Data Mining Introduction

Bob Stine Dept of Statistics, Wharton School University of Pennsylvania

www-stat.wharton.upenn.edu/~stine

What is data mining?

- An insult?
- Predictive modeling

- How to LIE How to LIE with Statistics How to LIE without Statistics
- Large, wide data sets, often unstructured
- Automatic, complex models

Networks, trees, ensembles... "black boxes"

Exploit results from theory...

universal models, random projections, multiview learning

Prediction rather than explanation

Association and prediction rather than cause and effect

- Testable claims
 - Science requires making claims that are testable
 - Claimed predictive accuracy provides such a test

What is

magic?

Data Mining in Social Sci

- Poor match to social science?
 - Empiricism run wild, lack of theory or hypotheses
 - Post hoc inference
- Response
 - Need to leverage technology

Tukey comments on cost of theory vis-a-vis cost of computing

• Honest

A better match to what most of us do in practice

• Diagnostic

Have I missing something?

• Deep connections

Multidimensional scaling, likelihood, modern regression

Plan

Week I

- Data mining with regression, logistic regression
- Illustrate key ideas in familiar context
- Week 2
 - Alternative methods
 - Trees, networks, ensemble methods Boosting and bagging
- Syllabus
 - Hands-on: Lab sessions each week
 - Annotated bibliography
 - July 4

Software

- Must do statistics to learn statistics
- Modern computing provides
 - New ways to look at old things, like regression
 - New approaches to data analysis
- Packages
 - JMP from SAS

Front-end to SAS Enterprise Miner Available on Newberry systems

- R
- Others: Stata, SPSS, Weka,...

My Background

- Time series analysis
 - Effects of modeling on forecast accuracy
 - Bootstrap resampling
- Model selection in general
 - Predictive models in credit, health
- Recent
 - Alternative methods for building regression
 - Combining traditional data and text
- Long time 'friend' of Summer Program
 - Political science and voting behavior

t-shirts

Research Questions

- What question do you want to answer?
 - Can your data provide an answer?

Question to guide analysis

Ideal data?

- Questions from science, business
 - Who's most at risk of a disease?
 - What's going to happen in financial markets?
 - Are any of these people dishonest?
- Social science questions: voting behavior
 - Will this person vote if I get them to register?
 - Whom will this registered voter choose?
 - Whom would those who didn't vote choose?

2008 ANES Survey

• Background of survey

ICPSR #25383

- Two waves, every two years
- Questions
 - Categorical responses Did you vote? For whom?
 - Numerical responses How much do you like this candidate
- Why are these interesting?
 - Get out the vote, phone banks
 - Role of participation in election...
 Would those who didn't vote change things?
- Is the ANES ideal data?

90/10 rule

• Missing data, self-reported, interviewer effects...

2012 ANES Survey

• Background

ICPSR #34808

- Mix of in-person interview, internet panels
- Fewer variables, less detail than in 2008
- More cases than in 2008
- Questions
 - Key responses: Did you vote? For whom?
 - No numerical responses Recoded into bins (e.g., age ranges)
 - Want numerical variables? Role for theory (example follows)
- Issues remain
 - Prevalent missing data, manipulating labels
 - Not a simple random sample (50.6% Obama vs 58% in anes)

R data file

Data Browsing

- Spirit of EDA, exploratory data analysis
 - Know your data
 - Know your tools
- ANES 2008 data table in JMP
 - Load directly from SPSS sav file 25383-0001-Data.sav
 - Almost square: 2,323 cases x 1956 variables
 - Sampling weights
 - Virtually all categorical, with many missing
 - Feeling thermometers (B1), 'moderators' (N5)
- Variable creation
 - No algorithm is as good (yet) as the modeler who knows how to build predictive features

10

Browsing ANES

- Marginal distributions in 2008 data
 - Interactive graphics: Plot linking and brushing
- Interesting variables
 - Participation, political interest (AI-AI0) prevalence of missing data. Problem for categorical?
 - Feeling thermometer (FT, BI group) numbers or categories? Missing a problem?

JMP treatment of numerical/ categorical

- Other interesting relationships to explore
 - Spending bundle and scaling (PI group) Likert scales, ordinal-interval-ratio measurement
 - Intention to vote (A6, Q1 in first wave) Repeats prior question, reliability of data
 - Choice in election (C6 in second wave) Importance of sampling weights (65.5% in sample, 53% in election)

Browsing ANES

- Bivariate relationships
 - Contingency tables, scatterplots

Special scatterplot if mix types

- Asymmetry of roles: explanatory vs response
- Consistency of responses: scatterplot
 - FT rating of Dem candidate pre/post election BI/DI
- War and voter choice: table, mosaic plot
 - Choice and opinion of war in Iraq
- Feelings and voter choice: logistic regression
 - Choice and rating of candidate

AI4f/C6

D2/C6

Models

- What is a statistical model?
- Model
 - Simplification of reality
 - Facilitate answering specific types of questions
 - Example: Maps

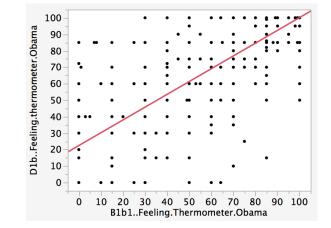
Map for driving directions versus subway map

"All models are wrong, but some are useful" Box

- What is a statistical model?
 - Data generating process
 - Probability model describing a random mechanism
- Link to theory
 - Test theory's claims for features of model

Assumptions

- Models make two types of assumptions
 - systematic structure linear equation in regression
 - "unexplained" variation


 (a) Independent
 (b) Equal uncertainty
 (c) Bell shaped
- Which make sense within the context of this model using the ANES data?
 - Does it matter if the assumption is not met?
- Why do we make such assumptions?

Simple Model

- Bandwagon model
 - Affiliation with winner
- Relate to SRM
 - $\Upsilon = \beta_0 + \beta_1 X + \epsilon$
 - H0: $\beta_0 = 0$, $\beta_1 = 1$
- Tests, inference
 - Confidence interval
 - Hypothesis test
 - Standard error
 - t-statistic
 - p-value

Department of Statistics

Summary of Fit	
RSquare	0.668784
RSquare Adj	0.668568
Root Mean Square Error	16.14515
Mean of Response	73.06612
Observations (or Sum Wgts)	1539

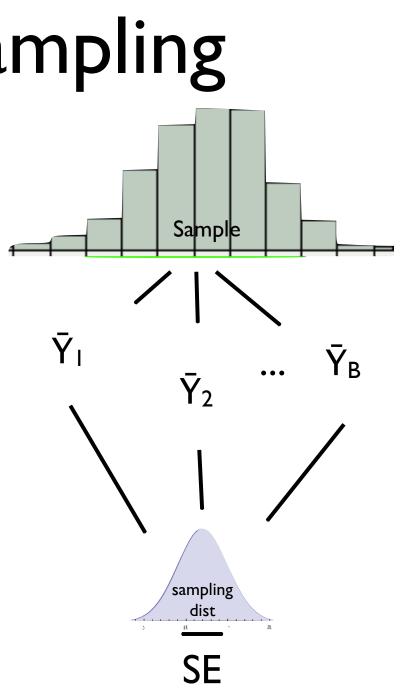
,	Parameter Estimates			
	Term	Estimate	Std Error	t
	Intercept	22.45042	0.997439	

Term	Estimate	Std Error	t Ratio	Prob>
Intercept	22.45042	0.997439	22.51	<.000
B1b1Feeling.Thermometer.Obama	0.7771458	0.01395	55.71	<.000

Conclude?

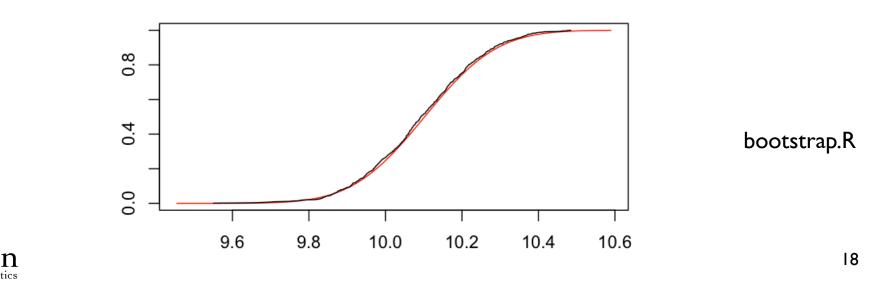
>|t| 01*

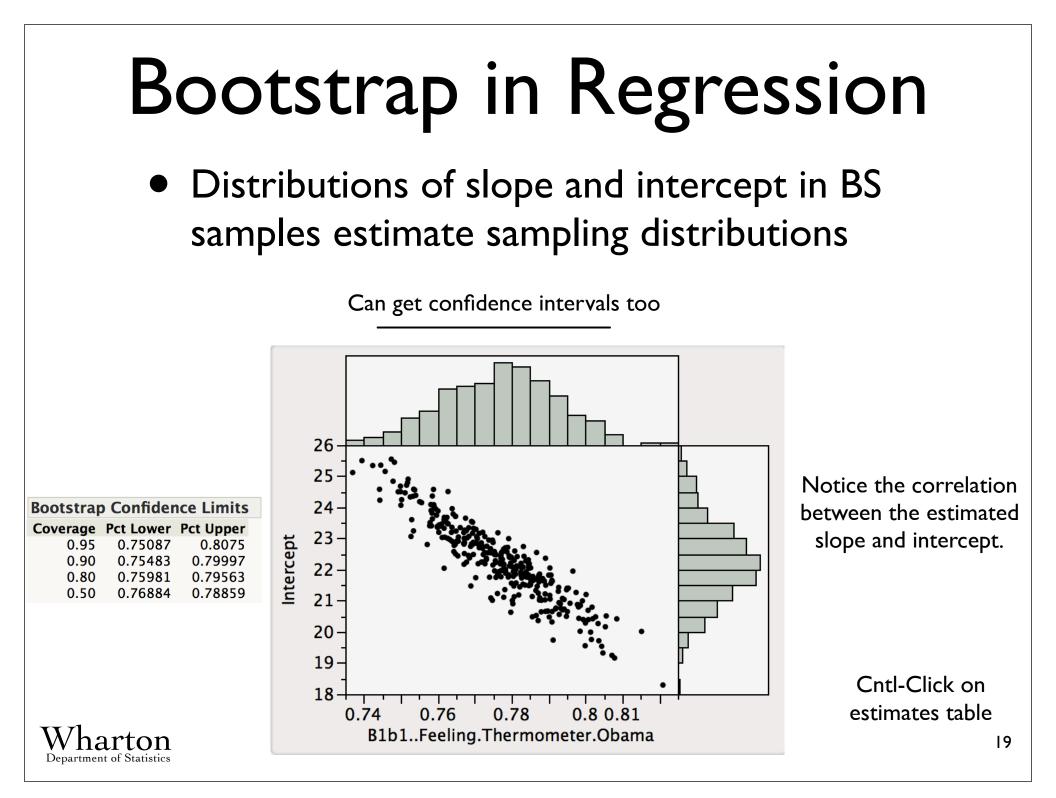
 01^{*}


Bootstrapping

- Standard error is key to inference
 - What are standard errors?
- BS is alternative method for obtaining standard errors and confidence intervals
 - Estimates standard error by simulation
 - Sampling with replacement from observed distribution of data
- Implementation
 - R 'bootstrap' package also easy to do yourself
 - Throughout JMP
 Control click.

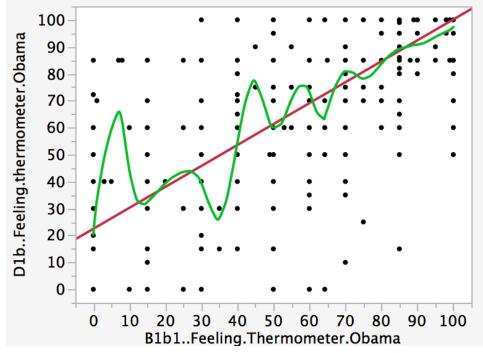
Bootstrap Sampling


- Standard error
 - Standard deviation of statistic
 - Repeated samples from the population
- Bootstrap standard errors
 - Simulate standard error
 - Draw B samples from the observed sample itself.
 - Sampling is done with replacement times
 - Collection of stats estimates sampling distribution



Bootstrap Example

- Bootstrap problem with known answer
 - Normal population with mean μ and var $\sigma^2.$
 - Sampling distribution of the mean is $N(\mu, \sigma^2/n)$
 - Simple to do in R since easy to script Several R packages implement extensive bootstrap methods
- Bootstrap sampling distribution
 - Matches theory without the math



Model Diagnostics

- Residual diagnostics
- Calibration

Department of Statistics

- Is the model correct on average: $E(Y|\hat{Y}) = \hat{Y}$
- Check by smoothing Y on X or Y on \hat{Y}

Interactive tool for spline in JMP

Multiple Regression

- Does one explanatory variable provide a complete description of the response?
 - What other factors affect association between pre-election rating and post rating?

Media Emotional interest in outcome Attitude to Irag war, economy,...

• How do these factors contribute to model

Additive as another explanatory variable Affecting other factors (interaction)

- How should we decide which?
 - Trial and error by adding to multiple regression?
 - Use of t-statistics and p-values to decide

Multiple Regression Model

- Grow to a multiple regression model
 - Underlying model has assumptions
 - Key assumption is the larger equation $E(Y|X) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + ... + \beta_k X_k$
 - Same assumptions for the unexplained variation
- Evaluating explanatory variables
 - Which do we keep, which do we exclude?
- Use of t-statistics, F-statistics in this setting
 - How many variables did you try?
 - What made you try those?

Statistics rewards persistence!

X's are known

• What about other correlated variables?

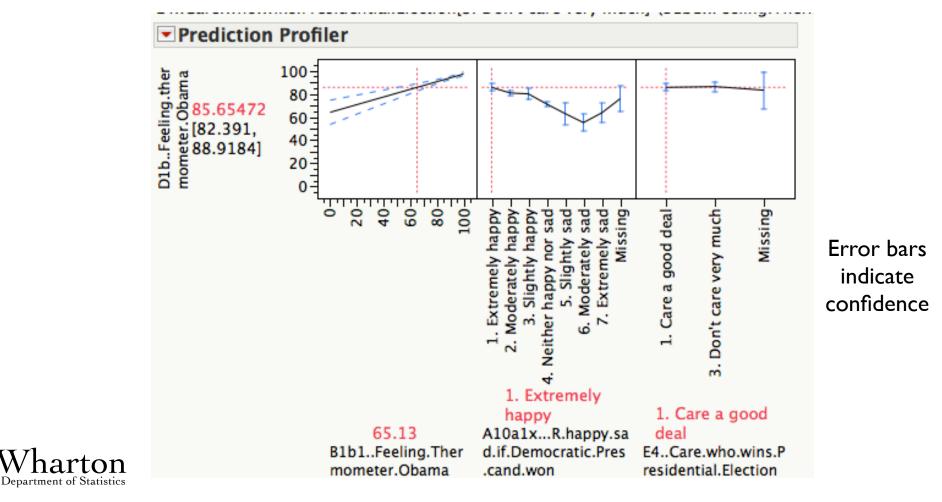
Possible Model

Grow simple regression into a multiple regression model that includes interactions

- Add Happy/Care, 'care who wins'
- Interaction: flexibility vs complexity

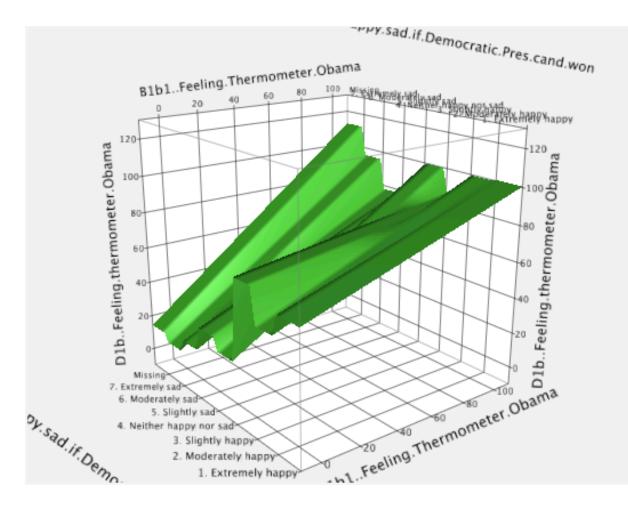
Summary of Fit	
RSquare	0.709698
RSquare Adj	0.706067
Root Mean Square Error	15.2044
Mean of Response	73.06612
Observations (or Sum Wgts)	1539

• What does all of this tell you?


Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	10.278347	32.51196	0.32	0.7519
B1b1Feeling.Thermometer.Obama	0.9681949	0.461061	2.10	0.0359*
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[1. Extremely happy]	9.8663472	5.835125	1.69	0.0911
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[2. Moderately happy]	5.0396631	5.729722	0.88	0.3792
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[3. Slightly happy]	4.2210901	6.144354	0.69	0.4922
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[4. Neither happy nor sad]	-4.538505	5.663989	-0.80	0.4231
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[5. Slightly sad]	-12.802	7.369606	-1.74	0.0826
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[6. Moderately sad]	-20.63233	6.695992	-3.08	0.0021*
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[7. Extremely sad]	-12.19253	6.97073	-1.75	0.0805
E4Care.who.wins.Presidential.Election[1. Care a good deal]	2.4513298	7.926328	0.31	0.7572
E4Care.who.wins.Presidential.Election[3. Don't care very much]	3.15552	8.00467	0.39	0.6935
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[1. Extremely happy]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.486502	0.150129	-3.24	0.0012*
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[2. Moderately happy]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.400236	0.156171	-2.56	0.0105*
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[3. Slightly happy]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.664516	0.198185	-3.35	0.0008*
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[4. Neither happy nor sad]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.182634	0.142532	-1.28	0.2003
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[5. Slightly sad]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.383674	0.214671	-1.79	0.0741
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[6. Moderately sad]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.309216	0.169471	-1.82	0.0683
A10a1xR.happy.sad.if.Democratic.Pres.cand.won[7. Extremely sad]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.10462	0.158739	-0.66	0.5100
E4Care.who.wins.Presidential.Election[1. Care a good deal]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.150387	0.439843	-0.34	0.7325
E4Care.who.wins.Presidential.Election[3. Don't care very much]*(B1b1Feeling.Thermometer.Obama-65.1302)	-0.249495	0.444175	-0.56	0.5744

Regression models often feel like a black box too...

Profile of Model


- Alternative way to look at a model
 - Visual presentation of effects vs tabular
 - What does the interaction do? (animated)

Looking at Fit

• Surface profile

Department of Statistics

How would it look were there no interaction?

Take-Aways

- Role for data mining in social sci research
 - Diagnostic
 - Better way to do what we do already
- Importance of models
 - Linking theory to data to allow inference
 - Standard error: bootstrap resampling
- Calibration
 - Check that a model is correct, on average
- Interactive visualization
 - Exploring data (plot linking, brushing)
 - Exploring models (profiling, surfaces)

Assignment

- Skim syllabus, bibliography
- Peek at the codebook for ANES
 - Will put on Newberry computers
- Think about modeling your own data
 - How did you decide on a model, hypotheses
- Come with questions...

Next Time

- Picking the features of a model.
- An often overlooked diagnostic.
- What to do about missing values?

