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Abstract

We give an interpretation of the Maxi�
mum Entropy �MaxEnt� Principle in game�
theoretic terms� Based on this interpretation	
we make a formal distinction between di
er�
ent ways of applying Maximum Entropy dis�
tributions� MaxEnt has frequently been crit�
icized on the grounds that it leads to highly
representation dependent results� Our dis�
tinction allows us to avoid this problem in
many cases�

� INTRODUCTION

The Maximum Entropy Principle �Jaynes	 ����� is
an often successful yet controversial method for in�
ductive inference� It has been justied and criticized
in many di
erent ways �Jaynes	 ����� Grove et al�	
����� Halpern � Koller	 ������ Here we give a novel
game�theoretic justication that is fundamentally dif�
ferent from previous ones� we show that the Max�
Ent distribution for a given constraint is the distribu�
tion that minimizes the worst�case expected loss when
used for prediction in a certain game� We give sev�
eral interpretations of this game� We argue that the
game�theoretic interpretation is more natural than the
usual one	 and that it sheds new light on the circum�
stances in which MaxEnt can be fruitfully applied�
Specically	 there are applications of MaxEnt where
the same inference problem may be associated with
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several di
erent games with di
erent worst�case opti�
mal strategies� We use this insight to formally distin�
guish between qualitatively di
erent ways of applying
a MaxEnt distribution	 ranging from �completely safe�
to �completely untrustworthy� applications� This also
leads to a partial solution of Bertrand�s paradox	 i�e�
the representation dependency of MaxEnt inferences�
Sections ��� introduce notation and review MaxEnt
and the representation dependency problem� Section �
gives our game�theoretic reinterpretation� Sections ���
show how the reinterpretation can be used to distin�
guish between di
erent ways of applying MaxEnt and
to �sometimes� avoid Bertrand�s paradox�

� PRELIMINARIES

Consider a nite sample space �� We reserve the use of
random variableX to denote outcomes in �� All other
random variables can be vector valued	 i�e� they are
by denition functions from � to Rk for some k � ��
For random variable Y � � � Rk	 we dene the range
of Y 	 denoted by �Y 	 as

�Y � fy � Rk j �x � � � Y �x� � yg�

By this notation �X � �� We let PY stand for
the family of all probability distributions over �Y �
For a PY � PY and AY � �Y 	 PY �AY � denotes
the probability mass of AY under PY � For distri�
butions PX � PX 	 the notation PX�Y � y� is short
for PX�fx � �X j Y �x� � yg�� Let PY � PY and
PZ � PZ be distributions over �Y and �Z respec�
tively� We say that PY and PZ are compatible �with
underlying space �X� if there exists a PX � PX such
that for all y � �Y � PX�Y � y� � PY �fyg� and for
all z � �Z � PX�Z � z� � PZ�fzg�� Intuitively	 PY
and PZ are compatible if they can be thought of as
marginal distributions of a single distribution PX de�
ned over the more ne�grained space �X � We fre�
quently use random variables that are indicator func�
tions� The indicator function for event A � �X is
denoted by �X�A and dened by �X�A � � if X � A



and � otherwise� A measure for �Y is a function
MY � �Y � ������ It is extended to arbitrary events
AY � �Y by M�AY � ��

P
y�Ay

MY �y�� �Compatibil�
ity� of measures MY and MZ is dened analogously to
compatibility of probability distributions PY and PZ �
The entropy of a distribution P over �X relative to
measure M over �X is dened as

HM �P � �� EP �� ln
P �X�

M�X�
� �
X

x��X

P �x� ln
M�x�

P �x�
�

Notational Convention If a distribution	 �or mea�
sure	 or set of distributions� is denoted with a subscript
Y for some random variable Y 	 we mean a distribution
�measure	 set of distributions� over �Y �examples are
PY �MY � CY �� If a distribution �measure	 set of dis�
tributions� is denoted without subscript	 it is always
a distribution �measure	 set of distributions� over the
basic sample space �X � ��

� REVIEW OF MAXENT

Let ��� � � � � �k be functions from �X to R� In the
usual MaxEnt setting	 we are given a set of constraints
regarding the expected values of the functions �i under
some unknown distribution P ��

EP� ����X�� � t�� � � � � EP� ��k�X�� � tk ���

where the ti are values in R� By taking the �i to be
indicator functions we can express constraints of the
form P ��Y � y� � t for arbitrary random variables Y �

We now ask the following question� if the only knowl�
edge we have about P � are the constraints given by
���	 what is then our �best� guess for P �� �for in�
terpretations of �best� see Section ��� According to
the adherents of maximum entropy we should adopt
the distribution P that	 among all the distributions
satisfying the constraints ���	 maximizes the entropy
HM �P �� To formalize this idea we rst abbreviate the
constraints ��� to

EP� ���X�� � t� ���

Here ��X� � ����X�� � � � � �k�X��T is a function from
�X toRk and t is a k�dimensional vector �t�� � � � � tk�

T �
Each constraint of form ��� determines a set of proba�
bility distributions satisfying the constraint� This set
is denoted by C�

C �� fP � PX j EP ���X�� � tg� ���

In all our theorems and propositions	 we will assume
the following

Regularity conditions �A� �X is nite� �B� the set
C mentioned in the theorems is dened as in ��� and is
non�empty �this means that every conceivable � and t
are allowed as long as C is non�empty��

We can now dene maximum entropy inference for�
mally� given a tuple ���M� �� C�	 where M is a mea�
sure over � and � and C are as in ���	 MaxEnt tells us
to adopt the distribution Pme

M given by

Pme
M �� argmax

P�C

HM �P � � argmax
P�C

EP �� ln
P �X�

M�X�
��

���

Our regularity conditions are su�cient to ensure that
a unique Pme

M always exists�

� MAXENT� MEASURE AND

REPRESENTATION DEPENDENCY

Several versions of MaxEnt and of the related mini�
mum relative entropy principles exist in the literature�
By making the entropy HM dependent on an underly�
ing measureM 	 we can account for all of these with our
Equation �� We distinguish between two main forms�

Case A� M NOT available �U�MaxEnt� This
is the �classical� form of MaxEnt for discrete sample
spaces �Jaynes	 ������ It does not mention any un�
derlying measure and tells us to pick the distribution
P � C maximizing EP �� lnP �X��� It can be imple�
mented in ��� by taking M to be the uniform measure
over the sample space �X 	 dened by M�x� � �� We
will refer to this form of MaxEnt as U �MaxEnt�

Case B� M available We will refer to this case
simply as �MaxEnt�� It has two sub�cases� rst	 the
case where a unique measure ��natural way of counting
outcomes�� is available a priori� Sometimes	 through
knowledge of the physics of the domain that is being
modeled	 one can decide on a unique underlying mea�
sureM that is appropriate for the domain at hand �for
ways to determine such a measure	 see �Jaynes	 �������
��� can be directly applied here� Second	 theMinimum
Relative Entropy Principle� This is the case where a
prior probability Q over �X is known	 and the goal
is to �update� this prior probability based on the con�
straint ���� The minimum relative entropy principle
tells us to pick the P minimizing EP �ln�P �X��Q�X����
By picking M � Q	 this can be represented as maxi�
mizing entropy relative to M �

If a priori knowledge about the domain other than
the given constraint ��� is completely lacking	 then
U �MaxEnt �case A� is the only form we can apply�
Unfortunately	 case A is also the most problematic by
far� In contrast to case B	 case A typically gives results



that are highly representation dependent � if the same
domain is represented in a di
erent language	 Max�
Ent may lead to di
erent results� Since the choice of
representation seems arbitrary	 the results one obtains
using U �MaxEnt seem arbitrary as well� This fact is �
at least in the case of continuous data � often referred
to as Bertrand�s Paradox�

Example � �a simple Bertrand�s Paradox� Let
�X � f�� �� �g and let there be no further constraints
�in our formulation	 this can be expressed by picking
��x� � � and constraint EP� ���X�� � ��� Consider an
agent �call him Mr� X� who wants to infer a distri�
bution over �X and who uses U �MaxEnt� Hence he
picks Pme

UX
as given by ��� with UX the uniform mea�

sure over �X � As is well known	 the resulting Pme
UX

is
the uniform distribution over �X � Now consider an�
other agent �Mrs� Y � who looks at the same domain
at a coarser level� Specically	 she can only distin�
guish between the case where X � � on the one hand
and X � f�� �g on the other hand� Mrs� Y �s sample
space is therefore �Y � ff�g� f�� �gg� If Mrs� Y uses
U �MaxEnt she will adopt a uniform measure UY over
�Y � She will then infer a distribution Pme

UY
uniform

over �Y � Then P
me
UY

�f�g� � ���	 Pme
UX

�f�g� � ���� the
distributions inferred by Mr� X andMrs� Y are incom�
patible	 even though they are based on the same do�
main� For more subtle examples of this phenomenon	
see for example �Halpern � Koller	 ������ In our for�
mulation �with underlying measure�	 Bertrand�s para�
dox can be equivalently expressed as the dependency
of Pme

M on the choice of underlying measureM � In our
example	 if Mrs� Y uses the measure M �

Y dened by
M �
Y �f�� �g� �� � and M �

Y �f�g� �� � then she will infer
Pme
M �

Y

�f�g� � ��� after all� this change of measure over

�Y has the same e
ect on the probability assignments
to elements of �Y as the representation change from
�Y �with measure UY � to the more ne�grained �X
�with measure UX�� This observation will be made
precise in Theorem �	 Section ��

Important In many cases	 physical background knowl�
edge provides a �natural� space for representing the
domain at hand� For example	 if we are to investigate
the probabilities of the faces of a �possibly loaded�
die	 then by symmetry considerations	 we should not
distinguish a priori between the six faces� It is then
only natural to take as basic sample space the space
with exactly one outcome for each face	 and to take a
uniform measure over this space� The representation
dependency should be considered problematic only if
there is no preferred �natural� sample space or �equiv�
alently	 by Theorem ��	 no natural underlying mea�
sure�prior�

Some people do not see the above example as problem�
atic� the two agents are facing di
erent �experimental

situations�	 so it is not so strange that they obtain
di
erent results� But then the question is� what ex�
actly constitutes an �experimental situation�� It is this
question we will partially answer through our game�
theoretic reinterpretation of MaxEnt	 which we pro�
ceed to discuss�

� MAXENT AS A GAME

The information inequality �Cover � Thomas	 �����
tells us that for all distributions P and Q over �X 	

EP �� lnP �X�� � EP �� lnQ�X��� ���

with equality i
 P � Q� This implies infQ�PX
EP �� ln�Q�X��M�X��� � EP �� ln�P �X��M�X���
and hence entropy can be characterized as� HM �P � �
infQ�PX EP �� ln�Q�X��M�X���� The maximum at�
tainable entropy for distributions in a set C is therefore
given by

sup
P�C

HM �P � � sup
P�C

inf
Q�PX

EP �� ln
Q�X�

M�X�
�� ���

Readers familiar with game theory �see e�g� �Berger	
������ will recognize ��� as the maximin gain of a two�
player zero�sum game� If they are acquainted with
Von Neumann�s minimax theorem	 they may further
suspect that the following equality holds�

inf
Q�PX

sup
P�C

EP �� ln
Q�X�

M�X�
� �

sup
P�C

inf
Q�PX

EP �� ln
Q�X�

M�X�
� � HM �Pme

M �� ���

This equality indeed holds under very mild conditions	
although this does not follow directly from Von Neu�
mann or Nash�s theorems �which cannot handle arbi�
trary convex sets of mixed strategies such as C��

Theorem � Under the regularity conditions of
Section �� Equation � holds� Moreover� �a	
supP�C infQ�PX EP �� ln�Q�X��M�X��� is reached for
�and only for	 P � Pme

M 

�b	 infQ�PX supP�C EP �� ln�Q�X��M�X��� is reached
for �and only for	 Q � Pme

M � Hence �c	 we have

Pme
M � argmin

P�PX

sup
P��C

EP� �� ln
P �X�

M�X�
�� ���

�d	 Pme
M is an �equalizer strategy�� i�e� for all P � � C�

EP� �� ln
Pme
M �X�

M�X�
� � EPme

M
�� ln

Pme
M �X�

M�X�
� ���

A similar theorem with much less conditions on �X
and C will be provided in �Gr�unwald � Dawid	 ������



Basic Interpretation Consider the decision�
theoretic setting where an Agent has to make deci�
sions about the outcomes in some space �X � Agent�s
decisions come from a decision space D and the loss is
measured by some function loss � �X�D � R	f�g�
After making a decision � � D	 the actual outcome
x � �X is revealed and Agent incurs a loss loss�x� ���
Sometimes the decisions � are best interpreted as
predictions of the values of x	 sometimes they are best
interpreted as game playing strategies�

The logarithmic loss function is a loss function that
occurs in several games with several interpretations
�Berger	 ����� Cover � Thomas	 ������ The set D
of available decisions for these games consists of all
functions P � �X � ��� �� such that

P
x��X

P �x� � ��
Hence D is formally equivalent to PX � However	 as we
will see	 the elements of D sometimes have interpreta�
tions very di
erent from probability distributions� The
logarithmic loss function �relative to measureM� is de�
ned by loss�x� P � � � ln�P �x��M�x�� for each x �
�X and P � D� Consider now a game where Nature
chooses a �true� distribution P � and Agent wants to
minimize his expected logarithmic loss� If Agent knew
P �	 he would choose argminP�PX EP� �loss�X�P ���
By the information inequality ��� we see that this is
given by P � P �� But now consider the case where
Agent only knows that P � � C for some set C� He may
now want to minimize his worst�case �maximal	 ex�
pected logarithmic loss over all choices of Nature� This
is exactly what is expressed by ���� the maximum en�
tropy distribution is the worst�case optimal distribution
for predicting outcomes of �X when loss is measured
by the logarithmic loss function�

Why would Agent at all be interested in minimizing
logarithmic loss� This game has several important in�
terpretations� Below we discuss one that is of specic
interest in the remainder of this paper� others are sum�
marized in Section ����

���KELLY GAMBLING INTERPRETATION

Imagine a lottery where there are tickets for sale for
betting on outcomes in �X � f�� � � � �mg� Ticket j
�for � � j � m� pays b units if outcome j actually
occurs� otherwise	 it pays nothing� All tickets cost �
unit	 so all outcomes share the same odds� Agent has
some capital K which he wants to invest in lottery
tickets� Suppose that Agent thinks that the actual
outcomes are distributed according to some distribu�
tion P �� Agent�s gambling strategy can be described
by a vector P � �P ���� � � � � P �m�� where P �j� is the
fraction of capital K that Agent invests in outcome
j� That is	 he buys P �j� 
 K tickets for outcome j�
for convenience we allow buying a non�integer amount
of tickets� If Agent plays the game only once	 then

his expected gain EP� �bKP �X�� is maximized by the
strategy with P �j� � � for the j with maximum prob�
ability P ��j�� But now suppose Agent plays the same
game several times� After each round	 he reinvests his
remaining capital by buying tickets for the next round�
So after round �	 his capital is K� � P �x��bK where
x� is the actual outcome at round �� After round �	
his capital is K� � P �x��bK� etc� If the number of
rounds n is not too small or if it is not known in
advance how many rounds there will be	 it becomes
better for Agent to adopt a fundamentally di
erent
strategy	 sometimes called proportional gambling or
the Kelly gambling scheme �Cover � Thomas	 ����	
Chapter ��� This is dened as the gambling strategy
P maximizing EP� �lnP �X��� This quantity may be
interpreted as the expected growth rate of the invested
capital� To see why this is a sensible strategy	 let P
and Q be two distributions such that EP� �lnP �X�� �
EP� �lnQ�X��� Suppose the game is played n times	
and outcomes X�� � � � � Xn are all independently dis�
tributed � P �� Then	 by the strong law of large
numbers	 ���n�

Pn

i�� lnP �Xi� � EP� �lnP �X�� and
���n�

Pn

i�� lnQ�Xi� � EP� �lnQ�X�� with probabil�
ity �� It follows that there exists an � � � such that
with probability �	 for all large n	

Pn

i�� lnP �Xi� �Pn

i�� lnQ�Xi� � n�� This implies

nY

i��

P �Xi� � en�
nY

i��

Q�Xi�� ����

with P ��probability �	 for all n larger than some n��
If Agent uses strategy P at each round i	 his capi�
tal after n rounds is given by Kbn

Qn
i�� P �xi�� To�

gether with ���� this implies that for any two strate�
gies P and Q	 with P � probability �	 Agent�s end cap�
ital is exponentially larger for the strategy with larger
expected growth rate� So �at least if n is large or
unknown� a rational Agent should adopt the strat�
egy P maximizing EP� �lnP �X��� If the only thing
Agent knows about P � is that P � � C	 it is a good
idea for the Agent to maximize his worst�case expected
growth rate	 i�e� to pick the strategy P that maximizes
minP��C EP� �lnP �X��	 which is identical to the distri�
bution minimizing maxP��C EP� �� lnP �X��� The lat�
ter distribution is the MaxEnt distribution with uni�
form measureM � Pme

M is the worst�case optimal distri�
bution in the Kelly gambling game� maximizing� with
probability �� the worst�case end�capital for all large n�
A uniform underlying measure M corresponds to the
game with equal odds for all outcomes� non�uniform
measures correspond to games with non�uniform odds�

��	 MDL 
 OTHER INTERPRETATIONS

The minimax game ��� has several other interpreta�
tions� We mention two� First	 there is a statistical in�



terpretation� many statistical inference procedures can
be interpreted as trying to infer	 for a given set of data	
the probability model within some class of models M
that is �as close as possible� to the unknown	 �true�
data generating distribution P �� In Maximum Likeli�
hood and some Bayesian inference procedures	 �close�
ness� is measured by means of theKullback�Leibler KL�
distance	 which	 for xed P � and M 	 only di
ers from
the expected logarithmic loss EP� �� ln�P �X��M�X���
by a constant� Second	 there is an interpretation
in terms of the Minimum Description Length �MDL	
Principle �Gr�unwald	 �����	 a method for inductive in�
ference that is based on data compression� MDL can
be seen as a mathematical formalization of Occam�s
Razor� It turns out that based on the minimax for�
mulation ���	 MaxEnt can be interpreted as a form of
MDL� this is shown in �Gr�unwald	 ������ Finally	 we
note that even if we do not assume the existence of a
unique true distribution P � �to which for example the
Bayesians may object� a form of our analysis can still
be performed� All this will be treated in detail in the
journal version of this paper�

� THE GLASSES YOU ARE

LOOKING THROUGH

Let us now stand back and ask why Agent would like
to infer a probability distribution over a domain in the
rst place� Usually	 this is because he would like to
make good or at least reasonable predictions or deci�
sions concerning some random variable Y referring to
the domain �more general prediction tasks will be con�
sidered in later sections�� If Y is a random variable in
the domain and D is a set of available decisions	 then
the quality of such decisions is usually measured by
some loss function loss � �Y �D � R	f�g� If Agent
knew the �true� distribution P � governing domain �X 	
then he could use this knowledge to make optimal pre�
dictions for any given loss function by predicting us�
ing the action  � � argmin��D EP� �loss�Y� ��� �Berger	
������

But the interpretation of Pme
M from the minimax point

of view ��� suggests that Pme
M should rst and fore�

most be interpreted as the strategy to adopt in the
game described in Section � and not as the distribu�
tion P � according to which data are distributed� This
leads to a key insight� perhaps we should not regard
Pme
M as a guess of the �true� P � to be used by Agent

in every prediction task that can be dened over the
domain� It may be better to think of Pme

M as being
wrong yet useful in that it may be a reasonable guess
of P � for use in some possible prediction tasks �i�e� for
some random variables and loss functions� but a quite
unreasonable guess for use in other combinations of

random variables and loss functions�� To make this
idea concrete	 suppose Agent has no access to P � but
approximates it using Pme

M � For given loss function
loss	 Agent can use Pme

M to arrive at a prediction by
picking

 � � argmin
��D

EPme
M

� loss�Y� ���� ����

In general	 this will lead to reasonable results if �� �
D � EPme

M
�loss�Y� ���  EP� �loss�Y� ���� For each � �

D	 the function � dened by ��x� �� loss�Y �x�� �� is
a random variable� Hence	 in order to be able to decide
for arbitrary loss function loss whether Pme

M as used
in ���� will lead to reasonable predictions	 it su�ces if
for arbitrary random variables � � �X � Rk	 we can
decide whether EPme

M
���X�� is a reasonable guess for

EP� ���X��� Let us analyze this question further�

In order to predict the likely value of EP� ���X��	
Agent must assign probabilities to the values in ��
that random variable � takes� This involves �looking
at the domain� in terms of the function �� in other
words	 � determines the �glasses� through which Agent
looks at data X from sample space �X � But when in�
ferring Pme

M 	 Agent observes averages of values of the
function �� Hence Agent looks at the world in terms
of ��� As discussed in Section ���	 Pme

M maximizes
the worst�case gain when used for Kelly Gambling on
the outcomes in �X against odds determined by M �
We may now ask ourselves why Agent should be in�
terested in a distribution that maximizes gain when
betting on outcomes in �X if both the observables
���X�� and the �predictables� ���X�� are outcomes in
spaces di
erent from �X � If no a priori measure M
is available	 U �MaxEnt advocates a uniform M � But
should Agent adopt a uniform M over �X 	 �� or ���
Indeed �	 � and X may be related in such a way that
the optimal gambling strategies against uniform odds
for outcomes in �X ��� and �� are mutually incom�
patible� This immediately suggests that postulating a
uniform measure over �X may not be the right thing
to do� and that it is not so strange that it leads to
representation dependence� Analyzing this fact with
the game�theoretic interpretation in mind	 we nd �in
Section ���� that if � and � are related in a certain
way	 we can do something about this� Namely	 as long
as �� is at least as �coarse� as �� ��looking at an out�
come x through the �glasses� � allows a view on �X

�Related ideas are quite common in statistics and Ma�
chine Learning� As an example� �Naive Bayes� models are
joint probability distributions dened over discrete random
variablesX�� � � � � Xk� Y of a certain parametric form� They
usually perform exceedingly well when used to predict val�
ues of Y conditional on X�� � � � Xk �Friedman et al�� �����
under the ��� �classi�cation� loss function� Yet they make
all kinds of unwarranted independence assumptions that
might lead to disastrous results if they were used to pre�
dict� say� the value of X� conditional on the value of X��



that is at least as ne�grained as the view through the
glasses ���	 it is still possible to postulate an a priori
measure M �not necessarily uniform over �X � such
that the Kelly gambling games on outcomes in �� and
�� and �X against odds determined by M share the
same worst�case optimal strategy Pme

M � Moreover	 as
we shall see	 postulating M in this way makes Pme

M

representation independent as long as it is only used
for predictions concerning random variables � that are
at least as �coarse� as �� Similarly	 under stronger con�
ditions on the relation between the functions � and �	
one can guarantee not only that Pme

M is representa�
tion independent but even that EPme

M
��� � EP� ���	

i�e� that the MaxEnt guess of EP� ��� is correct�

The moral of the story is that	 depending on how the
�glasses� �ways of looking at the data� � and � are re�
lated	 applying MaxEnt may �a� be inherently repre�
sentation dependent �and should therefore not be used
at all�	 or �b� be representation independent but not
guaranteed to be �optimal� or �correct� �in this case it
can be used as an inductive guess� or �c� be guaranteed
to lead to correct or optimal predictions �in which case
it should certainly be used�� In Section � we formalize
this distinction� We rst need to establish the relation
between representations and underlying measures�

� REPRESENTATION � MEASURE

In this section we will show that if we stick to a xed
measure	 the results given by MaxEnt are invariant
under all reasonable representation changes�

For two random variables Y and Z we say that Y de�
termines Z if there exists a function g � �Y � �Z such
that for each x � �	 g�Y �x�� � Z�x�� In the language
of measure theory	 this can be simply expressed as �Z
is measurable in the ��algebra generated by Y �� More
generally	 we say that �Y determines Z over A � �X �
if there exists g � �Y � �Z such that for each x � A	
g�Y �x�� � Z�x�� A set �V is an underlying space for
space �Z if there exists a function h � �V � �Z such
that for all z � �Z 	 there exists v � �V with h�v� � z�
We can think of an underlying space �V as a space that
is at least as or more ne�grained than �Z � If V is a
random variable �X � �V 	 then this simply means
that V determines Z� The notion is more general in
that we can take Z � X � In this case	 �V provides a
new sample space such that all random variables that
can be expressed as functions of �X can also be ex�
pressed as functions of �V � Let �V be an underlying
space for �X � For any random variable Y � �X � R	
we write YV to denote the random variable �V � R
that corresponds to Y in the underlying space� for all
v � �V 	 YV �v� �� Y �h�v�� with h � �V � �X de�
ned as above� With this convention	 the function h

itself can be written as h � YV � More generally	 let
WV and TV be any two random variables �V � R
in the underlying space �V 	 such that WV determines
TV � Then TW is dened as a function �W � R with
�v � �V � TW �WV �v�� �� TV �v� �in other words	 TW
is a random variable in the intermediate space �W
that always takes on the same value as TV �� With this
notation	 � can be equivalently written as �X �

A MaxEnt problem with given underlying measure
is characterized by a tuple ��X �MX � �X � CX� �Sec�
tion ��� A valid representation shift of MaxEnt prob�
lem ��X �MX � �X � CX� is a triple ��V ��W �MW �� Here
�V ��W are sets and MW is a measure over �W satis�
fying

�� �V is an underlying space both for �X and for
�W �

�� the random variable WV determines �V �

�� MW and MX are compatible �with underlying
space �V � see Section ���

�X is called the original representation space and �W
is called the new representation space�

Intuitively	 a representation shift is �valid� if the con�
straint EP� ��� � t can still be expressed in the new
space� A valid representation shift ��V ��W �MW � in�
duces a new MaxEnt problem ��W �MW � �W � CW � de�
ned as follows�

Pme
W �MW �� argmax

PW�CW

EPW �� ln
PW �WW �

MW �WW �
��

where CW is the set of all distributions PW over PW
that are compatible �with underlying space �V � with
some PX � C� By Theorem � we have that

Pme
W �MW � argmin

PW�PW

sup
P�

W
�CW

EP�

W
�� ln

PW �WW �

MW �WW �
��

The following result is a simple extension of a well�
known theorem �see	 for example �Shore � Johnson	
������� It shows that	 if a measure MX for the origi�
nal representation space is available	 then a valid rep�
resentation shift leads to the same MaxEnt inferences
for all random variables Y that can be expressed both
in terms of the original and in terms of the new rep�
resentation space� In other words	 as long as MX is
available	 MaxEnt is representation independent�

Theorem 	 Let ��V ��W �MW � be a valid represen�
tation shift for MaxEnt problem ��X �MX � �X � CX��
Then for all Y � �X � R such that X determines
Y and WV determines YV � we have for all y � �Y �

Pme
W �MW �YW � y� � Pme

X�MX �YX � y�



The present game�theoretic view provides a novel and
simple interpretation of this result� Roughly speaking	
a representation change amounts to a change in the set
of tickets one can buy in the Kelly gambling game �out�
comes in �W rather than �X�� by adopting a measure
�odds� over �W that is compatible with the measure
�odds� MX over �X 	 one ensures that the prices of the
di
erent tickets will change along with the represen�
tation change so that the gambling game in the new
space is essentially equivalent to the original game�

This implies that representation dependence of U �
MaxEnt stems only from the fact that	 if we change
representation from �X to �W 	 we adopt mutually in�
compatible measures �namely	 the uniform measures
in both spaces�� In fact	 we can view each measure
MX �as long as it is rational�valued� as an implicit re�
representation of the problem to a di
erent underlying
space �V in which MX �or	 more precisely	 the mea�
sure over �V that is compatible with MX� is uniform
over �V � We will use of this insight in the next sec�
tion	 where we show how to apply MaxEnt in a careful
manner�

	 HOW TO APPLY MAXENT

In this section we return to our previous notation	 i�e�
Pme
M is short for Pme

X�M �

Whenever in what follows we say �we apply MaxEnt for
guessing EP� �Y jZ� relative to measure M � this means
that we use Pme

M 	 dened for a set of constraints C as
given by ��� as follows� we observe the value z taken
on by Z� Then we infer �guess� that

EPme
M

�Y jZ � z�  EP� �Y jZ � z�� ����

where P � is the unknown �true� distribution� We want
to arrive at the general conditions on �	 Y and Z under
which inference ���� can be expected to be a reason�
able guess and we want to know what Agent should
do if he does not know what M to pick� To treat
this question in full generality	 we will assume that
Agent uses a set M of �a priori possible underlying
measures�� The case where an underlying measure or
prior M is available can now be formulated by setting
M �� fMg� In the case where we have a denite rea�
son to pick �X as our basic representation space �e�g�
the case of throwing dice	 see Example ��	 we can take
M �� fUXg	 where UX is the uniform measure over
�X � If no underlying measure can be determined at
all	 we will set M to be the class of all measures over
�X � As we will see	 this will make MaxEnt undened
in most cases� In order to make it well�dened	 we
must rst guess a subset M� of M� that case will be
treated in Section ����

We are now ready to present our hierarchy of di
erent
forms of applying MaxEnt�

De�nition � Application of MaxEnt for guessing
EP� �Y jZ� relative to a set of measures M is called

�� conditionally correct if EPme
M

�Y jZ � z� �
EP� �Y jZ � z� for all M � M� all z � �Z � all
P � � C�

� conditionally calibrated if there exists a ran�
dom variable V such that Z determines V � and
EPme

M
�Y jZ � z� � EPme

M
�Y jVZ � VZ�z�� �

EP� �Y jVZ � VZ�z�� for all M � M� all z � �Z �
all P � � C�

�� well�dened if EPme
M�

�Y jZ � z� � EPme
M�

�Y jZ �

z� for all M��M� �M� all z � �Z �

�� ill�dened otherwise�

We note that ��� ��� �� Category ��	 while perhaps
the most interesting	 takes too long to discuss here�
It will be explained in detail in the journal version
of this paper� Category �� concerns applications of
Maximum Entropy that lead to arbitrary results and
hence should be avoided �but see the next section!�� By
the discussion of the previous section	 every �rational�
valued� measure M � M corresponds to an �allowed�
representation shift� Therefore	 ill�dened applications
of MaxEnt with respect to the set of all measures
over �X correspond to those applications of U �MaxEnt
that are representation dependent� The other extreme
is Category �	 which concerns applications of Max�
imum Entropy that are completely without risk� If
MaxEnt is �conditionally correct� for EP� �Y jZ � z�	
the guess EPme

M
�Y jZ � z� � EP� �Y jZ � z� is guaran�

teed to be correct and involves no inductive inference�
Theorem � below determines when this is the case�

��� CONDITIONAL CORRECTNESS

Let � � �X � R and � � �X � Rk be two
functions and let A � �X � We say that � is an
a�ne function of � over subdomain A if there exists
�	�� � � � � 	k� � Rk�� such that for all x � A� ��x� �

	� �
Pk

i�� 	i�i�x�� We dene the support supp of
P �X � PX by

supp�P �X� �� fx � �X j P �x� � � for some P � P �Xg�

Theorem  If � is an a�ne function of � over subdo�
main supp�C�� then for all P �

� � P
�
� � C� EP�

�
���X�� �

EP�

�
���X��� If � is not an a�ne function of � over

subdomain supp�C� then there exist P �
� � P

�
� � C such

that EP�

�
���X�� �� EP�

�
���X���



Let Z be a �trivial� random variable	 i�e� �x �
�X � Z�x� � �� Theorem � implies that for anyM �M
and any C of form ���	 Pme

M � C� Theorem � now
gives that for arbitrary sets of measures M	 apply�
ing MaxEnt to guess EP� �Y jZ� is conditionally cor�
rect i
 Y is an a�ne function of � over subdomain
supp�C�� To determine whether applying MaxEnt to
guess EP� �Y jZ� is conditionally correct for non�trivial
Z �the case that Z�x� varies over supp�C��	 we inter�
pret the conditioning event Z � z as the additional
constraint EP� ��Z�z� � �� Clearly	 this constraint is
of the required form ���� Let	 for z � �Z 	

C�z� � C � fP � � PX j EP� ��Z�z � � �g� ����

Then	 by the same reasoning as above	 applying Max�
Ent to guess EP� �Y jZ� is conditionally correct i
 Y
is an a�ne function of � over subdomain supp�C�z��
for all z � �Z � This seems to imply that �correct�
applications of MaxEnt are trivial� if we know that
Y is a�ne in �	 i�e� Y �x� � 	� �

Pk
i�� 	i�i�x�	

we can also directly infer that EP� �Y � � 	� �Pk

i�� 	iEP� ��i�X�� � 	� �
Pk

i�� 	iEPmeM ��i�X�� �
EPme

M
�Y �X�� �the second equality follows because

both P � and Pme
M are members of C�� However	

there is at least one case where �correct� applications
are not entirely trivial� From Theorem � we see
that for all P � � C	 EPme

M
�� ln�Pme

M �X��M�X��� �
EP� �� ln�Pme

M �X��M�X��� �indeed	 it turns out that
� ln�Pme

M �
��M�
�� is an a�ne function of ��� This
means that MaxEnt is �correct� for inferring the ex�
pected logarithmic loss in the games described in Sec�
tion �	 e�g� in Kelly Gambling with odds determined
by M � This can be interpreted as follows� imagine
an Agent who adopts Pme

M and uses it for prediction
of outcomes in �X with respect to log�loss relative to
measureM � For gambling strategy � � PX 	 he expects

to incur loss EPme
M

�� ln ��X�
M�X� �� Agent therefore decides

to use the � which minimizes this	 which by the infor�
mation inequality �Section �� is given by � � Pme

M � Us�
ing this choice of �	 Agent expects to make an average
loss of EPme

M
�� ln�Pme

M �X��M�X���� In reality	 he will
make an average loss of EP� �� ln�Pme

M �X��M�X����
Since these two are equal	 Agent will have the right
idea of how well he will be able to predict on average
even if Pme

M is wrong�

��	 REPRESENTATION DEPENDENCE

By Denition �	 if M contains only a single element	
MaxEnt is well�dened for guessing EP� �Y jZ� for all
Y and Z� By Theorem �	 the guesses are also repre�
sentation independent� The other extreme is the case
where no underlying measure is known at all and M
contains all measures over �X � It is straightforward
to show

Proposition � Suppose M contains all measures
over �X � Then MaxEnt is ill�de�ned for guessing
EP� �Y jZ� i� it is not conditionally correct for guessing
EP� �Y jZ��

Since di
erent measures correspond to di
erent repre�
sentations	 this corresponds to the fact that U �MaxEnt
is highly representation dependent� The only way we
can get to the interesting cases �� and �� of Deni�
tion � is by restricting the set of available measuresM�
It seems we have not gained anything so far	 since we
do not know how this should be done �we have already
seen that choosing M � fUXg	 with UX the uniform
measure over �X leads to representation dependence�!
But it turns out that if the functions �	 Y and Z are
related in certain ways	 then we can choose a subset of
M in a di
erent way that does preserve representation
independence�

�� REPRESENTATION INDEPENDENCE

We want to rst select a subset M� of M and then
apply MaxEnt to guess EP� �Y jZ� in such a way that
the whole ���step� procedure becomes representation
independent� Since we have no xed measure or prior
over �X 	 the choice of �X as our basic sample space is
essentially arbitrary� Therefore our procedure for se�
lecting measures should give the same result for every
alternative choice of sample space in which both the
constraint EP� ��� � t and the guess EP� �Y jZ� can be
expressed� Our previous analysis suggests a novel way
of guessingM� which in many cases achieves this� It is
based on the idea that the �observables� in our problem
are really the outcomes in �� and not the outcomes in
�X � This suggests postulating a uniform measure U�
over �� rather than �X � If we then restrict the func�
tions � about which we make guesses to those that are
determined by �	 the arbitrary choice of our basic rep�
resentation space �X becomes irrelevant and we are
guaranteed to make the same predictions independent
of whatever �X we choose� We now formalize this
idea�

When no underlying measure is given	 a MaxEnt prob�
lem is determined by a triple ��X � �X � CX�� Note that	
compared to the treatment in Section �	 the measure
MX is missing� A valid representation shift of such a
MaxEnt problem is a pair ��V ��W � such that ��� �V
is an underlying space both for �X and for �W � and
���	 the random variable WV determines �V �again	
compare to the denition of valid representation shift
in Section ��� The representation shift leads to a new
MaxEnt problem ��W � �W � CW � where CW is the set of
distributions over �W compatible to CX �compatibility
with respect to underlying space �V ��

Let ��V ��W � be any valid representation shift of the



MaxEnt problem ��X � �X � CX�� Let U� be the uniform
measure over ��� LetM

�
X be the class of all measures

over �X that are compatible with U�	 and letM�
W be

the class of all measures over �W that are compati�
ble with U� �compatibility with respect to underlying
space �V ��

Proposition 	 �Bertrand�s Paradox �resolved��
Let � � �X � R be a random variable in the
original representation space� If � determines � on
supp�C�� then for all MW � M�

W and all MX � M
�
X �

EPme
W �MW

��W � � EPme
X�MX

��X �
 if � does not determine

� on supp�C�� there exist MX �M
�
X � M�

X such that
EPme

X�MX

��X � �� EPme
X�M�

X

��X ��

The proposition says that our two�step procedure gives
representation independence i
 MaxEnt is used to
guess functions � that are determined by �� Dening
C�z� as in ���� and reasoning exactly as below Theo�
rem �	 we obtain the following �informally stated�

Corollary � The procedure of �rst setting MX to be
the set of measures over �X that are compatible with
U� and then applying MaxEnt to guess EP� �Y jZ� rel�
ative to set of measures MX is a representation inde�
pendent procedure i�� for all z � �Z � � determines Y
over subdomain supp�C�z��� In particular this will be
the case if � determines both Y and Z�

Summarizing	 if all measures M over �X are a priori
possible	 then instead of using U �MaxEnt it may be
better to adopt a uniform measure U� over the space
of observables ��� In this way one obtains a proce�
dure which is representation independent for guessing
a large class of random variables Y conditional on a
large class of random variables Z� The measure U�
induces a set MX of compatible measures over �X �
If Y and Z are such that even for this restricted set
of measures	 applying MaxEnt to guess EP� �Y jZ� is
ill�dened	 then	 in our view	 any specic guess of
EP� �Y jZ� obtained by a further restriction of M�

X is
basically arbitrary� We feel that in such cases	 one
should refrain from using MaxEnt altogether�


 FINAL REMARKS

Non�convex constraints A major goal for future
work is to analyze the behavior of Pme

X in minimax
terms for constraints that go beyond form ���� For
inequality constraints �E���X�� � t�	 adjusted ver�
sions of all our results still hold� For constraints such
that C becomes non�convex	 MaxEnt is known to lead
to rather strange results� Interestingly	 for such con�
straints	 Theorem � does not apply and the minimax
Pme
M is not equal any more to the traditional max�

imin Pme
M � We suspect that the minimax version gives

preferable results in such cases� Consider for exam�
ple disjunctive constraints �Grove et al�	 ������ let
�X � f�� �g	 M uniform	 and let the constraint be
�P ��X � �� � ���� � �P ��X � �� � ������ Then
traditional MaxEnt gives Pme

M �X � �� � ��� which
seems a dangerous guess � if it is wrong	 it will lead
to very bad predictions� In contrast	 minimax Pme

M

gives Pme
M �X � �� � ��� �one can show that it co�

incides with the traditional MaxEnt distribution over
the convex hull of C� which � to us � seems more rea�
sonable�

Related Work �Haussler	 ����� has given a related
�but still essentially di
erent� minimax result involv�
ing logarithmic regret rather than loss� �Halpern �
Koller	 ����� note that MaxEnt can be made repre�
sentation independent for a restricted class of repre�
sentation shifts by restricting the class of priorsM in
a certain way	 but they do not use this to distinguish
between di
erent uses �guesses of EP� ��� for di
erent
�� of the same Pme

M �
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