexample of this section provides an MDP in which the reward process under the

optimal policy exhibits substantial positive correlation. The same principle can be used to construct

counterexamples with any horizon length that violate the variance bound (10) at different rates.

For instance, by independent regeneration of the counterexample discussed here, one obtains an

MDP with variance within a constant factor from the upper bound given by Theorem 1. It is also

possible to encounter MDPs in which the variance of the optimal total reward grows to infinity at

a rate that is faster than the rate at which the optimal mean grows to infinity. The simplest such

example is a trivial MDP with only one action available at each decision time and with a reward

process that is given by a dependent Bernoulli process. The reader is referred to James, James and

Qi (2008, p. 2341) for an explicit example of such a process.

7. Positive Examples: Four that Illustrate Many

It is remarkably easy to find MDPs with reward non-negativity and boundedness, a do-nothing

action, and optimal action monotonicity. Examples occur in operations research, operations man-

agement, financial engineering, and combinatorial optimization. Here, we focus on four examples

that are illustrative of many others.

The examples in Sections 7.2, 7.3, and 7.5 consider MDPs in which all of the within-period

uncertainty is realized before the decision maker chooses an optimal action (i.e., with no W a
t that
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matters). The discussion of stochastic depletion problems in Section 7.4 considers MDPs in which

the within-period uncertainty realizes after the decision maker chooses an optimal action (i.e., with

no Yt that matters), allowing for problems with stochastic state-transitions.

To facilitate our discussion, we first remark that optimal action monotonicity is immediately

satisfied if easy monotonicity conditions on the value function and on the evolution of the state

space hold.

7.1. Optimal Action Monotonicity: Sufficient Conditions

Optimal action monotonicity (Property 3) requires that, for each 1 ≤ t ≤ n and each state x ∈

X , the expected reward to-go that the decision maker earns after choosing an optimal action is

smaller than the expected reward to-go obtained if he chooses the do-nothing action. In formulae,

if x∗ ≡ f(t, x, y, a∗,w) is the optimal successor state for y ∈ Y and w ∈ W, then optimal action

monotonicity requires that

vt+1(x∗)≤ vt+1(x).

This property is easily verified provided that one of the two following sets of sufficient conditions

holds.

Sufficient Conditions. Suppose that the state space X is a subset of a finite-dimensional

Euclidean space equipped with a partial order �. Then, optimal action monotonicity (Property 3)

is implied by either one of the following sets of conditions.

1. For each 1≤ t≤ n, (i) the map x 7→ vt(x) is non-decreasing (so x� x′ implies vt(x)≤ vt(x′));

and (ii) for y ∈Y, w ∈W, and each optimal action a∗ ∈A(t, x, y) one has f(t, x, y, a∗,w)≡ x∗ �

x.

2. For each 1≤ t≤ n, (i) the map x 7→ vt(x) is non-increasing (so x� x′ implies vt(x
′)≤ vt(x)); and

(ii) for y ∈Y, w ∈W, and each optimal action a∗ ∈A(t, x, y) one has x� x∗ ≡ f(t, x, y, a∗,w).

Both sets of sufficient conditions include monotonicity properties of the value functions and the

evolution of the system state over time. Such properties are common and often easy-to-prove, as

we discuss next.

7.2. Dynamic and Stochastic Knapsack Problems

First it is useful to see how the dynamic knapsack problem of Section 1.1 has been generalized.

Specifically, Papastavrou, Rajagopalan and Kleywegt (1996) consider a knapsack with capacity

0<C <∞, and a finite horizon n. For each time period, 1≤ t≤ n, they assume that a new item

is offered in period t with probability p > 0. Moreover, to each arriving item there is an associated
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pair (U,Z) of random variables, where U is the size of the arriving item “to be packed”, and Z is

the reward that one earns if the item is included in the knapsack.

Here, one assumes that the joint size-reward pairs (Ut,Zt), 1 ≤ t ≤ n, are independent with

common distribution F (u, z) = P(U ≤ u,Z ≤ z) whose support is R+ × [0,K] where K <∞. As

usual, an arriving item can be accepted only if its size is not larger than the remaining capacity

of the knapsack, and the objective is to maximize the expected reward that is accumulated by the

end of the time horizon.

To derive the Bellman equation for this problem, we first suppose that at time t we have remaining

capacity equal to x. With probability 1−p we fail to have a new arrival, and the remaining level of

capacity x does not change. In this case, one is left with the expected reward over the remaining

time that is equal to vt+1(x). On the other hand, with probability p an arrival occurs and the

size-reward pair (u, z) becomes known to the decision maker. With probability 1− F (x,K) the

freshly observed size u exceeds the remaining capacity; the arriving item cannot be accepted, and

one is again left with the expected reward to-go, vt+1(x). Finally, if u ≤ x, then it is feasible to

accept the arriving item, and one chooses the action that yields the largest sum of the one-period

reward and the expected reward-to-go. If we do not accept the new item we have vt+1(x), but if

we accept the new item then we have z+ vt+1(x−u).

Assembling these observations, we see that for each time 1≤ t≤ n and for each level of remaining

capacity x∈ [0,C], the Bellman equation is given by

vt(x) = {1− pF (x,K)}vt+1(x) + p

∫
[0,x]×[0,K]

max{vt+1(x), z+ vt+1(x−u)}dF (u, z) (24)

with the boundary conditions

vt(0) = 0, for 1≤ t≤ n, and vn+1(x) = 0, for x∈ [0,C].

We also note that the Bellman equation (24) is a special case of (6) since there is no random

quantity that affects the state-transition function of any given action.

Here, reward non-negativity and boundedness and existence of do-nothing action are immediate.

To check optimal action monotonicity, note that the remaining capacity Xt is a non-increasing

function of t under any feasible policy and that the value function vt(x) is non-decreasing in x

(cf. Papastavrou, Rajagopalan and Kleywegt, 1996, Lemma 1). Taken together these two proper-

ties immediately imply optimal action monotonicity (see Sufficient Conditions 1), so we have the

variance bound (10) for the knapsack problem of Papastavrou, Rajagopalan and Kleywegt (1996).

Remark 3 (Single-Resource and Network Capacity Control). A multidimensional

generalization of the knapsack problem discussed here is given by optimal network capacity
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control. In the basic version of this problem (cf. Talluri and van Ryzin, 2004, Section 3.2), a

network has m resources, and a firm sells ` products.

Each product is a “bundle” of a subset of the m resources. At each time 1≤ t≤ n, a decision

maker is presented with an arriving customer who offers prices Y t = (yt,1, yt,2, . . . , yt,`)
> for each

of the ` products. The decision maker needs to decide which products to sell to maximize total

expected revenues over the whole selling horizon. The sale of product bundle j at price yj implies

consumption of one unit of each of the resources that constitute product j. Formally, this can

be expressed with a m× ` incidence matrix B = [bij]i=1,...,m
j=1,...,`

where the ij-entry bij = 1 if product

bundle j includes resource i, and bij = 0 otherwise.

The state of the system is given by a vector x = (x1, x2, . . . , xm)> of resource capacities, which

decreases over time as selling decisions are made. We also use the m-dimensional zero vector, 0, to

denote the system with no remaining capacity. Given this problem description, one can construct

the Bellman equation for this problem as a multidimensional analog to (24). Specifically, if one lets

A(x) = {a∈ {0,1}` :Ba≤x} be the set of available selling decisions when the resource capacities

are given by x, then one obtains a sequence of value functions {vt(·) : 1≤ t≤ n} that satisfies the

recursive equation

vt(x) =E
[

max
a∈A(x)

{Y >t a+ vt+1(x−Ba)}
]
, (25)

together with boundary conditions

vt(0) = 0, for 1≤ t≤ n, and vn+1(x) = 0, for all x.

It is easy to prove that the value functions given by (25) are non-decreasing in the vector of resource

capacities, x. Optimal action monotonicity (Property 3) is then immediately verified by appealing

to Sufficient Conditions 1, while Properties 1 and 2 follow trivially form the problem definition.

Hence, the variance bound (10) also holds for the network capacity control problem.

The special case with just a single resource (i.e. with m= 1 and `= 1 in the set-up described

above) has been extensively studied in the literature (cf. Talluri and van Ryzin, 2004, Section 2.5.1).

The variance bound (10) holds also for this special case, and we find that optimal total revenues

have relatively small variability, a fact that usefully complements earlier work on risk-sensitive

capacity-control for revenue management (Barz and Waldmann, 2007).

An important implication of the variance bound (10) for the revenue management problems

discussed here is that it also implies a weak law for the optimal total revenues scaled by the total

expected revenues that one obtains by implementing a fixed-bid-price heuristic, rather than the

optimal policy (see Talluri and Ryzin, 1998). More generally, such a weak law also holds when the

scaling is given by any (asymptotically optimal) mean-field approximation to the dynamic revenue

management problem.
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7.3. Investment Problems with Stochastic Opportunities

Derman, Lieberman and Ross (1975) and Prastacos (1983) study a sequential investment problem

with initial capital C. At each time 1≤ t≤ n, an investment opportunity arises independently with

probability 0 < p ≤ 1, and, at the time of arrival, the investor gets to see the “quality,” Yt = y,

of the investment. The investor then determines an amount, a, to invest in the opportunity, and

the investment generates a return, r(y, a), that is modeled as a deterministic, non-negative, non-

decreasing, bounded function of the pair (y, a), continuous and differentiable at every point. One

also takes r(y,0) = 0 for all y, so nothing ventured, nothing gained.

To derive the Bellman equation of this problem suppose that at time t the investor has an amount

of capital x. With probability 1− p no investment opportunity arrives, no capital is invested, and

the investor is left with just the opportunity to collect the expected return over periods t + 1

through n, vt+1(x). Alternatively, with probability p, an investment opportunity presents itself, the

investor sees its quality Yt = y and chooses an investment amount a≤ x to maximize the return

function a 7→ r(y, a) + vt+1(x− a). For 1≤ t≤ n, the investor’s Bellman equation is then given by

vt(x) = (1− p)vt+1(x) + p

∫
max

0≤a≤x
{r(y, a) + vt+1(x− a)}dF (y), (26)

with attending boundary conditions

vt(0) = 0 for all 1≤ t≤ n and vn+1(x) = 0 for all x∈ [0,C].

Here, the Bellman equation (26) is also a special case of (6) as no uncertainty is realized after the

decision maker chooses an optimal action.

Reward non-negativity and boundedness follow from our assumptions on r(·, ·), and the option of

taking a= 0 gives us an appropriate do-nothing action. The map x 7→ vt(x) is non-decreasing in x

for all 1≤ t≤ n (cf. Prastacos, 1983, Theorem 2.1), and the remaining capital Xt is non-increasing

under any feasible policy. These observations confirm optimal action monotonicity (see Sufficient

Conditions 1), so we have the variance bound (10).

Several natural extensions of this problem still have our three required properties. In particular,

one can accommodate time-dependent opportunity probabilities {pt : 1≤ t≤ n} or time-dependent

investment quality distributions {Ft : 1≤ t≤ n}.

7.4. Stochastic Depletion Problems

In a stochastic depletion problem (cf. Chan and Farias, 2009) a decision maker obtains a reward

for depleting a given collection of items over a finite time horizon of n periods. The items available

belong to one of M different types, indexed by m, and there are at most x̄m items of type m,
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1≤m≤M . The state of the system at time 1≤ t≤ n is given by a vector x = (xt,1, . . . , xt,m) of

remaining capacities for each item type. The decision maker must choose an action a from a set of

feasible actions A(t,x), and the action causes the depletion of W a
t = (W a

t,1, . . . ,W
a
t,m) items, where

W a
t is a {×Mm=1[0, xt,m]}-valued random vector with known probability distribution Gx,a

t .

The choice of action a ∈A(t,x) at time t when the state of the system is given by x generates

a non-negative one-period reward r(t,x, a,W a
t ), and the state at time t+ 1 is given by Xt+1 =

x−W a
t . Here, the realization of the depleting vector W a

t becomes available only after action a is

chosen. The decision maker seeks to maximize total expected rewards over the whole time horizon,

and we have the Bellman equation

vt(x) = sup
a∈A(t,x)

E [r(t,x, a,W a
t ) + vt+1(x−W a

t )] ,

where, as usual, the backwards induction begins by setting vn+1(x) = 0 for all x. Here, one should

note that the Bellman equation above is a special case of (6); specifically, in a stochastic depletion

problem there is no exogenous Yt that is realized before the decision maker chooses at time t an

optimal action.

Chan and Farias (2009) identify two properties of many stochastic depletion problems, value

function monotonicity and immediate rewards, that ensure that myopic policies are so-called 2-

approximations; that is, their expected rewards are within a factor of two of optimality. The first

property is equivalent to our set of Sufficient Conditions 1 for optimal action monotonicity, while

the second is a stricter version of our condition (8) that is required by the existence of a do-

nothing action. Thus, if the reward function is also uniformly bounded and there exists an action

a0 ∈A(t,x) such that W 0
t equals the zero vector for all 1≤ t≤ n and all x, then the variance bound

(10) holds for this class of stochastic depletion problems. As noted by Chan and Farias (2009),

several challenging dynamic optimization problems of practical interest are stochastic depletion

problems, and our analysis also applies to many of these.

7.5. Monotone and Unimodal Subsequences

A combinatorial optimization problem that satisfies our three properties is the sequential selection

of a monotone subsequence first studied by Samuels and Steele (1981). In this problem, a decision

maker sequentially views n independent and identically distributed random variables Y1, Y2, . . . , Yn

with uniform distribution on [0,1]. The goal of the decision maker is to select a subsequence

{Yτ1 <Yτ2 < · · ·<Yτk : 1≤ τ1 < τ2 < · · ·< τk ≤ n} of maximal expected length.

For each decision time 1≤ t≤ n, the state of the system can be represented with the value, Xt,

of the last observation selected prior to time t, and, by convention, we set X1 ≡ 0. For Xt = x, the

Bellman equation is then given by

vt(x) = xvt+1(x) +

∫ 1

x

max{vt+1(x),1 + vt+1(y)}dy, (27)
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with vn+1(x) = 0 for all x∈ [0,1].

To derive the Bellman equation (27) we first suppose that at time t the value of the last obser-

vation selected is equal to x. With probability x the arriving observation, Yt, is smaller than x

and cannot be selected, and we are left with the expected reward to-go, vt+1(x). With probability

1−x, the arriving observation Yt = y exceeds the value of the last observation selected, and we can

choose the action that yields the largest sum of the one-period reward and the expected reward

to-go. Not selecting yields vt+1(x) while selecting yields 1 + vt+1(y).

In this MDP, we have rewards that are non-negative and uniformly bounded by one. Any time

we see an observation we can reject it, leaving the value of the last observation selected unchanged

and receiving zero reward. So, we know that reward non-negativity and boundedness, as well as

the existence of a do-nothing action are satisfied. The definition of the monotone subsequence

problem guarantees that the selected values {Xt : 1≤ t≤ n} are a non-decreasing sequence, and, by

induction on the Bellman equation, one can check that the value function vt(·) is strictly decreasing

on [0,1]. Thus, optimal action monotonicity is also verified (see Sufficient Conditions 2), and we

have the variance bound (10).

For the monotone subsequence problem, the upper bound on the variance was observed by

Arlotto and Steele (2011) where special features of the selection problem were used to prove a

complementary lower bound of the same order. Specifically, in this context, one has

(1/3)E[Rn(π∗n)]− 2≤Var[Rn(π∗n)]≤E[Rn(π∗n)] for all n≥ 1.

The expected value is known to satisfy E[Rn(π∗n)]∼
√

2n as n→∞, so the two inequalities above

imply that the variance Var[Rn(π∗n)] has the same order as the mean E[Rn(π∗n)].

There are several related combinatorial problems for which one has the variance bound (10). For

example, it holds for the multidimensional monotone subsequence problem studied by Baryshnikov

and Gnedin (2000) and the unimodal subsequence problem studied by Arlotto and Steele (2011).

8. Conclusions

In the literature on Markov decision problems, it is uncommon to consider the distributional proper-

ties of the optimal total reward. Nevertheless, in many situations the economic value of an optimal

solution cannot be judged without some understanding of more than just its expected value. At a

minimum, one needs some understanding of the variance of the solution. Here, we have isolated a

class of MDPs for which we prove that the variance of the optimal total reward is relatively small.

Moreover, the class is characterized by three natural properties that are often easily verified.

Clearly, one could ask for more. In particular, it would be useful to know when one can provide a

lower bound on the variance to complement the upper bound given by Theorem 1. In some special
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cases — such as the one mentioned in Section 7.5 — there is a complementary lower bound that is

of the same order as the upper bound, but, so far, it has not been possible to give general criteria

for this useful situation.

Ideally, one could also ask for limit theorems for distribution of the optimal total reward, but this

problem is usually intractable because of the strong time dependence of the optimal policy. Even

for the classic knapsack problem of Section 1.1 many basic questions remain open; for example,

the asymptotic behavior of the variance is unknown.

Nevertheless, when the time dependence of the optimal policy is not overly strong, it is sometimes

possible to characterize the asymptotic behavior of the variance — or even to obtain a limit theorem

for the distribution of the total reward. One idea is to try to approximate the optimal policy

with a stationary policy that is easier to analyze. For example, this approach was used in Arlotto,

Chen, Shepp and Steele (2011) and Arlotto and Steele (2014) to study the optimal sequential

selection of an alternating subsequence from a sequence of n independent and identically distributed

observations. One can also develop the distributional limit theory of MDPs by focusing on those

problems with a more intrinsic stationary formulation, such as MDPs with Poisson arrivals, or a

geometric number of arrivals, or with infinite-horizon discounting. For example, Bruss and Delbaen

(2001; 2004) study a Poissonized version of the monotone subsequence problem of Section 7.5, and

they obtain both precise asymptotics for the variance and a central limit theorem.

Passage to a more stationary formulation almost always brightens the prospects for precise

asymptotic analysis, but, if one is really interested in the finite horizon problem, there is still

work to be done. Somehow the findings in the stationary formulation need to be translated into

results for the finite horizon problem. This task is analogous to classical Tauberian theory (see,

e.g. Korevaar, 2004), but so far there are no general results — or even precise conjectures.
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Ruszczyński, A. (2010), ‘Risk-averse dynamic programming for Markov decision processes’, Math. Program. 125(2,
Ser. B), 235–261.

Samuels, S. M. and Steele, J. M. (1981), ‘Optimal sequential selection of a monotone sequence from a random sample’,
Ann. Probab. 9(6), 937–947.

Sobel, M. J. (1982), ‘The variance of discounted Markov decision processes’, J. Appl. Probab. 19(4), 794–802.

Sobel, M. J. (1985), ‘Maximal mean/standard deviation ratio in an undiscounted MDP’, Oper. Res. Lett. 4(4), 157–
159.

Sobel, M. J. (1994), ‘Mean-variance tradeoffs in an undiscounted mdp’, Operations Research 42(1), 175–183.

Talluri, K. and Ryzin, G. v. (1998), ‘An analysis of bid-price controls for network revenue management’, Management
Science 44(11), pp. 1577–1593.

Talluri, K. T. and van Ryzin, G. J. (2004), The theory and practice of revenue management, International Series in
Operations Research & Management Science, 68, Kluwer Academic Publishers, Boston, MA.

White, D. J. (1988), ‘Mean, variance, and probabilistic criteria in finite Markov decision processes: a review’, J.
Optim. Theory Appl. 56(1), 1–29.

Williams, D. (1991), Probability with martingales, Cambridge Mathematical Textbooks, Cambridge University Press,
Cambridge.


	Looking at More than Means
	An Informative Example
	First Example of the Variance Bound 
	Tools, Proofs, and Further Examples

	A Brief Review of MDPs that Attend to Moments
	A General MDP Framework
	Bounding the Variance by the Mean: Sufficient Conditions
	Variance Bounds and the Proof of Theorem 1
	When Optimal Action Monotonicity Fails: A Counterexample
	Positive Examples: Four that Illustrate Many
	Optimal Action Monotonicity: Sufficient Conditions
	Dynamic and Stochastic Knapsack Problems
	Investment Problems with Stochastic Opportunities
	Stochastic Depletion Problems
	Monotone and Unimodal Subsequences

	Conclusions

