Data Mining with Regression

Bob Stine Dept of Statistics, Wharton School University of Pennsylvania

Some Details

- Office hours
 - Let me know and we can meet at Newberry
 - <u>stine@wharton.upenn.edu</u>
- Class notes
 - <u>http://www-stat.wharton.upenn.edu/~stine/mich/</u>
- Data
 - Will post ANES and others on Z drive
- JMP software
 - Depends on your school

Topics for Today

- Review from last time
 - Any questions, comments?
- Growing regression models
 - Deciding which variables improve a model
 - Standard errors and significance
- Missing data
- Stepwise regression

Why use regression?

• Claim

- Regression is capable of matching the predictive performance of black-box models
- Just a question of having the right X's
- Regression is familiar
 - Recognize then fix problems
 - Shares problems with black-boxes

Opportunity to appreciate what happens in less familiar, more complex models with more flexible structure.

- Familiarity allows improvements
 - Patches in Foster and Stine 2004

Review ANES Example

- Start with simple regr, expand to multiple
 - Post FT Obama on Pre FT Obama
 - Add 'Happy/Sad' and 'Care Who Wins'
 - Include interaction effect
- Visual exploration of model form
 - Show the effects of an interaction
 - What's the interaction mean
- Calibration
 - Being right on average
- Tests and inference
 - Which terms are significant? What's that mean?

profiling

 $avg(Y|\hat{Y})=\hat{Y}$

Modeling Question

- How do we expand a regression model
 - Reach beyond obvious variables
 - Find subtle but important features
- Automate typical manual procedure
 - Iterative improvement
 - Try variable, diagnose, try another, diagnose...
- Computing allows more expansive search
 - Open modeling process to allow a surprise
 - Example: Include interactions transformations, combinations (e.g. ratios), bundles (e.g. prin comp)
 - Magnified scope also magnifies problems

Medical Example

- Numerical response
- Diagnosing severity of osteoporosis
 - Brittle bones due to loss of calcium
 - Leads to fractures and subsequent complications
 - Personal interest
- Response
 - X-ray measurement of bone density
 - Standardized to N(0,1) for normal
 - Possible to avoid expense of x-ray, triage?
- Explanatory variables
 - Data set designed by committee doctors, biochemists, epidemiologists

Normal bone

Osteoporosis Data

- Sample of postmenopausal women
 - 1,232 women with 127 columns
 - Nursing homes in NE... Dependence? Bias?

ideal data?

- Presence of missing data
- Measurement error
- Marginal distributions
 - X-ray scores (zHip), weight, age...

Initial Osteo Model

- Simple regression
 - zHip on which variable?
 - How would you decide...
- Impact of weight

pick largest correlation

consult science

RSquare	0.221923
RSquare Adj	0.22129
Root Mean Square Error	1.140076
Mean of Response	-1.55801
Observations (or Sum Wgts)	1230

Term	Estimate	Std Error	t Ratio	Prob> t
Intercept	-4.27558	0.14880	-28.73	<.0001*
Weight	0.01722	0.00092	18.71	<.0001*

Interpretation?

Expanding Model

- What to add next?
 - Residual analysis
 - Add others and see what sticks
- Add them all?
 - Singularities imply redundant combinations
 - Summary of fit Impressive R² until you look at the sample size.

-	
RSquare	0.9882
RSquare Adj	0.9620
Root Mean Square Error	0.2280
Mean of Response	-1.5767
Observations (or Sum Wgts)	171.0000

Missing Data

- Fit changes when add variables
 - Collinearity among explanatory variables
 - Different subsets of cases
- What to do about the missing cases
 - Exclude

"Listwise deletion" "Pairwise deletion"

- Impute. Fill them in, perhaps several times
- Imputation relies on big assumption Missing cases resemble those included.

Real data is seldom (if ever) missing at random

Handle Missing Data

- Add another variable
 - Add indicator column for missing values
 - Fill the missing value with average of those seen
- Simple, reduced assumption approach
 - Expands the domain of the feature search
 - Allows missing cases to behave differently
 - Conservative evaluation of variable

Leads to complaints about lack of power

- Part of the modeling process
 - Distinguish missing subsets only if predictive
- Categorical: not a problem
 - Missing form another category

Example of Procedure

- Simple regression, missing at random
 - Conservative: unbiased estimate, inflated SE
 - n=100, $\beta_0=0$, $\beta_1=3$
 - 30% missing at random, β_1 =3

Example of Procedure

- Simple regression, not missing at random
 - Conservative: unbiased estimate, inflated SE
 - n=100, β₀=0, β₁=3
 - 30% missing follow steeper line

Example from R

Data frame with missing values

Filled in data with added indicator columns

>	example.df				
	x1	x2	x3	lab	fac
1	1	NA	-0.9532650	UVW	ABC
2	1	2	-2.8903951	UVW	ABC
3	1	3	-0.1693143	UVW	ABC
4	1	NA	-0.8343432	UVW	ABC
5	NA	5	1.0919509	UVW	ABC
6	1	NA	1.3706193	UVW	ABC
7	1	7	-1.7155066	UVW	ABC
8	1	8	0.6355785	UVW	ABC
9	1	9	0.7014913	UVW	<na></na>
10	1	10	0.4994391	UVW	<na></na>

> fill.missing(example.df)

	x1	x2	x3	lab	fac	Miss.x1	Miss.x2
1	1	6.285714	-0.9532650	UVW	ABC	0	1
2	1	2.000000	-2.8903951	UVW	ABC	0	0
3	1	3.000000	-0.1693143	UVW	ABC	0	0
4	1	6.285714	-0.8343432	UVW	ABC	0	1
5	1	5.000000	1.0919509	UVW	ABC	1	0
6	1	6.285714	1.3706193	UVW	ABC	0	1
7	1	7.000000	-1.7155066	UVW	ABC	0	0
8	1	8.000000	0.6355785	UVW	ABC	0	0
9	1	9.000000	0.7014913	UVW	Missing	0	0
10	1	10.000000	0.4994391	UVW	Missing	0	0

No cheating: You don't get to fill in the y's!

Background of Procedure

- Been around for a long time
 - Well suited to data mining when need to search for predictive features
- Reference
 - Paul Allison's Sage monograph on Missing Data (Sage # 136, 2002).
- For a critical view, see Jones, M. P. (1996)
 - J Amer. Statist. Assoc., 91, 222–230
 - He's not too fond of this method, but he models missing data as missing at random.

Expanded Osteo Data

• Fill in missing data

Do in R

- Grows from 126 to 208 possible Xs
- Saturated model results
 - Full sample but so few significant effects

Still missing interactions

Sum of					
Analysis of Variance					
Observations (or Sum Wgts)	1232				
Mean of Response	-1.55821				
Root Mean Square Error	0.957692				
RSquare Adj	0.45095				
RSquare	0.541046				

		Sum of		
Source	DF	Squares	Mean Square	F Ratio
Model	202	1112.5810	5.50783	6.0052
Error	1029	943.7711	0.91717	Prob > F
C. Total	1231	2056.3521		<.0001*

Stepwise Regression

- Need a better approach
 - Cannot always fit the saturated model
 - Saturated model excludes transformations such as interactions that might be useful
- Mimic manual procedure
 - Find variable that improves the current model the most
 - Add it if the improvement is significant.
- Greedy search
 - Common in data mining with many possible X's
 - One step ahead, not all possible models
 - Requires caution to use effectively

Stepwise Example

- Predict the stock market
- Response
 - Daily returns (essentially % change) in the S&P 500 stock market index through April 2014
- Goal
 - Predict returns in May and June using data from January through April
- Explanatory variables
 - 15 technical trading rules based on observed properties of the market
 - Designed to be easy to extrapolate

Results

 Model has quite a few X's but is very predictive and highly stat significant.

<.0001*

Term

81 0.00478325

Intercept	0.0047436	0.000834	5.69	<.0001*
Trading Rule 02	-0.002382	0.000526	-4.53	<.0001*
Trading Rule 06	-0.001643	0.000473	-3.47	0.0010*
Trading Rule 07	-0.002415	0.000501	-4.82	<.0001*
Trading Rule 10	0.0014874	0.000401	3.71	0.0005*
Trading Rule 11	0.0020475	0.000434	4.72	<.0001*
(Trading Rule 01+0.16029)*(Trading Rule 02-0.03684)	0.0024829	0.000449	5.53	<.0001*
(Trading Rule 03+0.10456)*(Trading Rule 03+0.10456)	-0.001174	0.000349	-3.37	0.0014*
(Trading Rule 01+0.16029)*(Trading Rule 04-0.05089)	0.0023611	0.000424	5.56	<.0001*
(Trading Rule 01+0.16029)*(Trading Rule 05+0.10883)	-0.00283	0.000488	-5.80	<.0001*
(Trading Rule 02-0.03684)*(Trading Rule 05+0.10883)	-0.002749	0.000533	-5.15	<.0001*
(Trading Rule 04-0.05089)*(Trading Rule 06-0.13398)	-0.00102	0.000367	-2.78	0.0076*
(Trading Rule 07-0.08816)*(Trading Rule 07-0.08816)	-0.001282	0.000333	-3.85	0.0003*
(Trading Rule 06-0.13398)*(Trading Rule 08-0.06525)	-0.002597	0.000468	-5.55	<.0001*
(Trading Rule 05+0.10883)*(Trading Rule 09-0.00019)	0.0013912	0.000419	2.22	0.0017*
(Trading Rule 06-0.13398)*(Trading Rule 09-0.00019)	-0.002956	0.000431	-6.87	<.0001*
(Trading Rule 08-0.06525)*(Trading Rule 09-0.00019)	-0.002402	0.000563	4.27	<.0001*
(Trading Rule 09-0.00019)*(Trading Rule 09-0.00019)	0.0021271	0.000338	6.30	<.0001*
(Trading Rule 08-0.06525)*(Trading Rule 10-0.17487)	-0.001669	0.00066	-2.53	0.0145*
(Trading Rule 09-0.00019)*(Trading Rule 10-0.17487)	-0.003865	0.000433	-8.93	<.0001*
(Trading Rule 08-0.06525)*(Trading Rule 11+0.00907)	0.0011033	0.000471	2.34	0.0231*
(Trading Rule 11+0.00907)*(Trading Rule 11+0.00907)	0.0014265	0.000298	4.79	<.0001*
(Trading Rule 02-0.03684)*(Trading Rule 12+0.11888)	-0.002147	0.000634	-3.39	0.0014*
(Trading Rule 01+0.16029)*(Trading Rule 13-0.12776)	-0.003254	0.000506	-6.43	<.0001*
(Trading Rule 07-0.08816)*(Trading Rule 13-0.12776)	0.0024976	0.00036	0.94	<.0001*
(Trading Rule 01+0.16029)*(Trading Rule 14+0.0272)	-0.004153	0.000476	-8.73	1.0001*
(Trading Rule 08-0.06525)*(Trading Rule 14+0.0272)	0.0022315	0.000745	2.55	0.0042*
(Trading Rule 14+0.0272)*(Trading Rule 14+0.0272)	-0.003191	0.000381	-8.38	<.0001*
(Trading Rule 08-0.06525)*(Trading Rule 15-0.12571)	-0.005382	0.000672	-8.01	<.0001*
(Trading Rule 09-0.00019)*(Trading Rule 15-0.12571)	-0.003577	0.000528	6.78	<.0001*

Estimate Std Error t Ratio Prob>|t|

C. Total

Residuals diagnostics check out fine...

20

Predictions

- Plot of predictions with actual
- Fit anticipates turning points.

Evaluating the Model

- Compare claimed to actual performance
 - $R^2 = 89\%$ with RMSE = 0.0032
 - How well does it predict May and June?
- SD of prediction errors much larger than model claimed

Forward Stepwise

- Allow all possible interactions, 135 possible
 - Start with 15 X's
 - Add 15 squares of X's
 - Add $\frac{15*14}{2} = 105$ interactions
 - Principle of marginality?
- Forward search
 - Greedy search says to add most predictive
 - Problem is when to stop?
- Use statistical significance?
 - What threshold for the p-value?
 - Follow convention and set α =0.05 or larger?

Response surface in JMP

Explanation of Problem

• Examine the definition of the technical trading rules used in the model

Random Normal()

- Why did the stepwise get this so wrong?
 - Problem is classic example of over-fitting
 - Tukey "Optimization capitalizes on chance"
- Problem is not with stepwise
 - Rather it lies with our use of classical statistics
 - α =0.05 intended for one test, not 135

Over-Fitting

- Critical problem in data mining
 - Caused by an excess of potential explanatory variables (predictors)
- Claimed error steadily shrinks with size of the model
- "Over-confident"
 - Model claims to predict new cases better than it will.

 Select predictors that produce a model that minimizes the prediction error without over-fitting.

Problem in Science

xkcd

- Source of publication bias in journals
- Statistics rewards persistence

narton

Department of Statistics

How to get it right?

- Three approaches
 - Avoid stepwise (and similar methods) altogether
 - Reserve a validation sample (cross-validation)
 - Be more choosy about what to add to model
- Bonferroni rule
 - Set the p-value based on the scope of the search
 - Searching 135 variables, so set the threshold to $0.05/135 \approx 0.00037$
 - Result of stepwise search?

Bonferroni gets it right... Nothing is added to the model!

Take-Aways

- Missing data
 - Fill in with an added indicator for missingness

• Over-fitting

- Model includes things that appear to predict the response but in fact do not
- Stepwise regression
 - Illustrative greedy search for features that mimics what we do manually when modeling
 - Expansive scope that includes interactions
 - Bonferroni: Set p-to-enter = 0.05/(# possible)

Assignment

- Missing data
 - What do you do with them now?
- Try doing stepwise regression with your own software.
 - Does your software offer robust variance estimates (aka White or Sandwich estimates)
- Take a look at the ANES data

Next Time

- Review of over-fitting
 - What it is and why it matters
 - Role of Bonferroni
- Other approaches to avoiding over-fitting
 - Model selection criteria: AIC, BIC, ...
 - Cross-validation
 - Shrinkage and the lasso

