Review Topics

INSR 260, Spring 2009 Bob Stine

Regression

- Models
 - Simple regression model SRM marginal slope
 - Scatterplot of y on x, e on x
 - Multiple regression model MRM partial slope
 - Scatterplot matrix of y with $x_1,...,x_k$
 - Collinearity, VIF
 - Fitted values, residuals, errors
- Assumptions
 - Linear equation Transformations (esp. logs)
 - Independence Durbin-Watson test, residuals
 - Constant variance Plot of e on \hat{y}
 - Normality Normal quantile plot
- Categorical variables
 - Dummy variables Use in seasonal models
 - Interactions

Inference in Regression

Coefficients

- One slope H_0 : $\beta_j = 0$ t-statistic, p-value, conf int
- All H_0 : $\beta_1 = ... = \beta_k = 0$ F-statistic (Anova table)
 - Test size of R²
- Some H_0 : some $\beta_j=0$ Partial F
 - Test collection representing categorical variable
 - Test using Effect Test or by comparison of R² in models
 - Importance of avoiding multiple t-tests, multiplicity

Prediction

- Components of standard error
 - Random, unexplained variation (RMSE, σ_{ϵ})
 - Extrapolation ("distance value")
- Intervals
 - Confidence interval for mean $\hat{Y} = E(Y|X_1,...,X_k)$
 - Prediction interval for individual future Y value

Exponential Smoothing

- Simple exponential smoothing
 - Geometrically weighted average of past values
 - Recursive form, updating equation $l_{t} = l_{t-1} + \alpha(y_{t} l_{t-1})$
- Model with underlying state
 - Evolving underlying state

$$L_{t} = L_{t-1} + \alpha \epsilon_{t}$$

Observation has mean L₁₋₁

$$y_{\dagger} = L_{\dagger-1} + \epsilon_{\dagger}$$

Prediction

Predict y_{n+f} using estimated state $E y_{n+f} = L_n$ (same for all f)

$$E y_{n+f} = L_n$$
 (same for all f)

Error grows as extrapolate

$$E(y_{n+f}-\hat{y}_{n+f})^2 = \sigma^2(1+(f-1)\alpha^2)$$

- Equivalent to IMA(1,1)
 - Exponential smoothing is special case of a non-stationary
 - ARIMA model

Exponential Smoothing

IMA(1,1)

Equation

$$y_{t} - y_{t-1} = -\theta a_{t-1} + a_{t}$$

Predictions

$$\hat{y}_{n+1} = y_n - \theta a_n, \qquad \hat{y}_{n+f} = \hat{y}_{n+1}$$

Same predictors

Equation

$$l_{t} = l_{t-1} + \alpha(y_{t} - l_{t-1})$$

- Predictor of yt in exponential smooth is lt-1
- Relabel $l_{t-1} = \hat{y}_t$

Equation becomes
$$\hat{y}_{t+1} = \hat{y}_t + \alpha(y_t - \hat{y}_t)$$

at t=n
$$\hat{y}_{n+1} = \hat{y}_n + \alpha(y_n - \hat{y}_n)$$

use observations $\hat{y}_{n+1} = y_n + \alpha a_n$

$$\hat{y}_{n+1} = y_n + \alpha a_n$$

Prediction equations agree with $\alpha = -\theta$

Implication

- If an IMA(1,1) looks like good fit, use expo smoothing
- If not, some other type of smoothing is appropriate

ARIMA Models

- Stationarity
 - Use differencing to produce stationary series
- Correlation functions
 - Autocorrelation function

(TAC versus SAC)

- Partial autocorrelation function
- Uses
 - detect non-stationarity
 - identify model
 - evaluate/check residuals
- Different types of dependence
 - Autoregression
 - Geometric weighting of past errors, finite past observations
 - TAC decays geometrically, TPAC cuts off
 - Moving Average
 - Geometric weighting of past observations, finite past errors
 - TAC cuts off, TPAC decays geometrically

ARIMA Models

- Model identification
 - Plots of data
 - Correlation functions
 - Do residuals appear uncorrelated?
 - Box-Pierce, Box-Ljung statistics (avoid multiplicity)
 - Accumulate squared residual autocorrelations
 - Selection criteria (AIC, SBC/BIC)
 - Penalized complicated models, reward for parsimonious specification
- Prediction, prediction intervals
 - Extrapolate form of model, recursively using predictions
 - Fill in y_{n+f} with \hat{y}_{n+f} , a_{n+f} with 0
 - Predictions revert to mean
 - Prediction standard errors grow toward SD(yt)

General Comments

- Read questions carefully before answering
- Open textbook (no other books)
 - Buy a calculator if you want to use one.
 - No telephones, laptops, other electronics allowed.

 Shut off ahead of time to avoid issues.
- Exam structure
 - Brief description of context of data
 - JMP output
 - Short answer
 - Multiple choice
- Get plenty of sleep the night before!