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EQUIDISTRIBUTION IN ALL DIMENSIONS OF WORST-CASE
POINT SETS FOR THE TRAVELING SALESMAN PROBLEM*

TIMOTHY LAW SNYDER' anp J. MICHAEL STEELE}

Abstract. Given a set S of n points in the unit square [0,1]¢, an optimal traveling salesman
tour of S is a tour of S that is of minimum length. A worst-case point set for the traveling salesman
problem in the unit square is a point set S(™) whose optimal traveling salesman tour achieves the
maximum possible length among all point sets S C [0,1]%, where |S| = n. An open problem is
to determine the structure of $(™). We show that for any rectangular parallelepiped R contained
in [0,1]4, the number of points in S8(™ N R is asymptotic to n times the volume of R. Analogous
results are proved for the minimum spanning tree, minimum-weight matching, and rectilinear Steiner
minimum tree. These equidistribution theorems are the first results concerning the structure of
worst-case point sets like S(™),
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1. Introduction. In this note we show that for many problems of Euclidean
combinatorial optimization, the maximal value of the objective function is attained
by point sets that are asymptotically equidistributed. To facilitate exposition, we
focus at first on the traveling salesman problem (TSP) for a finite set S of points in
the d-dimensional unit cube [0, 1]¢. Let 7(S) denote the set of tours that span S. The
optimal TSP cost of S is the value given by

1.1 TSP(S) = mi
(L SP(S) = min, 31l

where |e| denotes the Euclidean length of the edge e.
For each dimension d > 2, there are constants ¢y such that

(1.2) TSP(S) < cg|S]@-D/d,

where |S| denotes the cardinality of S. Considerable effort has been devoted to de-
termining good bounds on cg4; the earliest bounds are due to Few [2], and the current
records are held by Karloff [5] and Goddyn [3]. Simply by considering the rectangular
lattice, one can see there are also constants ¢/, > 0 such that, for all n > 2,

(1.3) max TSP(S) > ¢/n(d-1)/d,
scfo,1}¢
|]=n
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If we let prsp(n) = max{TSP(S) : § C [0,1]¢,|S| = n }, then the usual considerations
of continuity and compactness show that there are n-sets S for which TSP(S) =
prse(n) (cf. [7], p. 115); these are the worst-case point sets referred to in our title. We
suppress prsp’s dependence on d to keep notation simple.

The main result obtained here is that worst-case point sets are asymptotically
equidistributed in the sense made explicit in the following theorem.

THEOREM 1. If {S(™ : 2 < n < oo} is a sequence of worst-case TSP point sets
with S™ C [0,1]4, d > 2, and |S™M)| = n, then for any rectangular parallelepiped
R C [0,1]¢, we have

1
(1.4) lim =|S(™) N R| = voly(R).
n—oo N
While Theorem 1 is certainly intuitive, the proof we provide requires more than first
principles; it relies essentially on the result of Steele and Snyder [10] that there exist
constants B4 > 0 such that

. Tsp (T
(1.5 Jim 285 = 6
The exact asymptotic result (1.5) was motivated by the classical result of Beardwood,
Halton, and Hammersley [1] for the case of random point sets, and it seems to provide
just the refinement of bounds like (1.2) and (1.3) that is needed to obtain equidistri-
bution limit theorems.

We note that a proof of Theorem 1 in dimension two using techniques different
from the ones we use here is given in [9]. We also note that Theorem 1 has a close
connection to some results and a conjecture of Supowit, Reingold, and Plaisted [11].
This connection will be explained more fully in §4, after we have developed some
notation.

In the next section, we prove Theorem 1; §3 deals with problems other than the
TSP.

2. Proof of Theorem 1. For any fixed integer m > 2, we partition [0, 1]¢ into
m? subcubes Q;, where 1 < i < md, each of side length 1/m. For any rectangle
R and any € > 0, there is an m and sets A and B such that U4Q; C R C UgQ;
and volg(U;eB—aQi) < evolg(R); hence, to prove Theorem 1, it suffices to consider
equidistribution with respect to the Q;. Specifically, it suffices to show that for each
m > 2 and 1 < i < md, we have

lim —leﬂS | =—1—

(2.1) Jim = =

Our proof of (2.1) depends on the equality case of Holder’s inequality,
which tells us that for 1 < p < oo and wu;,v; > 0, we have Ei;l uv; <

(Xh_ ub) Ye(yk vf/(p_l))(p_l)/p. Setting v; = 1 for 1 < ¢ < k, we have
Z?:l Ui = Zf=1 ui-1< (Ef:l up)l/p (Zf:l 17/(p=1))(p-1)/p = (Ef:l uf) /e k(e=1)/p,
The fact that is important for us is that one can have equality in this bound if and
only if ug = ug = -+ = uy ([4], pp. 21-26).

Let s(n,i) = |Q: N SM)|; ie., s(n,i) is the number of points of a worst-case
point set S(7) that appear in the the ith subcube. We first establish a limit result
concerning the s(n, ) that measures their aggregate size in a way that works usefully
with Holder’s inequality.
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LEMMA 1. For all m > 2, we have

T s(n, i)@-D/d

22 =S ey =™
Proof. First, write (1.5) as
(2.3) prse(n) = Bgn(@=1/d 4 r(n), where r(n) = o(n(d-1)/d),
Let W denote a closed walk on S(") = {z1,z3,...,2,}; i.e, W is a sequence of edges
(@iy s Tig)y (Tigy Tig )y« -, (Tin_q 5 Tiy, ), (Tiy , T4y ) that visits each point of S(™) at least once

and begins and ends at the same point. Even if W visits some points more than once
and traverses some edges more than once, W is feasible for the traveling salesman
problem on S(), so TSP(S(™) < 3" .y lel.

We now construct a particular W on S(*) in the tradition of 6] and [11]. In each
subcube Q; for which S(") N Q; # 0, construct an optimal traveling salesman tour
T; of S N Q;. This creates a set of at most m<¢ within-subsquare tours. We then
select a point =} from each T; and let T* be an optimal traveling salesman tour of
{z¥,x5,... ,a::nd}. The closed walk W is then formed by visiting subsquares in the
order specified by T*, visiting all members of subsquare @); by traversing T; whenever
T* reaches 7.

To assess the length of W, we first note that T* is a TSP tour of m9 points, so
by (1.2), 3 .c7+ le| < camd—1. This gives

prse(n) = TSP(S(™)

<D lel

eeW
md

(24) =S TSP(S™ N Qi)+ 3 el
=1 ecT*

d

<) " TSP(S™ N Q;) + camd-1.

=1

We now use (2.3) in (2.4) along with the fact that TSP(S(™ N Q;) is at most
prse(8(n,t)) scaled by the subcube size 1/m to get

prsp(n) = Ban(d=1/d 4 r(n)

md .
< Z prse(s(n, %)) + cgmd-1
(2’5) =1 m
1 1>
< - ; Bas(n,i)d-1/d 4 - ; r(s(n,i)) + cqmd-1,

where, for all 1 < i < md, the value |r(s(n,4))| < maxx<n{r(k)} = o(n(@-1)/4). Since
m is fixed, we cancel (4 in (2.5) to find

md

(2.6) > s(n,i)(@1/d > mpd-1)/d 4 h(n),

i=1
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where h(n) = o(n(d-1)/4). Dividing by n(4-1)/4 and letting n — oo thus proves half of
the lemma. To obtain the other half, just apply Hélder’s inequality with p = d/(d—1)
to Z:;dl s(n,i)(d=1/d and use EZ’:I s(n,i) = n to find that Z;’_’__dl s(n,i)(@-D/d <
mn(d=1/d [

We are now in position to prove Theorem 1. First, we recall the subsequence
convergence principle which says that if (ax) is any sequence of real numbers with the
property that for any integers n1 < ng < --+ < ng < --- there is a further subsequence
nj <nh < -+ <my <---such that ap,; — o as k — oo, then in fact one must have
ar — o as k — 0o. One easy way to see the validity of this principle is to note that
if ax does not converge to «, then there is some o’ # o, —o0 < o’ < 00, and some
subsequence of (ax) that converges to o’.

Now let (nx) be a given increasing sequence of integers. Since 0 < s(n,i)/n <1
for all n and 4, we can find a subsequence (n},) of the (ni) and m? constants 0 < o; <1
such that, for all 1 < i < m¢, we have

(2.7 lim s(n},i)/n = .
k—o0

Now, since Z;’;dl s(n,1) = n, we have from (2.7) that

md
(2.8) Zai =1.
i=1
Similarly, by (2.2) and (2.7), we have
md
(2.9) Z agd_l)/d =m.
=1

Now, equation (2.9) and Hoélder’s inequality applied with u; = agd_l)/ 4 and p =
d/(d—1) give us

d md 5 md
(2.10) m=3 el < " a,-)(”’ 1)/d 5 1d>1/d‘
=1 i=1 i=1

But, by (2.8), we see that equality holds in (2.10), and thus a§d~1)/ 4= agd_l)/ 4=
cee = air'f; n/ 4 so applying (2.8) again, we see that a; = 1/md for all i. By the
subsequence convergence principle noted after Lemma 1, we therefore have for all
1 < i < m? that s(n,i)/n — 1/m as n — 00, and the proof is complete. a

3. Equidistribution in related problems. The method just used for the TSP
can be applied to the minimum spanning tree, the minimum-length matching, and the
rectilinear minimum Steiner tree. If L = L(S) denotes the optimal cost associated
with any of these, then we can define pi(n) = sup g(o,1j¢ L(S) and let 5™ be such

|S|=n
that L(S{™) = p.(n). To show that S{™ is asymptotically equidistributed boils down
to checking that L satisfies two conditions:

1. pu(n) = ﬂL,dn(d—lj/d + o(n(d-1)/d) where S, > 0 is constant; and

2. pu(n) < m-1Y™ pu(su(n,4)) + o(n(@=1/4), where sv.(n,i) = |ST™ N Qil.
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Condition 1 has been proved for the minimum spanning tree, minimum-length match-
ing, and rectilinear Steiner tree problems (cf., [10] and [8]), and condition 2 can be
verified for these problems by the method used in the proof of Lemma 1.

For example, if L(S) = MST(S) denotes the total length of a minimum spanning
tree of S, we first form a minimum spanning tree MST(S,E};)T N Q:) on each s NQ;.
These trees can then be interconnected at total cost o(n(4-1)/4) by adding md — 1
edges, each costing no more than ¢/m, where c is constant. This forms a heuristic
tree on S,S};)T Since the lengths MST(S,E?S)T N Q) are no greater than the worst-case
(within-subcube) lengths pust(Smsr(n,%))/m, condition 2 follows.

Checking these conditions for each of the problems yields the following theorem.

THEOREM 2. If { S,E") :1<n< oo} isa sequence of worst-case point sets for
the function L, where L is the minimum spanning tree, the minimum-length matching,
or the rectilinear minimum Steiner tree, then, for any rectangular parallelepiped R C
[0,1]4,

(3.1) lim ~ |S™ N R| = Voly(R).

n—oo N

4. Concluding remarks. The asymptotic equidistribution of worst-case point
sets for the problems we have considered offers some support to the conjecture of [11]
that worst-case point sets are approximated by lattices as n — oco. It is still a major
open problem to resolve this conjecture.

Theorem 1 has a rather subtle relationship to some results of Supowit, Reingold,
and Plaisted [11]; we explain here how these results relate to ours. In addition to
improving current bounds on the constants ¢z and ¢4 in (1.2) and (1.3), their analysis of
the worst-case TSP in IR? decomposed [0, 1]2 into m?2 labeled subsquares of side length
1/m, then constructed a heuristic algorithm similar to that of [6]. Supowit, Reingold,
and Plaisted noted that the worst-case performance of the heuristic is attained on
point sets that are equidistributed, and they used this observation to prove that the
leading constant of the worst-case length of their heuristic tour is identical to the worst-
case TSP constant (2 in (1.5). This observation does not produce an equidistribution
result for worst-case point sets, but it is suggestive of a result like Theorem 1. Still, a
rigorous proof of asymptotic equidistribution of a worst-case TSP point set required
a much different path.

There are other open problems that are motivated by our results. For the Eu-
clidean Steiner problem, the limit result for condition 1 in §3 has yet to be established.
We believe such a result holds, and it would imply that a worst-case point set for the
Euclidean Steiner problem is asymptotically equidistributed. It is also likely that
the Steiner points in the Euclidean and rectilinear cases are asymptotically equidis-
tributed.

Another problem concerns the greedy matching. Though condition 1 in §3 holds
for this problem, the methods we use to verify condition 2 do not work, since they
require a minimality condition. Hence, since the greedy matching is not a minimum-
length matching, showing equidistribution for a worst-case point set for the greedy
matching problem remains an open problem.
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