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9.6  The following figures show plots of the data 
and the correlation functions. The sequence 
plot suggests a stationary process (no long-run 
drift). The SAC and SPAC both damp down 
quickly, also suggesting a stationary process.  
  To get an initial guess of the order of the 

process, note that the SAC “cuts off ” after two 
lags and the SPAC slowly damps down, 
suggesting a moving average process of order 2 (MA(2)).  The couple of “large” correlations near 
lag 17 are probably the result of sampling fluctuations.



10.1 This and the next few questions refer to fitting an ARI(1,1) model to the toothpaste sales 
data from Table 9.7.  
 The sequence plot at the right shows that 
these sales are clearly non-stationary and require 
differencing.  The output below summarizes the 
estimates from the JMP Time Series platform for 
the differences. The estimate of φ1 is 0.65.  Since 
|φ1| < 1, the fitted model is 
stationary.  (The estimate of δ 
obtained by JMP 3.0902 is slightly 
different from the estimate shown 
in the text 3.023 obtained by 
Minitab.  
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 Small numerical deviations such as these are typical in time series analysis because there is 
not a simple formula that all software uses to estimate the fitted model; rather, the estimates are 
obtained by iterating a series of approximations until “convergence” is obtained.)

10.2 The estimate of μ given by JMP is 8.87, labeled as the intercept in the summary of the fitted 
model. Notice that the estimate of μ is related to the estimate of the constant δ in the fitted 
model, μ = δ/(1-φ1).

10.3 The summary shows that both estimates are very significant, with p-values much less than 
0.05.  JMP makes you use the p-value for the estimate of μ to determine whether to retain δ in 
the fitted model.  The relationship shown in 10.2, however, shows that testing H0: δ=0 is 
equivalent to testing H0: μ = 0.  So long as the model is stationary (|φ1| < 1) μ = 0 if and only if 
δ = 0.

10.4 We need the autocorrelations of the residuals from this model.  JMP shows these (and the 
partial autocorrelations) along with a sequence plot of the residuals.  JMP also computes Q* or 
Ljung-Box statistic as part of the output and supplies the needed p-value.  The formula is almost 
the same as that used for the simpler Box-Pierce statistic (which I expect you to know):
 Q = (n-d) Σ rj2 = (90-1)(0.0992 + 0.20672 + 0.02492 + 0.02132 + 0.06252 + 0.16642)
   ≈ 89(0.0851948) ≈ 7.58
One then compares Q (or Q*) to the critical value of a chi-squared distribution with K (the 
number of squared autocorrelations) minus the number of estimated parameters (not counting 
the intercept δ) for the degrees of freedom.  Hence use K-1 = 5.  The 5% point in a chi-squared 
distribution with 5 degrees of freedom is 11.07.   The p-value for the observed Q is 0.18.  
 These results are similar to the results obtained by JMP for the Ljung-Box test:  it computes 
Q*(6) = 8.0601 with p-value 0.23.

10.5 With K=12, JMP obtains Q* = 8.6491 with p-value 0.7326.  Clearly, the cumulative 
autocorrelation does not indicate that the model has left significant autocorrelation in the 
residuals.

10.6 To get the 99% intervals, set the level of confidence in the dialog that asks about whether to 
constrain the fit.  Once you fit the ARI(1,1) model, save the results.  JMP produces a data table 
with the forecasts and prediction intervals (rather than adding them to the original table). The 
following table shows the predictions.  You can see that ŷ91 = 1039.78 (a little larger than the 
value shown in the text, 1039.79) with 99% interval 1032.62 to 1046.93.
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(If you have 95% intervals, you can find 99% intervals or those of different coverage.  Adjust the 
length of the interval by the ratio of the t-percentile at 95% to the t-percentile at the desired 
coverage.)

10.11  This exercise uses the sales of shampoo data from Table 9.10.  (This is a short series, with n 
= 30 cases.)  If you fit Model 1, an AR(2) model with a constant, using JMP (without constraints), 
you get these results:

 JMP does not find a problem with the fitting process. JMP estimates a rather different mean (386 
compared to 332.6) but obtains similar estimates for φ1 and φ2. Several problems that are 
reasonable to notice include these:  (the question asks for 2)
(1)  The shown output (p 486) indicates substantial collinearity between the two estimates (see 
correlations of the parameter estimates; the correlation of the two estimates is -0.934).  That’s a 
problem, though not surprising since these are lags of the same time series.  
(2) There’s also a fairly large residual autocorrelation at lag 6 (-0.19).  It’s larger than the others, 
but this output shows that its not significant using Q*.  Note the wide interval on the residual 
autocorrelations caused by the 
short length of the time series.
(3) I’d add the fact that the 
sequence plot of the data 
indicate that there’s likely a 
trend.  The model that’s been fit 
assumes that the process is 
stationary.  That assumption 
seems at odds with the data.
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10.12 This question concerns the fit of 
an ARI(1,1) model (without an 
intercept) to the sales of shampoo 
data.  The following output shows the 
JMP analysis of this model.  First note 
that both the Bayes and Akaike criteria 
prefer the nonstationary ARI(1,1) 
model  (So does a common-sense look 
at the sequence plot of the data ... it’s 
got a strong upward trend.)



 The estimated parameter is highly statistically significant. Continuing to the residuals,  neither 
residual correlation function indicates significant remaining autocorrelation.  (Again, with such a 
short series, there’s a lot of sampling fluctuation in these estimates.



 The normal quantile plot of the 29 residuals also seems OK: 
the residuals could be a sample from a normal population.  
Hence, there’s no problem indicated in these results.  About 
all one might do is consider fitting several other models and 
using the selection criteria to compare them.  With such a 
short series (and no indicated problems) that’s not likely to 
be useful

10.13  This exercise concerns data from Table 8-1 on sales of thermostats.  This exercise points 
out that ARIMA models offer an alternative to exponential smoothing.  In particular, exponential 
smoothing such as the trend-corrected method discussed in this exercise are special cases of 
ARIMA models.
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(a) Here are the 
modeling results.  Start 
with the sequence plot.  
The data seem 
stationary initially, then 
began to trend upward 
(not unlike recent global 
temperatures).  This 
trend suggests that we 
need to difference the 
data.  

 The plot of the 
differences shows that 
the differenced data are 
stationary.

 The SAC and SPAC suggest a moving average of order 1 (SAC cuts off after 1, whereas SPAC 
drift downward).  So, try a few like this and see what happens.



 AIC prefers the ARIMA(2,1,2) model (all of the φs and θs are statistically significant).

 BIC prefers the more parsimonious IMA(1,1) model.  (We could remove constants from both.) 
Let’s see how the residuals of this simpler model appear: Does it omit much autocorrelation?
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 The sequence plot of the residuals does not have a pattern, and the residual correlations are not 
statistically significant.  We can use the IMA(1,1) model.



(b) 
Why use ARIMA models rather than exponential smoothing: flexibility.  We are not so confined 
to a few special cases, but can select from a broader collection of models. There’s a benefit in 
simple models: fewer choices, but automatic selection criteria take the pain out of that.
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