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to Optimal Intertemporal

Cross-Hedging
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Cross-commodity hedging between fishmeal and soybean meal is investigated. The
approach uses successively updated out-of-sample forecasts to approximate subjective
price expectations, and forecast error variance-covariance matrices to measure risk.
Forecasts are generated by state-space models of vector-valued time series. In a
stationary environment, uncertainty reduces to the difference between the historical
autocovariance of the random process and the variance-covariance of out-of-sample
forecasts. Results indicate that weakly risk-averse agents can increase average marketing
returns within acceptable risk levels by combining information from price forecasting

models with an appropriate hedging strategy.
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In this paper we investigate cross-commodity
hedging possibilities between a processed re-
newable natural resource (fishmeal) and a pro-
cessed agricultural commodity (soybean meal).
Our objectives are to design a dynamic hedging
model based on state-space time-series price
forecasts, and to compare model performance
with cash marketing and with routine and static
hedging. An optimal strategy is developed for a
hypothetical fishmeal producer (dealer), with
futures positions established in soybean meal
contracts.

Rooted in the method of Anderson and Dan-
thine, our intertemporal hedging model allows
a futures position to be revised within the cash
position holding period. Hedging behavior is cast
in a portfolio selection framework in which cash
position is exogenous, so that the problem be-
comes one of determining the futures position
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time path maximizing expected utility of the
agent’s monetary wealth at the end of the trad-
ing period.

The approach uses successively updated out-
of-sample price forecasts to approximate sub-
jective price expectations, and the variance-co-
variance matrices of forecast errors to measure
risk. Forecasts are generated by the state-space
technique of modeling vector-valued time series
(Aoki). The model is repeatedly solved each pe-
riod after updated information becomes avail-
able. The result is a set of time-varying hedge
ratios. We show that uncertainty, defined as the
variance-covariance of out-of-sample forecast
error (mean squared out-of-sample forecast er-
ror), is in fact the difference between the un-
conditional (historical) autocovariance of the
process and the variance-covariance of the out-
of-sample forecasts.

Multiperiod Hedging Model

A commodity trader starts with initial wealth W,,,
which he invests entirely in a commodity for
storage and later resale. Assuming a futures
market in this or a related commodity, the
investor can hedge his cash position by selling
futures contracts maturing at or after the end of
the hedging period. We assume unlimited bor-
rowing and lending at a non-stochastic interest
rate.
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Consider a three-period example. In period O,
after the cash position has been established, the
trader decides on the initial futures position h,.
The futures position is adaptive in the sense that
quantity hedged in period 1 generally differs from
the quantity hedged in period 0. At the end of
the second period, the dealer closes all outstand-
ing futures positions, sells the cash commodity,
and collects the proceeds. Assuming an increas-
ing, strictly concave, twice differentiable Von
Neumann-Morgenstern utility function U with
terminal wealth W, as the sole argument, the first-
step optimization problem can be formulated as

1 max Jo = E[U(W2)|Zo]
ho, hy

where W, = (1 +_r)2( —Poq?)
+ (1 + n(fo — fdho + (fi — fDh + pagit.

Variable p, is initial price at which the exoge-
nously determined cash commodity gF is pur-
chased; p, is stochastic price at which the cash
commodity (risky asset) must be sold; f; is fu-
tures price available at time a decision is made;
fi and f, are stochastic futures prices in the re-
spective periods; r is the one-period risk-free in-
terest rate; h, and h, are decision variables de-
noting quantity of futures sold (purchased if
negative); and Z, is information available (his-
tory of cash and futures prices, including data
points p, and f;) at beginning of period 0 when
the first decision is made. Terminal monetary
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—cov[U'(W,), 1 =0

where expectations operator E represents the
trader’s subjective expectations conditional on
information Zy, f; = E(f,|Z,), and f, = E(£,|Z,).
Because of strict concavity of U, second-order
conditions for a maximum are implicitly satis-
fied. The first-order conditions can be further
analyzed using the result of Rubinstein, who
showed that if two random variables, such as
W, and f, are jointly normally distributed, and
UW,) is a twice-differentiable function, then
cov[U'(Wy), fi] = E[U"(W,)] cov(W,, f,). Hence

G) (fo—f)- BV vew f)=0
* Y EU (W) 2o

. . E[UwWy)

G =5~ o

[cov(W,, ) — cov(W,, f))] = 0.

Assuming a constant absolute risk aversion
(CARA) utility function, and normally distrib-
uted terminal wealth, term — E[U"(W,)]/
E[U'(W,)] in (3) equals the Pratt-Arrow mea-
sure of absolute risk aversion A. Maximizing
E[U(W,)] then is equivalent to maximizing the
mean-variance objective function J = E(W,) —
(A/2) var(W,) (Hey, pp. 46-51). Substituting
(1) for W,, and replacing — E[U"(W,)]/E[U’(W,)]
with A, (3) can be rewritten as the linear system:

—(varf| — covf, f>) )

M =
<—( 1 + r)(varf; — covf, f,) (varf; — 2covf, f, + varfy)

4) Mh = v, where
(1 + r)varf;
J% + g§ covp.f;
v= A A
f 1 _fz
A

wealth W, reflects the fact that the trader’s fu-
tures account is marked to the market, meaning
all profits or losses related to the futures posi-
tion are realized each period (Cox, Ingersoll, and
Ross).

The two first-order conditions for an extre-
mum are

S

aJ £ _ £
— =ElU'W))(fo— f) = covlU'(Wy), /1] = 0
0

= g§(covp,fy — covp, fr)

ho
, h= .
(h.)

The solution of (4) for the optimal values of A,
and h; determines the hedging strategy for the
entire planning horizon based on information
available in period 0. Optimal choices at points
0 and 1 are mutually dependent since they jointly
solve the linear system of first-order conditions
for an intertemporal maximum. However, the
model allows adjustment of the original hedging
policy each time period, after new information
becomes available. Therefore, at point O an agent
effectively takes only the futures position ky|Z,,
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and never executes his current estimate of next
period’s optimal futures position k,|Z,. The lat-
ter serves only as an auxiliary decision variable
enabling derivation of the optimal intertemporal
solution to hy|Z,.

Using Cramer’s rule, the optimal hedge in pe-
riod O is given by
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the expected returns in the final period and on
the variance-covariance structure of the sto-
chastic prices, both conditional on Z;:

Tpis S~ F:
®) htlz, = a 7+

2 2
ofz /\(sz

2 _ 2 _
* Uszl(Ufz O-flfz) + a-pzfz(o-fz 0flf2)

5) h3‘|Zo =495

_ . O-j%loj%z - (O'flfz)2 . .
" (fo _fl)(o'fz. - 20'f.f2 + 0}%2) + (fi _fz)(o'}l - O'f.fz)

'\[O'leo'j%z - (Uflfz)z]

Given cash position g, the optimal hedge in pe-
riod O is a function of expected returns (prices)
in periods 1 and 2, variances and covariances
surrounding price expectations, and the gener-
ally unknown risk aversion parameter A. How-
ever, with strong risk aversion (sufficiently large
A), the second term in (5) is inconsequential and
the optimal futures position is proportional to
the existing cash position. The proportionality
factor is composed only of the variance-covari-
ance structure of the stochastic cash and futures
prices.

A one-period advance in time presents the
trader with new data, and hence the original
hedging policy is revised. To determine the op-
timal futures position for the next period, the
decision process is repeated given the cash po-
sition and the previous period’s optimal futures
position from (5). In this step, maximizing util-
ity of terminal wealth is based on information
Z,, which has been updated with new data points
p: and f;. The optimization problem can be for-
mulated as
(6) max J, = E[U(W,)|Z,]

hy
where W, = (1 + r)’(—pogi)
+ A+ N(fo = fhs + (fi — A + pogi.
The remaining stochastic variables are p, and f,,
because with the one-period time advancement,

/i has become a known constant. The single first-
order condition is

)
0, . ..  EWUMW _
oh, =(H— 1) ELU(W))] cov(W,, f;) = 0

where E is the trader’s subjective expectation
conditional on Z,, and f, = E(£,|Z,). Evaluating
the covariance term, (7) can be solved for the
new optimal futures position 4#Z,. Given g# and
h#|Z,, the optimal hedge in period 1 depends on

Futures positions h#Z, and h#Z, form the op-
timal dynamic hedging policy. In contrast to the
static model where the hedge for the entire ho-
rizon is based on the initial information Z, only,
the dynamic model uses new information for each
period, and adjust the hedging position accord-
ingly. Static hedge, once initiated, remains the
same throughout the hedging horizon.'

Expectations and Risk: Concepts and
Measurement

The proposed method exploits the dynamic re-
lationship between contemporaneous time series
of cash and futures prices, forecasting them si-
multaneously using the state-space modeling
technique. Based on the insights of linear sys-
tems theory, a state-space method for modeling
vector-valued time series has been proposed by
Aoki. Cerchi and Havenner apply the method to
stock prices. Dorfmann and Havenner use the
state-space technique to model the cyclical pat-
tern in supply and demand of California olives.

The state-space model consists of state and
observation equations:

(9) X1 = Axl|l—l + Bet
y. = Cxl|l—l + €,

where {y,}, to be modeled, is an m-series, zero-
mean, weakly stationary vector-valued Gaus-
sian stochastic process with autocovariance se-
quence {I'}. Matrices A, B, and C are system
parameters, X, is a vector of n unobservable states

! Given a cash position, the general n-period expression for an
optimal static hedge is

o= %un

h*|Zy = AL gt —pnfn.
2

Aoy, o7,
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that are minimal sufficient statistics for the his-
tory of process {y,}, and innovations {e;} are white
noise. Subscripts on x refer to the conditional
expectation of x in the period of the first sub-
script given the information at the time of the
second subscript.

Estimates of system matrices and initial state
x, enable straightforward generation of in-sam-
ple and out-of-sample forecasts. Parameter es-
timation and forecasting procedures of minimal
complexity appear in Havenner and Aoki (see
also Vukina 1992). Out-of-sample forecasts are
given by

(10) Virks1 = CAkx:H + p.

Because centered data are used, the mean of se-
ries u, initially subtracted from each observa-
tion, must be added back to (10) to obtain a
forecast of the same order of magnitude as the
actual data. If £ = 0, (10) reduces to a one-step
forecast; k = 1 generates §¥,.,, and so forth. Since
contemporaneous cash and futures prices are
modeled together, vector §,., consists of one-
step-ahead out-of-sample forecasts of futures price
(f1) and cash price (p,); and §,., consists of the
two-step-ahead, out-of-sample forecast of f, and
P2-
The individual trader’s perceived risk is
measured by the variance-covariance of the out-
of-sample forecast error (mean squared out-of-
sample forecast error). Variance of the one-step-
ahead forecast error is defined as

(11) %y =E[(ys1 — e+ )¥ee1 — Fe0)']

Cross-multiplying terms and substituting (10) for
¥.+1 and (9) for y,,,, (11) becomes

(12) 3y = E(Yi+1Yi+1) — 2E(Cx,11x/4,C’
+ €..x,C") + CE(X,4x/:)C".

An important feature of weakly stationary sto-
chastic processes is the fact that covariances of
all equidistant lags are identical. Invoking this
feature, and observing the definition of state co-
variance matrix P = E(x.,,X,.;;) and the or-
thogonality of innovations with states [namely
E(e.+; X,+1;) = 0], equation (12) becomes

(13) 211 = FO - CPC’

where I'y = E(y,y;) = E(¥,+:Y.+1) represents the
zero-lag unconditional data autocovariance ma-
trix. The variance of the one-step-ahead forecast
error in (13) is an (m X m) matrix:

2
(14) 2" — Op, o.Puz'l
Ofpy Ofy
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where the diagonal elements represent the vari-
ance of a one-step-ahead cash price forecast er-
ror and the variance of a one-step-ahead futures
price forecast error respectively, and the off-di-
agonal elements are the corresponding forecast
error covariances. Similarly, the covariance of
the one-step-ahead and two-step-ahead forecast
error is defined as

(15) 2y = E[(ir1 = $ie)(¥iez2 = §ie2)']

=TI - CPA'C’

= <0P1P2 o.l’lfz).
Op, O1if,

where I'} = E(y,y/+1) = E(y,+ ¥i+>) is the trans-
pose of the one-lag data autocovariance matrix.
The transpose of (15) gives the covariance of
the two-step-ahead and one-step-ahead forecast
error (3,;). Variance-covariance matrices of n-
step-ahead forecast errors are calculated simi-
larly.

Results show that uncertainty, defined as the
variance-covariance of the out-of-sample fore-
cast error (mean squared out-of-sample forecast
error), is in fact a difference between the his-
torical (sample) estimate of the lag j autocovar-
iance I; and the variance-covariance of the out-
of-sample forecasts E(§§').” The further away
the out-of-sample forecasts are from the present,
the larger is the mean square forecast error, and
therefore the lower is the forecast reliability.
Generating n-step-ahead forecasts would grad-
ually bring the variance-covariance of the fore-
casts to zero (forecasts collapse to a constant).’
When such a point is reached, the mean squared
out-of-sample forecast error collapses to the un-
conditional (historical) autocovariance of pro-
cess I;.

Cross-Hedging Fishmeal with Soybean Meal
Futures

To test model performance, we derived a se-
quence of optimal intertemporal cross-commod-

% Notice the difference between the variance-covariance of fore-
cast error (mean squared forecast error) and the variance-covariance
of forecast. For example, the mean squared forecast error in (15)
is X;, and the covariance between one-step and two-step-ahead
forecasts is

CPA'C’ = cov(§,+1§/+2)
= E{[§i+1 — EGD1Fi+2 — EFs2]'} = E(Cx,4 x4, A'CY).
3 Since the eigenvalues of the transition matrix A lie inside the
unit circle (property of stationarity), by increasing & in (10), fore-
casts revert to the mean u of the series.
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ity hedging positions that could have been se-
lected by a hypothetical fishmeal producer or
dealer. Fishmeal is not traded in the futures
market, so futures positions are established in
soybean meal contracts instead. Lumpiness of
futures contracts is ignored and brokerage com-
missions are subtracted ex post. Since the du-
ration of fishmeal production may vary (typi-
cally from 1 to 4 weeks) depending on treatment
of the freshly prepared meal, the fishmeal pro-
ducer’s hedging horizon may vary as well. To
the extent that a change in hedging horizon may
influence results, an empirical analysis is con-
ducted with models of varying time periods. The
three-period theoretical model developed above
cannot be easily generalized to the n-period case,
but it can be extended up to the five-period case
without running into overly cumbersome cal-
culations (Vukina 1991).

Midweek observations of menhaden fishmeal
spot prices in Atlanta were collected from Feed-
stuffs and soybean meal data were collected from
various issues of The Wall Street Journal. Fu-
tures data are Thursday closing prices of the
Chicago Board of Trade soybean meal Decem-
ber contract. The December contract is the most
actively traded soybean meal contract for which
continuous price series exist throughout the year.
The first trading day in December was used as
the switching point between an expiring and in-
coming December contract. Data cover the five-
year period between 5 June, 1986, to 23 May,
1991, for a total of 260 observations. The con-
temporaneous correlation coefficient estimate
between the Atlanta fishmeal spot price and the
CBOT December soybean meal futures is 0.8827,
which is significantly different from zero at the
1% level. Such a correlation is relatively high,
considering that for the same five-year period
the correlation between Decatur soybean meal
cash price and CBOT December futures price
was only slightly higher (0.8931). This result
justifies the use of the soybean meal futures for
cross-hedging fishmeal cash positions.

In the first week, the dealer starts with fish-
meal quantity g§ purchased at price p,, which he
is bound to deliver several weeks later. In case
of a producer, p, can be interpreted as the ac-
counting price (unit cost) of production, i.e., the
price that would have been obtained had the
product been ready for sale in period 0. Simul-
taneously, based on initial expectations, the ini-
tial futures position A¥is established. In the sub-
sequent week, while still holding on to the initial
inventory (or while production is still in pro-
cess), the agent can change previous futures po-
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sition A§ and execute a new position A} based on
updated information. In the final week, fishmeal
is sold and the final futures position is liqui-
dated. The model imposes no constraints on the
magnitude and sign of the futures position. An
optimal hedge could be speculative, meaning that
both long futures positions and short futures po-
sitions greater than cash positions could be se-
lected.

For the purposes of this example, cash posi-
tion g§ is set at 100 tons of fishmeal (corre-
sponding to one contract of CBOT soybean meal)
and the weekly interest rate is assumed to be
0.15%, yielding approximately 8% per year.

Price Forecasting

The proposed framework leads to a multivariate
time series forecasting model, with the Atlanta
fishmeal cash prices and the CBOT December
soybean meal futures prices modeled together.
Parameters of the two-series state-space model
are initially estimated using the first 104 obser-
vations (two years of data), and out-of-sample
forecasts are generated using (10). Next, an ad-
ditional observation (the 105th) is added to the
existing data pool to update the system matri-
ces, thus generating a new set of out-of-sample
forecasts. The same procedure is repeated until
available data are exhausted. In all rounds, the
best results (smallest forecast errors) are ob-
tained with autocovariance lag j = 2. A decay-
ing pattern of singular values suggested the
number of states n (rank of the Hankel matrix)
is 2 in all instances.*

A summary of out-of-sample forecast statis-
tics is presented in table 1. As one would ex-
pect, the best results are obtained with one-step-
ahead forecasting. Comparison of the fishmeal
cash price mean squared forecast error (244.5)
with the corresponding zero-lag unconditional
data autocovariance I, = 4554 indicates that the
model reduces the out-of-sample total sum of
squares by a factor of almost twenty. Larger
forecast errors result when forecast distance in-
creases. For example, the mean absolute per-
centage error (MAPE) of the one-step-ahead

4 In state-space modeling of time-series, obtaining the stochastic
process model from a given autocovariance model requires the so-
lution to a special form of Riccati equation for the state covariance
matrix P. The Riccati equation has a positive definite solution if
and only if the Fourier transform of the autocovariance sequence
is positive semi-definite for all frequencies. If the condition is not
met, we use the correction procedure from Vaccaro and Vukina.
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Table 1. Out-of-Sample Forecast Statistics
No. of Forecast

Bivariate (cash and futures) Model observations Total statistics
Withj =2, n=2; No. of variability
and updating system matrices Initial Final forecasts I, MSE MAPE
One-step-ahead forecasts 104 259 156

Fishmeal cash price 4554.0 244 .54 2.12%

Soybean meal futures price 945.3 90.23 2.59%
Two-step-ahead forecasts 104 258 155

Fishmeal cash price 4554.6 465.10 2.98%

Soybean meal futures price 937.6 163.05 3.45%
Three-step-ahead forecasts 104 257 154

Fishmeal cash price 4509.3 702.35 3.80%

Soybean meal futures price 909.1 242.39 4.11%
Four-step-ahead forecasts 104 256 153

Fishmeal cash price 4395.2 996.24 4.36%

Soybean meal futures price 860.3 268.85 4.48%

soybean meal futures price forecast around its
actual value is 2.59%; the MAPE of the two-
step-ahead forecast is 3.45%; and so forth.

Cross-Hedging Ratios

Optimal cross-hedging ratios, defined as the ra-
tios of the optimal soybean meal futures posi-
tions to the given fishmeal cash position, are re-
ported in table 2. Our empirical analysis covers
the last three years of the five-year period be-
cause the first two years of data were used to
estimate the initial state-space model parame-
ters. Results are the mean optimal cross-hedging
ratios averaged over different numbers of se-
quences, with standard deviations reported in
parentheses. Dynamic (multi-period) hedging
ratios Dy = (h|Zo)/q; Di = (h¥Z))/q¥; D,

(h#1Z,)/qi; D3 = (h%|Z3)/q¥ are compared with
the static ratio (S, = (h*|Z,)/q3).

Because the cash position is held constant (100
tons of fishmeal), a cross-hedge ratio of, say,
1.44 implies an optimal futures position of 144
tons of soybean meal. The static model yields
hedging ratios that are, on average, specula-
tively short (greater than 1) for both 3-week and
5-week hedging horizons. The average optimal
dynamic hedge ratios are also greater than 1 (ex-
cept in the final time period of the hedging ho-
rizon), and they tend to decrease as the horizon
approaches expiration.

Hedging decisions also depend on subjective
risk parameter A. For a risk-averse individual,
A can be any positive number. However, for
sufficiently strong risk aversion, the second term
in (5) may become inconsequential (expected
returns on futures positions become unimpor-

Table 2. Optimal Cross-Hedging Ratios, 26 May, 1988, to 23 May, 1991

Horizon of hedge

3 weeks—78 sequences

5 weeks—39 sequences

Risk
aversion So D, D, So D, D, D, D,
A=0.1
Mean 1.08 1.44 0.52 1.38 2.35 1.60 1.44 0.51
(St.Dev.) (0.16) (0.15) 0.24) 0.12) (0.26) 0.14) 0.16) 0.23)
A = 0.01
Mean 1.09 1.46 0.54 1.39 2.36 1.62 1.45 0.53
(St.Dev.) 0.17) 0.16) 0.27) 0.12) (0.23) (0.16) 0.17) 0.27)
A = 0.001
Mean 1.21 1.60 0.73 1.51 2.48 1.81 1.58 0.73
(St.Dev.) (0.35) (0.43) 0.74) (0.29) (0.36) 0.42) (0.37) (0.91)
A = 0.0001
Mean 2.43 3.04 2.61 2.71 3.68 3.66 2.85 2.71
(St.Dev.) (2.61) (3.68) (6.11) (2.51) (4.80) (3.32) (3.01) (8.05)
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tant), and the risk aversion parameter may not
affect the hedging decision at all. Indeed, op-
timal hedges are found to be nearly identical for

all values of A greater than 0.1. Table 2 also NN
summarizes optimal hedge ratios as risk aver- g § by E § ﬁ Py E % E =4
sion parameter A decreases. Diminishing risk ;| od dodd¥ ddcd
aversion results in higher average futures posi- gl ~ ~ -
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. . o
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.. . vl @ o T FS DoOonAR
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Model Performance _| 3| == ==e® ==cZ
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ious hedging schemes. Reported dollar figures § g
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tures) of his cash position. In the static hedging 3 gl ~ = = 3
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period analyzed, the cash marketing strategy
generated negative average returns with fairly
large standard deviations. Routine hedging re-
duced average losses and their standard devia-
tions relative to the cash marketing strategy.
Hedging the entire inventory over the planning
period appeared to be a reasonable method of
risk reduction. A similar result has been seen
elsewhere in the literature (Peck). A routine hedge
also compares favorably with static and dy-
namic hedges in terms of limiting revenue vari-
ability. When mean revenues are compared,
however, routine hedging seems to be generally
inferior to both forecasting-based strategies.

There is a tendency for the static hedging
model’s performance to deteriorate as A de-
creases. Because they ignore the dynamic char-
acter of a decision process, static hedge ratios
are in fact suboptimal. With decreasing risk
aversion, more weight is placed on the futures
positions’ expected returns, so that the static
model’s total performance worsens. Because of
cash market losses, static model returns stayed
negative for all values of A. Still, for larger A
values (0.1 to 0.001), static hedging resulted in
smaller losses and lower variability than did cash
marketing, and in smaller losses but higher vari-
ability then did routine hedging. For very small
A, a static hedge appears to be inferior to both
cash marketing and routine hedging. However,
because of the large standard deviation of the
static model’s returns, differences in average
losses among models for A = 0.0001 are statis-
tically insignificant.

In contrast to the static model, mean returns
from dynamic hedging improve as A decreases.
For example, with A =0.1, the difference in mean
revenues between the dynamic and static models
is not statistically significant, while with A =
0.0001 the dynamic strategy yields positive re-
turns. For both dynamic and static models, vari-
ability of returns increases with decreasing A,
indicating that the less risk-averse individual will
accept higher risk in order to achieve higher ex-
pected profit.

Comparison of results for the two different
hedging horizons suggests that the performance
of the static hedge worsens as the horizon gets
longer. This occurs because the optimal static
futures position does not change as new infor-
mation become available, so that the approxi-
mation of a truly time varying hedge by a single
static hedge deteriorates with the extension of
time horizon.

Ex post deduction of brokerage commissions
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from revenue figures did not change variability
of returns in any of the models. However, the
overall dynamic model’s performance became
inferior to that of the static model, except in the
case of a minimally risk-averse trader. For A =
0.0001, profits generated by dynamic hedging
were positive even after accounting for average
commission fees of $646.

Conclusions

We hypothesized that, within acceptable risk
levels, economic agents may increase average
marketing returns by combining information from
price forecasting models with an appropriate
hedging strategy. Lower risk aversion implies
increased weight is placed on the expected re-
turns from holding futures positions. Hence, if
forecasts are accurate, less risk-averse traders
can potentially earn larger profits. Because
optimal hedge ratios are derived as a trade-off
between expected value and the variance of
returns, increased average profitability is ac-
companied by increased variability.

In the static model, our findings are consis-
tent with previous research (Peck). As risk aver-
sion decreases, average returns decrease and
variability rises, suggesting that forecast-based
static strategies are generally unprofitable. This
result is explained primarily by the inadequacy
of the static model to simulate an intrinsically
dynamic decision process such as hedging. In
the dynamic model, however, lower risk aver-
sion results not only in higher variance of re-
turns, but also in higher average returns. In the
latter case, price forecasts generated by the state-
space procedure are accurate enough to in-
crease, within acceptable risk levels, the aver-
age returns from hedging and/or speculating.

The forecasting-based dynamic hedging model
presented here appears to improve the ability of
a less risk-averse fishmeal producer (dealer) to
increase marketing returns. Two model exten-
sions might be interesting. In our simplified ap-
proach, brokerage commissions were subtracted
ex post, significantly affecting the dynamic
model’s performance. Since commissions may
influence the decision process itself, they should
be incorporated into the optimal solution. And,
because the variance of distant out-of-sample
forecasts of a stationary time series eventually
collapses to the historical variance of the ran-
dom process, a point may be reached after which
length of hedging horizon becomes inconse-



424 May 1993

quential. This creates a possibility of general-
izing the model to an n-period case.

[Received September 1991. Final revision
received September 1992.]
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