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KALMAN FILTERING APPLIED TO STATISTICAL
FORECASTING*

G. W. MORRISONT anDp D. H. PIKE}

This paper describes the use of the Kalman Filter in a certain class of forecasting
problems. The time series is assumed to be modeled as a time varying mean with additive
noise. The mean of the time series is assumed to be a linear combination of known functions.
The coefficients appearing in the linear combination are unknown. Under such assumptions,
the time series can be described as a linear system with the state vector of the system being
the unknown parameters and present value of the mean of the process. The Kalman Filter
can be used under these circumstances to obtain an “optimal” estimate of the state vector.
One of the distinct advantages of the Kalman Filter is that time varying coefficients can be
permitted in the model. Examples using the Kalman Filter in forecasting are presented.

1. Introduction

The Kalman Filter has been used as a forecasting tool in several special cases (see
{1], [2], and [8]). There has not, however, been any attempt to develop a general
methodology for using the Kalman Filter in statistical forecasting. This paper presents
a general class of forecasting models to which Kalman Filtering can be applied. It is
shown that the Kalman Filter model can be regarded as a generalization of the least
squares model. The similarities and differences between the two models are discussed.
Examples of the use of the Kalman Filter in statistical forecasting are also presented.

2. Model Assumptions

In the discussion which follows, it will be assumed that a time series can be
represented by:

Y(2) = p(t) + &(2), te(l,2, ...}, )]
where pu(?) is the mean value function of the time series at time . The variable &(¢)
appearing in (1) is assumed to be a zero mean random variable with known variance

R(?). It is also assumed that the random variables () and e(u) are uncorrelated for
t # u. That is,

E(e(1)) =0, @)
E(e(Ne(w)) = R(1)8,, ()

where §,, is the Kronecker delta.
The mean value function, u(?), is assumed to be defined by the recurrence relation:

B+ 1) = () + @OYa(), (€01 ... ), (@)

where g(¢) and a(7) are k-dimensional column vectors and the superscript on g(7)
denotes transposition. The th components of g(f) and a(¢) are respectively g(¢) and

al(?). It is assumed that g(¢) is known for all 1 € {0, 1, ...} and that u(0) is known.
If the “state,” X(#), of the time series described by (1) and (4) is defined by:
X'()=(u(t), a2), ..., al?)), %)

(4) may be augmented by a series of linear equations which describe the dynamic
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behavior of a(¢). The most general linear model of the state of the system is:
X(t + 1) = A(6)X(r) + U(¢) + n(2), (6)

where A(?) is a known transition matrix, U(#) is a known vector function and n(7) is a
zero mean random vector with known covariance matrix Q(¢). As with &(z), 9(¢) is
assumed to have no serial correlation.

To illustrate the use of (6) in model building, several examples are given:

(a) CoNSTANT COEFFICIENT CASE. The case where a(r) = a for all ¢ is modeled by
choosing U(¢) and Q(r) to be null and

Iog()) &) - &) &(©0)
A() = (:) 1 0 o 0 o | ™
0o 0 0o ... 0 1

In this case, (6) reduces to:
X(t + 1) = A()X(?). (6a)

The linear model used as the ordinary least squares model falls into this class. The
ordinary least squares model is (see [5]):

y() = (f(1))a +(0), ®)
where f(t) is a known vector function and a is a vector of unknown coefficients. If we
define

w(0)=0, and ©)]

g(t) =1f(: + 1) — £(2), (10)

then (6a) and (7) define the equivalent linear system model. Table 1 shows the

transition matrix A(7), the system state vector X(¢), and the time series model for the
special case where f, (1) =1¢'/i! fori=0, 1, 2.

TABLE 1
Models when f,, (t)=1t'/i!

Transition Matrix:

Model Time Series State: X(¢) A(D)
Constant w(t) =a, (u(2) )
2O =w(t) + &)
. o p(0) 1 1
Linear wH=p(t—-1)+a a, } [0 1 ]
YO = (@) + ()
w(®) 1 1 t+4
Quadratic W)=t —1)+a, a, 0 1 0
+la,(t—1 a, 0 0 1

Y1) = () + &)

(b) RANDOMLY VARYING PARAMETERS. (6), in general, represents the case where the
parameters of the model given in (4) vary randomly in time. Cooley and Prescott [3]
as well as Ozkan [7] discuss the use of models of this form in constructing
macroeconomic models. These models are of the general form:

X(t + 1) = A()X(2) + U(2). (6b)

For example, Cooley and Prescott formulate a model of this form with A(¢) reflecting
constant coefficients (similar to (7)).
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(¢) MODELING HYPOTHESIZED VARIATIONS IN PARAMETERS. Two frequently en-
countered situations will serve to illustrate the modeling capability of (6). First,
consider the model where

w(t+ 1) =pu(t) + a, + V(2), (11)
where V(?) is a serially correlated random variable. If a,(¢) is defined to be V(¢) and a
first order autoregressive model is used to describe a,(¢):

ay(t + 1) = pay(1) + m3(1), (12)
then
1 1 1 0
Xt+1)={0 1 0 X()+| O |. (13)
0 0 »p 15(?)
Another model of interest is
p(t + 1) =a,(1) + u(2), (14)
a;(t + 1) = ap(t), a a known parameter; (15)
then
1 1
= X(?). 16
X+ =] X0 (16)

This model can be thought of as an “exponential growth rate” model. The rate of
increase, a,(¢ + 1) being dependent upon p. This model is used in a subsequent
example.

In summary, the problem is to estimate the state of the system at time ¢, given a
model of a linear system described by (6) and a sequence of noisy observations of one
element of the state vector (1). The linear model given by (6) includes the class of
problems amendable to solution by ordinary least squares. The model in (6) admits a
larger class of problems and may thus be viewed as a generalization of the constant
coefficient models normally encountered with ordinary least squares.

3. Kalman Filter

The Kalman Filter is a method for estimating the state vector of a linear dynamic
system from noisy observations. The Kalman Filter assumes a model of the form:

X(t+ 1) = A(HX(?) + U(2) + n(1), D)
() =H()X(?) + &(2), (18)
for t € {0, 1, ...}, where y(#) is a noisy observation of X(¢). In the system described

by (17) and (18) the matrices U(#), A(¢), and H(¢) must be known for each instant of
time. One must also have knowledge of the noise covariance matrices of n(¢) and &(¢)
which are denoted respectively as Q(f) and R(7). The Kalman Filter produces an
estimate of X(), X(t), from the observations:

Y(1)=(»(1), »2), - - -, (1)) (19)
The estimate is chosen as that X(t) which minimizes:
Z(X(0) = (X(1) = X(0) (X(1) = X(1)), (20)

where X(7) denotes the true value of X(#). That is, 5((1) minimizes the length of the
error vector X(#) — X(¥).

The Kalman Filter is a sequential estimation procedure for producing optimal
estimates of X(7), X(t) as each new observation y(f) becomes available. Figure 1
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shows the detailed calculations. Each period the observation y(¢) is used to update the
estimate of X(t — 1), producing a new estimate, X(t) The gain vector, K(?), in step 4 is
applied to the observation error, Y(¢) — H(?)[A(¢ — 1)X(t — 1)+ U(z — 1)}, in step 6.
The matrix G(¢) is the posterior error covariance matrix (the error in X(t) given
observations Y(¢)), while P(¢) is the prior error covariance matrix (the error in X(¢)
given Y(¢ — 1)). The Kalman Filter equations are initialized with estimates of G(0) (a
positive definite matrix) and X(0) (an unbiased estimate of X(¢)).

( sTaRT

ESTIMATE
Glo). X(0)
2

CALCULATE Pt}
Pt = Alt = 1)G(t - DAL= 1))+ Qlt - 1)

3

K{t) = PLOHIO) (HIOPIHI) + Ri) ~

CALCULATE GAIN VECTOR ‘l
4

OBSERVE Y(u, Ut
5

UPDATE ESTIMATE OF STATE
X0 = (Alt- 1 Xt- 1+ U= 1)
+ K(U (Y(0 = HiO {A(t= 1) X(t= 1)+ Ul = 1)
6

UPDATE ERROR COVARIANCE MATRIX
Gl = P{1) - K2 HiY PlY)

FIGURE 1. Flow Diagram of Kalman Filter Equations.

4. Discussion
The model in (1) and (6) is of the form of (17) and (18) if:
H(t)=H= (1,0, ...0), tef{l,2, ... }. (21)

The Kalman Filter can therefore be used to produce optimal estimates of X(?).
Forecasting is achieved by using (17) and (18), recursively. For any positive integer r:

t+r—1
X(t+1)= I=I A()X(1), (22)
t+r—1
P(t+ 1) =HOX(t + 1) = H(7) I=I A()X(2), (23)

where (¢ + 7) denotes the forecasted value of y(¢ + 7) given X(t).

There are several advantages to using the Kalman Filter model in place of ordinary
least squares. First, the Kalman Filter has certain computational advantages. Note
that the optimal estimates of the coefficients produced by least squares are given by
(refer to (8) for the model definition)

a(t) = (FF)"'FY(1), (25)
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where F' = [ f(0), f(1), . . ., f(t — 1)]. The matrix being inverted in (25) is a kth order
matrix (where k = number of coefficients being estimated), while the matrix being
inverted in (18) is a 1 X 1 matrix. Thus, use of the Kalman Filter to estimate X(?)
avoids the matrix inversion step required in least squares. The Kalman Filter also has
the advantage that the matrices appearing in Figure 1 are of fixed dimension. The
matrices F and Y(¢) in (25) increase with . (25) also requires the entire history of
observations, Y(?), while the Kalman Filter requires only the most recent observation,
y(t) and the previous state estimate. Second, referring to Figure 1, it should be noted
that by removing step 6, the resulting flow chart gives an algorithm for precomputing
the gains. These gains can be stored and used in the step 6 equation to update the
state estimates as observations are received.

A third advantage of the Kalman Filter is the fact that the general linear model
given by (6) allows one to easily formulate a variety of models with nonstationary
coefficients. The fact that X (¢) depends upon R(?), the measurement noise covariance
matrix, is a desirable property. This is clearly indicated where the process model is the
constant model of Table 1 with R(¢) = R. In this case, X(#), G(#), K(¢) and H(¢) reduce
to scalars (see [3, pp. 113-114]):

. . G(0) .
X(t+1)=X(z)+W[y(;ﬂ)—)((:)] (26)

This is one of the few cases where an analytic relationship for K(¢), the “gain matrix,”
can be obtained. The least squares estimate of X(¢) is:

X+ )=X@+@+ ) [ye+)-X(0]. (27)

Note that the estimate of X in (26) is a function of R. The gain which is applied to the
forecast error is inversely proportional to R. That is, errors are not weighted heavily if
there is a large amount of noise present (i.e., large R). Note also that the gains
obtained by (26) and (27) converge to a common gain as ¢ approaches infinity. The
rate of convergence depends upon the relative values of G(0) and R. This same
general behavior is exhibited for any general linear system. To see this, note that the
equation for the gain K(7) may be rewritten as

K(1) = G()H' ()R (1) (28)

Computationally, (28) is not desirable. However, (28) shows the basic behavior of the
gain matrix. From (28) it is clear that, in general, the gain is proportional to the
uncertainty in the state estimate (G(¢)) and inversely proportional to the uncertainty
in measurement noise (R(?)). .

Using the criterion defined by (16), Kalman [6] has shown that if X(0) is unbiased
and e(¢) is normally distributed, the Kalman Filter is the optimal filter. If either
assumption is violated, a linear filter may not be an optimal filter. It should be noted,
however, that the Kalman Filter is always the optimal filter if the search for an
optimal filter is restricted to the class of linear filters.

5. Examples

The Kalman Filter model was compared to the least squares model in forecasting
electrical power demand for the United States. Twenty-seven years of data were
available (for the period 1945-1972). The first fourteen years of data were used to
initialize the models. The linear and quadratic models in Table 1 were compared to
the corresponding least squares linear and quadratic models. The Kalman Filter
models were initialized using G(0) = I, X(0) = estimate of X(0) using the 14-period
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least squares estimate of a, R(#) = R = variance of residuals from the 14-period least
squares model.!

Forecasts were made beginning with period 14 for the following period. Table 2
shows the power demand and forecasted demand for periods 15-27. No difference
was observed between the Kalman Filter forecasts and the corresponding least
squares forecasts. The “SSE” row in the table is the sum-of-squared-errors computed
according to:

SSE= 3 (/() = () @)

where j(7) is the forecasted value of y(i).

TABLE 2
Comparison of Several Forecast Models
Linear Model Quadratic Model Linear Model
Period Observation Stationary Stationary Nonstationary

1 1.91

2 2.18

3 2.41

4 2.49

5 2.81

6 3.18 Initialization Period

7 343

8 3.84

9 4.11
10 4.81
11 5.29
12 5.58
13 5.69
14 6.27
15 6.33 6.44 6.84 6.84
16 7.21 6.89 7.34 7.37
17 7.76 7.32 7.79 7.89
18 8.31 7.79 8.30 8.46
19 8.90 8.27 8.85 9.06
20 9.53 8.78 9.43 9.69
21 10.40 9.32 10.1 104
22 11.10 9.92 10.8 11.1
23 12.0 10.5 11.6 119
24 13.1 11.2 124 12.8
25 139 12.0 134 13.8
26 14.7 12.7 14.4 14.8
27 15.8 13.5 15.3 159

Sum of Squared Errors 22.225 1.286 0.335

The “exponential growth rate model” discussed previously (16) was constructed to
illustrate the distinct advantage of the Kalman Filter over least squares models. In this
case, the process model was assumed to be the exponential growth model as defined
by (16): The coefficient a was chosen to minimize the sum-of-squared-forecasting
errors for periods 5-14. Alpha was restricted to the grid {0, 0.001, 0.002, ..., 0.1}. A
minimum was achieved for « = 0.005. This value of a was used in forecasting for
periods 15-27. G(0), X(0), and R(#) = R were identical to those values used in the
linear Kalman Filter model described above.

! In general, R(f) may depend on time. This would be the case if one were updating the estimate of R(®)
at each point in time. In this example, R(f) was fixed at the initial estimate.
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Table 2 illustrates that this model was superior to either of the models where a(¢)
was restricted to be non-time varying.
Figure 2 illustrates the results of the various forecasting schemes.
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FIGURE 2. Comparison of Forecasting Techniques. All Forecasts are One Period Forecasts.

6. Summary

It has been shown that the Kalman Filter is a viable forecasting technique. It is
similar in many respects to the least squares approach to forecasting. There are some
distinct computational advantages to be realized using the Kalman Filter. If the
coefficients in the Kalman Filter are restricted to be stationary, then the Kalman
Filter and the least squares approach to forecasting can be expected to yield similar
results. The distinct advantage of the Kalman Filter is that the assumption of
stationarity of the model coefficients can be relaxed. If nonstationary linear models
are used, results can be superior to the least squares model.
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