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Solutions,  Assignment 3

5.13  The initial regression models the dependence of upkeep expenses (in dollars) relative to the 
value of a home (in thousands of dollars).  As background,  a quadratic regression has the 
following fit 


 The residuals shown on the right appear to become more variable as the value of the home 
increases.  As a remedy, the text suggests dividing the equation of the model by the value of the 
homes, regressing

 
 (upkeep/value) on (1/value), a constant, and a linear term in value
The fit of this model (using multiple regression) follows, along with plots of residuals versus 
predicted values and residuals versus value (like the plot on the right above). The residuals seem 


 to have relatively constant variance in both plots (though there may be a bit of curvature, a slight 
“u-shaped bend” in the plot or residuals on value – but that’s likely imagination).

(a) The residual variance appears more consistent after the transformation than before. In 
particular, the residual variance does not increase systematically as value increases.
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(b) To find the 95% prediction 
interval, start by finding the 
interval on the transformed 
scale.  Let’s call that the 
“expense ratio”  (dollars of 
expense per $1,000 dollars of 
value). The predicted expense ratio for a $250,000 home is

         Estimated Ratio 
≈ 3.409 - 53.5/Value + 0.0112 Value

 
 
 
 = 3.409 - 53.5/250 + 0.0112 * 250 =  5.995
The 95% prediction interval for the expense ratio is thus about 6 ± 2(RMSE = 0.8). From 
here on, I will let JMP do the rest of the calculations.  Allowing for extrapolation effects, the 
95% prediction interval is 4.3275 to 7.6741.  At $250,000,  that works out to

 
 4.3275*250  to 7.6741*250 = $1,081 to $1,919
in expenses.  A rather wide range, with the upper bound about twice the lower bound.

5.16  This exercise uses the hospital data considered in Assignment 2.  The model now includes a 
dummy variable for the large hospitals noted in the previous analysis.  The summary of the model 
shows a very large R2 and all of the individual slope estimates are statistically significant.

(a) The coefficient of the dummy variable implies that large hospitals (as defined by this dummy 
variable) require about 2872 more hours of labor compared to smaller hospitals at a given 
level of effort or demand for services (as measured by the other factors: Xrays, BedDays, and 
Length of stay). The effect is statistically significant, with the confidence interval for the 
estimated difference (about 2872 ± 2(573)) far from zero.  The estimated effect, for instance, 
lies t=5.01 standard errors above zero.
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(b) Hospital 14 used 10,343.81 hours of labor.  The estimated regression assigns fitted value (plug 
into the regression equation)10,077 hours to this hospital.  The difference (the residual) at this 
hospital indicates that this hospital used  266.8 more hours than we’d expect for a large 
hospital.  Since the RMSE of the model is 364 hours, this residual is not unusual, lying less than 
one SD from the fit. This hospital is not unusually inefficient for a large hospital under these 
conditions.
(An aside: This is not such a great way to use residuals because this hospital affects the 
regression fit – it is one of the few “large” hospitals that determine the slope for the dummy 
variable.  It would have been better to fit the model without this case and then compare the 
prediction to the actual value. A big outlier in a regression pulls the regression toward itself, 
reducing the size of its residual.  So-called “Studentized residuals” adjust for this effect.  In this 
case, for example, the studentized residual for this hospital is 1.35, larger than 1, even though 
the y value lies within one RMSE of the fit.)

6.1  Here is the histogram and summary of the lumber data.  Since the model fits a constant, we 
only need the information in this display to answer the text questions.

(a) There does not appear to be a trend in the plot, so we are not far off in treating the data as a 
sample from a single population.  (We need to see the lag-plot in part “c” to check for 
dependence. )

(b) The forecast is the mean.  The rough 95% prediction interval is then the mean ± two SDs of 
the data around the mean, as though predicting a random draw from the distribution shown 
in the histogram, or 35562 ± 2 (2037).  (Don’t use the confidence interval for μ, however.  
You can see from the diamond in the plot that this range is far too narrow when it comes to 
describing the variation in the data itself.)  

 A more precise answer (it was okay for grading to stop at the previous interval) 
takes account of estimating μ. In particular, we should use a t-statistic with 29 deg. freedom 
and scale up the SD by a factor of sqrt(1+1/30).  These do not make a huge difference (a few 
percent), even with a relatively small sample:

 Rough interval:  
 35562 ± 2*2037 
 
 
 = 31,488 to 39,636

 “Precise” interval
 35562 ± 2.045*2037*sqrt(1+1/30) 
 = 31,327 to 39,797

(c) We need the scatterplot of yt on yt-1 to see the autocorrelation. The plot (next page) shows 
that there’s nothing going on, no autocorrelation to be found.
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6.4  Energy costs of a school, in $100s.

(a) Quarterly energy demand is clearly seasonal. The sequence plot also shows a trend that 
appears to bend gradually.  We cannot tell whether there’s also autocorrelation until we fit 
the model and inspect the residuals.

(b) The variation shown in Figure 6.34 of the text appears steady over this time period.  Logs do 
not appear needed.  Again, we’ll know more when we fit the regression and inspect residuals.

(c) The following summarize the JMP analysis of this model.  Pretty wild plot of the trends.
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i) The first dummy variable repeats 1,0,0,0,  1,0,0,0,... and so forth.  The second runs 
0,1,0,0,  0,1,0,0.  The third begins  0,0,1,0,  0,0,1,0...

ii) The overall model is statistically significant.  The overall F = 19.8 reported in the Anova 
summary has p-value much less than 0.05. Since we entered  the quarters as a bundle 
(Q1,Q2,Q3), we should test them that way as well using the partial F test.  JMP 
provides the partial F for Quarter,.  The partial F for Quarter (see the effect test 
output) gives F = 17.79 with p-value < 0.0001.  For time, we should also bundle Time 
and Time2 as one and find the partial F.  This is useful to avoid the nasty effects of 
collinearity. It is more common, however, to look to see whether the separate t-
statistics for Time and time2 are statistically significant (they are, though the linear 
component is close to 0.05 due to collinarity).  
[ To obtain the partial-F for time, remove both from the model and fit a regression on 
just Quarter.  The R2 from that fit is 0.3787.  Hence, the F-statistic is

 F = (0.7443 - 0.3787)/(1-0.7443) * (40-6)/2 = 24.3
That’s big – much bigger than the cutoff at about 3.3 (for F with 2 and 34 d.f.).]

iii) For periods 41 and 42, the predictions are (in hundreds of dollars)

 ŷ41 =276.6 - 7.458*41+0.301*41*41+65.77≈ 542.573

 ŷ42 =276.6 - 7.458*42+0.301*42*42-37.87 ≈ 456.458

iv) Using JMP, the model gives the following predictions (2nd column) and 95% prediction 
intervals (3rd and 4th columns) for the next four quarters (you can see the effects of 

rounding in iii).  These intervals are considerably wider than those produced by ŷ±2 
RMSE (because of the effects of extrapolation).  For example, for ŷ44, the “naive” 
interval is 

 531.656 ± 2 *  60.473 = 410.71 to 652.602
(That’s shorter by about 60*$100.)

v) The Durbin-Watson statistic  indicates 
autocorrelation of about 0.55, which 
is statistically significant.

(d) The SAS output (shown in the text) estimates the autoregression coefficient φ and adjusts the 
rest of the estimates for the presence of this term.

i) The estimate is 0.594 and is significant since its p-value (0.0003) is less than 0.05.
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ii) Yes, though the term for Q2 indicates that Q2 and Q4 are no longer significantly 
different.  The significance of the time trend is also reduced with the presence of the 
lagged explanatory variable. 

iii) The predictions are given in the output from SAS and you can simply read them off.  
For example,  ŷ41 = 605 with prediction interval 507 to 704 (quite a bit higher than 
the ordinary regression).  To see why the predictions are higher, just plot the residuals 
in time order. The last one is about 100 above the fit...


 It is useful (though not part of the assigned exercise) to compare the reported SAS output to the 
results obtained by our simple “add the residuals to the fit” procedure.  The following summarizes 
the fit with the residuals added to the model.  The coefficient of the lagged residuals is basically 
the estimate of φ reported in the text (0.59408). The regression estimate is 0.5945 with similar 
t-statistic as well. The RMSE is similar to the reported fit of the model by SAS.


 As for predictions, the first prediction is ŷ41 = 605.7. To get the rest (via JMP), the extend the 
column of residuals with estimates using φj times the last residual:

 
 79.5 * (0.594, 0.5922,0.5943) = (47.2, 28.1, 16.7)
After you fill these in (shaded yellow below in the excerpt of the data table), JMP computes the 
predictions as ŷ42 = 497, ŷ43 = 415, and ŷ44 = 556. The reported SAS predictions are 506, 427, 
and 570.  Before you think these are large differences, you’ve got to take into account the 
accuracy of these estimates. To build the prediction intervals, get JMP to compute the SE of 
individual predictions. Then add a column to take account of extrapolating the residuals. The 
extrapolation effect is the cumulative sum 1 + φ 2 + φ4 etc that we have seen previously.  These 
terms are (in the column labeled “Extrapolate Residual”)
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 time = 41
 factor = 1

 time = 42
 factor = 1 + φ2 = 1.353 

 time = 42
 factor = 1 + φ2 + φ4 = 1.478

 time = 42
 factor = 1 + φ2 + φ4 + φ6 = 1.522

 The t-statistic is t.025,32 = 2.037 (about 2). The prediction intervals formed as 

 
 ŷ41 ± 2.037 * sqrt(factor) * SE(indiv)
are shown in the excerpt of the spreadsheet below.  (The intervals in the text from SAS seem a 
bit too short, as if not adjusted fully for the effects of extrapolation. In particular, the length of the 
first interval from SAS is about 200, whereas the first interval from the regression has length 
closer to 250.)

5 International Air Traffic

 There are a number of ways to model these data. I’ll follow the approach we have used in several 

examples. (A nice alternative considers month-to-month percentage changes.)

(a) The time plot shows an 
upward trend, a 
strong seasonal 
pattern, and 
increasing variation 
around the level.  
Looks like a log will 
be needed.

(b) The following output 
summarizes the fit of 
log passengers on 
time, with seasonal 
dummies and a 
quadratic trend.  The model also has an 
adjustment for autocorrelation, using the lag of 
the residuals.  (You may or may not have used 
the quadratic component of the trend, but 
your model definitely needs the time trend, 
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seasonal terms, and adjustment 
for autocorrelation.)

(i) The overall model is 
statistically significant, as 
shown by the F statistic 
in the Anova summary. 

(ii) The two trend 
components and the lag 
residuals are all 
statistically significant, 
with very large t-stats 
and small p-values. The 
seasonal terms 
collectively are significant 
as shown by the effect 
test (partial F test).

(c) Here are the overall residual plots from this model.

(i)
The DW test has p-value near 0.7; there’s no further dependence of this type after 
adding the lag residual term.  We can check further by plotting the residuals on their 
lag.  Nothing particularly interesting shows up. This model captures the dependence of 
adjacent residuals. (There could be other residual patterns, such as from year to year.)
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(ii) The assumption of equal 
variance seems questionable. 
The residuals appear to have 
less variation from around 
row 80 to row 110 (around 
1955 through 1957), 
suggesting a period of less 
variation in demand.  The 
variation by month may also 
change, as shown in these 
comparison boxplots.  
Generally,  October through 
January  have less residual 
variation than others, but it’s hard to tell 
with only 11 years of data.

(iii)  For normality, we use the normal quantile 
plot, which looks fine for these residuals.

(d) For predictions, extend the residuals into the 
forecast period so that JMP can do the 
calculations.  The estimated autocorrelation 
(φ) is 0.696, so we have to multiply the last 
residual (0.112) by this value raised to 
powers. These values are shown in the 
accompanying data table shown below.  This 
plot shows the prediction intervals and actual 
data.  All of the intervals cover the values in 
1960, though you might argue that they 
should after seeing how wide the intervals 
are.

(e) This is a tough one to solve completely, and JMP does not give enough information for all of the 
calculations.  For the prediction, you have to exponentiate and then add.  That gives an estimate 
of about 5,636 thousand.  The actual total is 5,714.   That’s not too hard.  The hard part is getting 
a prediction interval.  It’s hard because

 (a) Our variance estimates are on the log scale, not the count scale.

 (b) The prediction errors are not independent since we have used the same model for all
These two make it difficult to get an interval for the total by “analytic” means.  These difficulties 
have led to simulation based estimates obtained by repeating the modeling over-and-over to see 
how the results change from sample to sample.  A possible choice would be to use the sum of 
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the lower bounds and the sum of the upper bounds.  That’s going to be very wide, not in line 
with how close the total of the predictions comes to the actual total.
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