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A note on Kalman filtering for the seasonal moving
average model
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SUMMARY

We show that if we apply the Kalman filter to a pure seasonal moving average model
with no missing observations, then, by using & result of Ansley (1979), we can obtain
significant computational savings.
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In recent years, the Kalman filter has been used extensively to compute the exact
likelihood of autoregressive-moving average (ARMA) and autoregressive integrated
moving average (ARIMA) time series models. See, for example, Akaike (1978), Gardner,
Harvey & Phillips (1980), Jones (1980) and Harvey & Pierse (1984).

Using the Cholesky factorization, Ansley (1979) gave an alternative computationally
efficient algorithm for computing the likelihood of an ARMA model when there are no
missing observations. In particular, he showed how to obtain substantial computational
savings for the seasonal moving average model by using the Cholesky factorization. By
applying his Theorem 4-1, we can obtain similar savings for an algorithm based on the
Kalman filter. An extension of the result to a seasonal ARMA model is also given.

We consider the zero mean seasonal moving average model

y(t) = O(B°) O(B) e(t), (1)

where e(t) is a sequence of N(0, 6%) random variables, s is the seasonal period, and
O(B) =1+ _i 6;B’, ©(B)=1+ i 0B
= =
For convenience, we define
v(B) =1+ _il v; B’ = 0(B) O(B°),
j=

where r = g+ s@). Then following Gardner et al. (1980) or Jones (1980), we can rewrite (1)
in state space form as
y(t) = hx(t), x(t+1)= Fa(t)+get+1), (2)

where the state vector z(t) is (r+ 1) x 1 with

Xy q(t) = Z.vie(t—l-j—i) (j=0,...,7),
t=J

where vo =1,k = (1,0,...,0),g = (1,v,...,v,) and Fisa (r+ 1) X (r+ 1) matrix having 1
in the (4,7+1) position (s =1, ...,7), and zeros elsewhere.
For any t,s > 1, we define (t|s) = E{x(t)|y(1), ..., 4(s)} and

S(t|s) = B{[x(t)—(t] )] [x(t) —2(t] 5)]'} /0.
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Then (Gardner et al., 1980; Akaike, 1978), a typical step of the Kalman filter applied to
the state space representation (2) can be broken into three parts:

(a) a(t|t—1) = Fa(t—1]t—1),8(t|t—1) = FS(¢t—1|t—1)F +gq’;
(b) &(t) = ()=, (t]t—1), R(t) = Sy (¢|t—1);
(c) z(t|t) =xt|t—1)+S(t|t—1)he(t)/R(t), (3)
S(t[t) = S(t|t—1)—8(t|t—1) hE'S(t|t— 1)/ R(t). (4)
Because of the special structure of F, only index shifting is involved in obtaining
Fx(t—1|t—1)and FS(t—1|t—1) F' in (a) above. Also gg’ can be computed once and for
all at the initialization of the Kalman filter. Thus (a) and (b) require a minimal number of
arithmetic operations; the real cost lies in (¢). Now S(¢|¢—1) A, which appears in both (3)
and (4), is the first column of S(¢|t—1). By identifying structural zeros in the first column

of S(t|t—1), we can substantially reduce the computations required in (c).
Suppose now that we have n consecutive observations from (1). Then

&t) = y()—E{y®)|y(1), ...yt = 1)},
with ¢(1) = y(1). It follows that we can write

t
y(t) = 3, Ut j)e(i).
=
with [(¢,t) = 1 for all ¢.
We now obtain a useful representation of the first row and column of S(¢|¢—1).

LemMa 1. The first row and column of S(¢t|t—1) is
R(t) [LIUt+1,¢),Ut+2,¢t),....0(t+7,0)].
Proof. From the above x,(t) = y(t), x5(t) = y(t+1)—e(t+1), and, for j =3,...,7+1,

x;(t) = y(t+j—l)—{e(t+j—l)+ji2 vje(t+j—1—i)}.
i=1
Therefore,
x(t)—x (¢ E—1) = g(t),

Ty(t)—ap(t[t—1) = e(t+ 1)+t +1,8) e(t) —e(t+1),
and, for j=3,...,r+1,

ji—1
zit)—xitlt—1)=et+j—1)+ > lt+j—1,t+j—1—d)e(t+j—1—1i)
i=1

_{e(t+j—1)+jizv,.e(t+j—1—i)}.

The required result now follows because the jth element of the first row of S(¢|¢t—1) is
Ble(t) {;(t) —ay(t[t—1)}].
Now Ansley (1979) showed that I(t, j) = 0 for values of ¢ and j satisfying
t—j=hs+t (h=0,1,..;0=¢q+1,...,s—1),
t=rs+k (r=0,1,..;k=1,...,s—9).

We can make (c) of the Kalman filter step more efficient by using this information.
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Also for all ¢, the first row and column of S(¢|¢) is zero because x, () = y(t) is known at
time ¢. Further (Gardner et al., 1980), —2 log likelihood is equal to

,i &(t)*/R(t) +log {t]:[1 R(t)} ) (5)

Consider now the mixed seasonal ARMA process ¢(B) y(t) = v(B) e(t), where v(B) and e(t)
are defined above and ¢(B) = 1+ ¢ B+...+ ¢, B?. We assume that all roots of ¢(B) =
lie outside the unit circle.

The above approach cannot be used to compute the likelihood for y(t). However, by
following §4 of Ansley (1979) we make the backward differencing transformation

) = {fﬁ(B_l)y(t) (t=1,....,n—p),
y() t=n—p+1,...,n).

Thus z(¢) is a pure moving average process having the structure (1) for t =1,...,n—p.
Therefore, the pattern of structural zeros obtained above can be exploited for the
Kalman filter applied to z(t) (¢ = 1, ...,n—p). This gives &(t) and R(t) for those ¢{. One way
of obtaining ¢(t) and R(t) fort = n—p+1,..., nis to use Ansley’s (1979) Cholesky method
to obtain the last p rows of the Cholesky factorization. To do so we need to reconstruct
TOwS 7 — p—r—l ...,n—p of the Cholesky factor L of Ansley (1979). For the {th row
(t=n— p—r— sy B—D), the (,,t—r),...,(t,t) elements of L are given by
{l t—r)R t—r) .o, U(t,8) R(¢)*}, and by Lemma 1 these have already been obtained by
the Kalman ﬁlter recursion. All other elements of the tth row are zero.

It can be shown that the number of arithmetic operations required to compute the
likelihood using the Kalman filter is the same as that required by the Cholesky
decomposition method of Ansley (1979).
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