Exponential Smoothing

INSR 260, Spring 2009 Bob Stine

Overview

- Smoothing
- Exponential smoothing
- Model behind exponential smoothing
 - Forecasts and estimates
 - Hidden state model
- Diagnostic: residual plots
- Examples (from Bowerman, Ch 8,9)
 - Cod catch
 - Paper sales

Smoothing

- Heuristic
 - Data = Pattern + Noise
 - Pattern is slowly changing, predictable
 - Noise may have short-term dependence, but by-andlarge is irregular and unpredictable
- Idea
 - Isolate the pattern from the noise by averaging data that are nearby in time.
 - Noise should mostly cancel out, revealing the pattern
 - Example: moving averages

$$\left(s_{t} = \frac{y_{t-w} + \dots + y_{t-1} + y_{t} + y_{t+1} + \dots + y_{t+w}}{2w + 1}\right)$$

Example: JMP's spline smoothing uses different weights

Simple Exponential Smooth

- Moving averages have a problem
 - Not useful for prediction:
 - Smooth st depends upon observations in the future.
 - Cannot compute near the ends of the data series
- Exponential smoothing is one-sided
 - Average of current and prior values
 - Recent values are more heavily weighted than
 - Tuning parameter $\alpha = (1-w)$ controls weights (0 < w < 1)
- Two expressions for the smoothed value

Weighted average

$$\ell_t = \frac{y_t + wy_{t-1} + w^2y_{t-2} + \cdots}{1 + w + w^2 + \cdots}$$

Predictor/Corrector

$$\ell_{t} = \frac{y_{t}}{1 + w + w^{2} + \cdots} + \frac{w(y_{t-1} + wy_{t-2} + \cdots)}{1 + w + w^{2} + \cdots}$$

$$= (1 - w)y_{t} + w\ell_{t-1}$$

$$= \alpha y_{t} + (1 - \alpha)\ell_{t-1}$$

$$= \ell_{t-1} + \alpha(y_{t} - \ell_{t-1})$$

Smoothing Constant

- α controls the amount of smoothing
 - α ≈ 0 very smooth
 - α ≈ 1 little smoothing

$$\left[\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})\right]$$

Example (Bowerman): monthly tons, cod

Your impression of the smooth?

Example: Splines

- Interpolating polynomial
 - always possible to find a polynomial for which p(x)=y when there is one y for each x
 - JMP interactive tool

Cod catch

Example: Exponential Smooth

JMP formula similar to Excel

$$\left[\ell_t = \ell_{t-1} + \alpha(y_t - \ell_{t-1})\right]$$

Which is best?

What value should we use for α ?

Model

- Need statistical model to
 - Express source of randomness, uncertainty
 - Choose an optimal estimate for α
 - Define predictor and quantify probable accuracy
 - Want to have prediction intervals for exponential smoothing
- Latent variable model ("state-space models")
 - Assume each observation has mean L₁₋₁

$$y_{\dagger} = L_{\dagger-1} + \epsilon_{\dagger}$$

Mean values fluctuate over time

$$\epsilon_{t} \sim N(0,\sigma^{2})$$

$$L_{t} = L_{t-1} + \alpha \epsilon_{t}$$

- Discussion
 - ${\sf L}_{\sf t}$ is the state and is not observed
 - If $\alpha = 0$, L_t is constant
 - If $\alpha = 1$, L_t is just as variable as the data

Predictions

- Model implies a predictor and method for finding prediction intervals
 - Observations have mean L_{t-1}

$$y_{\dagger} = L_{\dagger-1} + \epsilon_{\dagger}$$

Means fluctuate over time

$$L_{t} = L_{t-1} + \alpha \epsilon_{t}$$

Errors are normally distributed

$$\epsilon_{t} \sim N(0,\sigma^{2})$$

Predictor is constant

$$E y_{n+1} = L_n$$

$$\hat{y}_{n+1} = L_n$$

$$E y_{n+2} = L_{n+1} = L_n + \alpha \epsilon_{n+1}$$

$$\hat{y}_{n+2} = L_n$$

$$E y_{n+3} = L_{n+2} = L_{n+1} + \alpha \epsilon_{n+2} = L_n + \alpha (\epsilon_{n+2} + \epsilon_{n+2})$$
 $\hat{y}_{n+2} = L_n$

$$\hat{y}_{n+2} = L_n$$

- In general, set $\hat{y}_{n+f} = L_n$
- Variance of prediction errors grows

$$E(y_{n+1}-\hat{y}_{n+1})^2 = E(\epsilon_{n+1})^2 = \sigma^2$$

$$E(y_{n+f}-\hat{y}_{n+f})^2 = E(\epsilon_{n+f} + \alpha(\epsilon_{n+f-1} + ... + \epsilon_{n+1}))^2 = \sigma^2(1+(f-1)\alpha^2)$$

Estimating α

Model

- Observations have mean L_{t-1}
- Mean values fluctuate over time

$$y_{t} = L_{t-1} + \epsilon_{t}$$
 $\sim N(0,\sigma^{2})$

 $L_{t} = L_{t-1} + \alpha \epsilon_{t}$

Correspondence

- lt is our estimate of Lt
- $\hat{\alpha}$ is our estimate of α (text uses $\hat{\alpha}$, see page 392)

Estimation

- Like doing least squares but you don't get to see how well your model captures the underlying state since it is not observed!
- Choose â based on forecasting
 - If L_{t-1} were observed, we'd use it to predict y_t : it's the mean of y_t
 - Pick \hat{a} to minimize the sum of squared errors, $\Sigma(y_t l_{t-1})^2$
 - Estimation is not linear in the data

JMP Results

- Techniques for estimating â
 - Text illustrates using the Excel solver
 - We'll use JMP's time series methods
 - Analyze > Modeling > Time Series
- Simple exponential smoothing
 - Lots of output
 - Results confirm little smooth pattern; near constant

Model Summary	
DF	22 Stable Yes
Sum of Squared Errors	26315.4779 Invertible Yes
Variance Estimate	1196.15809
Standard Deviation	34.5855184
Akaike's 'A' Information Criterion	232.424394
Schwarz's Bayesian Criterion	233.559888
RSquare	-0.174024
RSquare Adj	-0.174024
MAPE	9.14722694
MAE	31.0025784
-2LogLikelihood	230.424394
Hessian is not positive definite.	

Book "cheats" a little by setting y_0 to mean of first 12 rather than smoothing after y_1 . Finds $\hat{a} \approx 0.03$.

Diagnostics

- Sequence plot of residuals
 - One-step ahead prediction errors, yt ŷt
 - Normal quantile plot

- No visual pattern remains
 - But we will in a week or so more elaborate diagnostic routines associated with ARIMA models
 - Text discusses tracking methods

Example

Table 9.1

- Data are weekly sales of paper towels
 - Goal is to forecast future sales
 - Units of data are 10,000 rolls

Level appears to change over time, trending down then up.

Exponential Smooth

- Apply simple exponential smoothing
- Model results not very satisfying
 - Value for smoothing parameter, $\hat{a} = 1$ (max allowed)
 - Forecasts are constant
- Motivates alternative smoothing methods

Parameter Estimates				
Term	Estimate	Std Error	t Ratio	Prob> t
Level Smoothing Weight	1.0000000	0.1110102	9.01	<.0001*

118 Stable Yes
143.840613 Invertible Yes
1.21898825
1.10407801
362.267669
365.046793
0.93712456
0.93712456
18.7016851
0.86251008
360.267669

Summary

Smoothing locate patterns

Exponential smoothing uses past

Model for exponential smoothing latent state

Diagnostic: residual plots patternless

- Discussion
 - Desire predictions that are more dynamic
 - Extrapolate trends
 - Linear patterns
 - Seasonal patterns