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Overview 
Smoothing

Exponential smoothing

Model behind exponential smoothing
Forecasts and estimates
Hidden state model

Diagnostic: residual plots

Examples! ! ! ! (from Bowerman, Ch 8,9)
Cod catch
Paper sales
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Smoothing
Heuristic
! ! Data = Pattern + Noise

Pattern is slowly changing, predictable
Noise may have short-term dependence, but by-and-
large is irregular and unpredictable

Idea
Isolate the pattern from the noise by averaging 
data that are nearby in time.

Noise should mostly cancel out, revealing the pattern
Example: moving averages

Example: JMP’s spline smoothing uses different weights
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st = yt−w+···+yt−1+yt+yt+1+···+yt+w

2w+1



Simple Exponential Smooth
Moving averages have a problem

Not useful for prediction:
Smooth st depends upon observations in the future.
Cannot compute near the ends of the data series

Exponential smoothing is one-sided
Average of current and prior values
Recent values are more heavily weighted than 
Tuning parameter α = (1-w) controls weights (0≤w<1)

Two expressions for the smoothed value
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!t = yt+wyt−1+w2yt−2+···
1+w+w2+···

Weighted average Predictor/Corrector

!t =
yt

1 + w + w2 + · · · +
w(yt−1 + wyt−2 + · · ·

1 + w + w2 + · · ·
= (1− w)yt + w!t−1

= αyt + (1− α)!t−1

= !t−1 + α(yt − !t−1)



Smoothing Constant
α controls the amount of smoothing
α ≈ 0     very smooth
α ≈ 1      little smoothing

Example (Bowerman): monthly tons, cod
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!t = !t−1 + α(yt − !t−1)

Table 6.1



Example: Splines
Interpolating polynomial 

always possible to find a polynomial for which p(x)=y 
when there is one y for each x
JMP interactive tool

Cod catch
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Example: Exponential Smooth
JMP formula similar to Excel
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Model
Need statistical model to

Express source of randomness, uncertainty
Choose an optimal estimate for α
Define predictor and quantify probable accuracy

Want to have prediction intervals for exponential smoothing

Latent variable model (“state-space models”)
Assume each observation has mean Lt-1 
! ! ! ! ! ! ! yt = Lt-1 + εt
Mean values fluctuate over time
! ! ! ! ! ! ! Lt = Lt-1 + α εt
Discussion

Lt is the state and is not observed
If α = 0, Lt is constant
If α = 1, Lt is just as variable as the data
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εt ~ N(0,σ2)



Predictions
Model implies a predictor and method for finding 
prediction intervals

Observations have mean Lt-1! ! ! ! ! yt = Lt-1 + εt
Means fluctuate over time!! ! ! ! ! Lt = Lt-1 + α εt
Errors are normally distributed! ! ! ! εt ~ N(0,σ2)

Predictor is constant
E yn+1 = Ln! ! ! ! ! ! ! ! ! ! ! ! ! ŷn+1 = Ln   
E yn+2 = Ln+1 = Ln + αεn+1!! ! ! ! ! ! ! ŷn+2 = Ln    
E yn+3 = Ln+2 = Ln+1+αεn+2 = Ln+α(εn+2+εn+2)!! ŷn+2 = Ln 
In general, set ŷn+f = Ln 

Variance of prediction errors grows
E(yn+1-ŷn+1)2 = E(εn+1)2 = σ2

E(yn+f-ŷn+f)2 = E(εn+f + α(εn+f-1 +…+ εn+1))2 = σ2(1+(f-1)α2)
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Estimating α 
Model

Observations have mean Lt-1! ! ! ! ! yt = Lt-1 + εt
Mean values fluctuate over time!! ! ! Lt = Lt-1 + α εt

Correspondence
lt is our estimate of Lt

â is our estimate of α  (text uses  , see page 392)

Estimation
Like doing least squares but you don’t get to see how 
well your model captures the underlying state since it is 
not observed!
Choose â based on forecasting

If Lt-1 were observed, we’d use it to predict yt: it’s the mean of yt

Pick â to minimize the sum of squared errors, Σ(yt - lt-1)2
Estimation is not linear in the data
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εt ~ N(0,σ2)

α̂



JMP Results
Techniques for estimating â 

Text illustrates using the Excel solver
We’ll use JMP’s time series methods

Analyze > Modeling > Time Series

Simple exponential smoothing
Lots of output
Results confirm little smooth
pattern; near constant
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 Hessian is not positive definite.

Model Summary
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Diagnostics
Sequence plot of residuals

One-step ahead prediction errors, yt - ŷt
Normal quantile plot

No visual pattern remains
But we will in a week or so more elaborate diagnostic 
routines associated with ARIMA models
Text discusses tracking methods

12

-100

-80

-60

-40

-20

0

20

40

60

R
e
s
id

u
a
l 
V

a
lu

e

0 5 10 15 20 25

Row

-100

-50

0

50

1 2 3 4 5 6

Count

.01 .05.10 .25 .50 .75 .90.95 .99

-3 -2 -1 0 1 2 3

Normal Quantile Plot



Example
Data are weekly sales of paper towels

Goal is to forecast future sales
Units of data are 10,000 rolls

Level appears to change over time, trending 
down then up.

13

Table 9.1

0

5

10

15

20

R
o
ll
s
 (

x
1
0
0
0
0
)

0 20 40 60 80 100 120

Row



Exponential Smooth
Apply simple exponential smoothing

Model results not very satisfying
Value for smoothing parameter, â = 1 (max allowed)
Forecasts are constant

Motivates alternative smoothing methods
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Summary
Smoothing!! ! ! ! ! ! ! ! ! !  locate patterns

Exponential smoothing!! ! ! ! ! ! !  uses past

Model for exponential smoothing!! ! latent state

Diagnostic: residual plots! ! ! ! !    patternless

Discussion
Desire predictions that are more dynamic
Extrapolate trends

Linear patterns
Seasonal patterns
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