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Overview 
Resembles prior textbook occupancy example

Time series of revenue, costs and sales at Best Buy,
in millions of dollars
Quarterly from 1995-2008

Similar features
Log transformation
Seasonal patterns via dummy variables
Testing for autocorrelation: Durbin-Watson, lag residuals
Prediction with autocorrelation adjustments

Novel features
Use of segmented model to capture change of regime
Decision to set aside some data to get consistent form
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Forecasting Problem
Predict revenue at Best Buy for next year

Q1, 1995 through Q1, 2008
53 quarters
Forecast revenue for the rest of 2008
Estimate forecast accuracy

Evident patterns
Growth
Seasonal
Variation

Forecast of profit needs an estimate of cost of 
goods sold and amount of sales: then difference.
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Initial Modeling
Quadratic trend + quarterly seasonal pattern

Overall fit is highly statistically significant

Nonetheless model shows problems in residuals

Trend in the first quarter of each year (red) appears 
different from those in other quarters… interaction.
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RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.959712

0.955426

632.221

4952.975

53

Summary of Fit
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Two Ways to Fix
Two approaches

Add interactions that allow slopes to differ by quarter
Do you want to predict quadratic growth?

Log transformation

Use log
Curvature remains, but variance seems stable with 
consistent patterns in the quarters
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Model on Log Scale
Model of logs on time and quarter is highly 
statistically significant,

But residuals show lack of fit and dependence

Why does slope (% growth rate) seem to change?
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RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.987077

0.986

0.073872

8.324368

53

Summary of Fit

Intercept

Time

Quarter[1]

Quarter[2]

Quarter[3]

Term

-298.6066

0.1533451

0.2856838

-0.164648

-0.09888

Estimate

5.316919

0.002656

0.02846

0.029005

0.028982

Std Error

48.00

48.00

48.00

48.00

48.00

DFDen

-56.16

57.73

10.04

-5.68

-3.41

t Ratio

<.0001*

<.0001*

<.0001*

<.0001*

0.0013*

Prob>|t|

Indicator Function Parameterization
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Modified Trend
Introduce “period” dummy variable

Exclude first two years of data (8 quarters)
Add Pre-Post Dot Com indicator
Allows slope to shift at start of 2002
Another shift is possible!

Better model?
Summary statistics

Residual plots
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2002

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.998093

0.997792

0.025882

8.473075
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Summary of Fit
Intercept

Time

Quarter[1]

Quarter[2]

Quarter[3]

Pre/Post Dot Com[post]

Time*Pre/Post Dot Com[post]

Term

-408.1624

0.2081232

0.306712

-0.147721

-0.083811

167.27411

-0.083569

Estimate

8.094352

0.004048

0.010896

0.011102

0.011053

9.912849

0.004953

Std Error

38.00

38.00

38.00

38.00

38.00

38.00

38.00

DFDen

-50.43

51.41

28.15

-13.31

-7.58

16.87

-16.87

t Ratio

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

Prob>|t|

Indicator Function Parameterization

-0.050

-0.025

0.000

0.025

0.050

0.075

0.100

L
o
g
 R

e
v
e
n
u
e

R
e
s
id

u
a
l

7.5 8.0 8.5 9.0 9.5

Log Revenue Predicted

Residual by Predicted Plot

-0.050

-0.025

0.000

0.025

0.050

0.075

0.100

R
e
s
id

u
a
l

0 10 20 30 40 50 60

Row Number

Residual by Row Plot

Huge shift in 
rate of growth



Autocorrelation?
Dependence absent from sequence plot

Confirmed by Durbin-Watson, residual scatterplot

No need to add lagged residual as explanatory 
variable; all captured by trend + seasonal
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1.6527607

Durbin-

Watson

45

Number

of Obs.

0.1660

AutoCorrelation

0.0718

Prob<DW

Durbin-Watson
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Intercept

Time

Quarter[1]

Quarter[2]

Quarter[3]

Pre/Post Dot Com[post]

Time*Pre/Post Dot Com[post]

Lag Residuals

Term

-407.8512

0.2079678

0.3072369

-0.148054

-0.083831

166.99646

-0.08343

0.1691184

Estimate

8.821915

0.004412

0.011212

0.011246

0.011189

10.55057

0.005272

0.165917

Std Error

36.00

36.00

36.00

36.00

36.00

36.00

36.00

36.00

DFDen

-46.23

47.14

27.40

-13.16

-7.49

15.83

-15.82

1.02

t Ratio

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

0.3149

Prob>|t|

Indicator Function Parameterization



More Diagnostics
Residual plots show little remaining structure

Similar variances in quarters?

Normality seems reasonable (albeit outliers in Q1)
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Forecasting
Forecast log revenue for rest of 2008
ŷn+j = (-408.162 + 167.274 + Qj) + " " " " " seasonal
" " (0.20812-0.08357) time"                " time trend
Overall intercept plus adjustment for pre/post

Examples for Q2, Q3, Q4 of 2008
ŷ53+1 = (-408.162 + 167.274 - 0.148)" " " " Q2 = -0.148
" " + 0.12455 (2008.25) 
" " ≈ 9.092
ŷ53+2 = (-408.162 + 167.274 - 0.084)" " " Q3 = -0.100
" " + 0.1245 (2008.50)
" " ≈ 9.187
ŷ53+3 = (-408.162 + 167.274)"" " " " " " Q4 = 0
" " + 0.1245 (2008.75)
" " ≈ 9.302
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Forecast Accuracy
Since model does not have autocorrelation and 
data meet assumptions of MRM, we can use the 
JMP prediction intervals

One period out
ŷ53+1 ± t.025 SE(indiv pred) = 9.0415 to 9.1587

Two periods out
ŷ53+2±t.025 SE(indiv pred) = "9.1363" 9.2540

Three periods out
ŷ53+3±t.025 SE(indiv pred) = "9.2510" 9.3692
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Prediction Intervals
Obtain predictions of revenue, not the log of 
revenue

Conversion
Form interval as we have done on transformed scale
Exponentiate

" " 9.0415 to 9.1587" " ⇒"" e9.0415 to e9.1587

" " " " " " " " " " " " $8446 to $9497 (million)

As in prior example, the prediction interval is 
much wider than you may have expected from 
the R2 and RMSE of the model on the log scale.

Small differences on log scale are magnified on $ scale
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Alternative Segments
Prior approach adds two variables to segment

Dummy variable for period allows new intercept
Interaction allows slope to change

Models fit in the two periods are “disconnected”
Not constrained to be continuous or intersect where the 
second period begins

Alternative approach forces continuity
Add one parameter for 
change in the slope
No dummy variable needed. 
Intercept defined by the 
location of the prior fit.
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Building the Variables
Model comparison

Break in structure (kink) at time T
Before (t ≤ T) : Yt = β0 + β1 Xt + εt
After  (t > T) : Yt = α0 + (β1 + δ)Xt + εt  
Choose α0 so that means match at time T
" β0 + β1 XT"=  α0 + (β1 + δ)XT      ⇒  α0 = β0 - δXT

Hence, only need to estimate one parameter, δ

To fit with regression, add the variable Zt 
Zt = 0 for t≤T,  Zt = Xt - XT for t > T
Before T: no effect on the fit since 0
After T: β0 + β1 Xt + δ Zt = β0 + β1 Xt + δ (Xt - XT)
" " " " " " " " "   = (β0 - δXT) + (β1+δ) Xt
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Changing the Slope
Added variable is very simple

Prior to the change point, it’s 0
After the change point, its (x - time of change)

Picture shows “dog-leg” shape of new variable 
with kink at the change point
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Example
Fit with distinct segments

Fit with continuous joint
Almost as large R2, with one less estimated parameter
Similar shift in slope in two models.
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RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.997901

0.997632

0.026804

8.473075

45

Summary of Fit

RSquare

RSquare Adj

Root Mean Square Error

Mean of Response

Observations (or Sum Wgts)

0.998093

0.997792

0.025882

8.473075

45

Summary of Fit
Intercept

Time

Quarter[1]

Quarter[2]

Quarter[3]

Pre/Post Dot Com[post]

Time*Pre/Post Dot Com[post]

Term

-408.1624

0.2081232

0.306712

-0.147721

-0.083811

167.27411

-0.083569

Estimate

8.094352

0.004048

0.010896

0.011102

0.011053

9.912849

0.004953

Std Error

38.00

38.00

38.00

38.00

38.00

38.00

38.00

DFDen

-50.43

51.41

28.15

-13.31

-7.58

16.87

-16.87

t Ratio

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

Prob>|t|

Indicator Function Parameterization

Intercept

Time

Time Post

Quarter[1]

Quarter[2]

Quarter[3]

Term

-397.4332

0.2027556

-0.081303

0.3042508

-0.149787

-0.084844

Estimate

6.166522

0.003083

0.004988

0.011209

0.011446

0.011433

Std Error

39.00

39.00

39.00

39.00

39.00

39.00

DFDen

-64.45

65.76

-16.30

27.14

-13.09

-7.42

t Ratio

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

<.0001*

Prob>|t|

Indicator Function Parameterization



Summary 
A basic trend (linear, perhaps quadratic) plus 
dummy variables is a good starting model for 
many time series that show increasing levels.
Log transformations stabilize the variation, are 
easily interpreted, and avoid more complicated 
trends and interactions.
Dummy variables can model a “trend break”. 

Models do not anticipate the time of another trend 
break in the future.
Special “broken line” variable models shift in slope with 
one parameter, forcing continuity.

R2 is misleading when you see the prediction 
intervals when fitting on a log scale.
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