Logistic Regression & Classification

Bob Stine Dept of Statistics, Wharton School University of Pennsylvania

Questions

- Did you see the parade? Watch fireworks?
- Do you need to do model selection?
 - What's a big model?
 - Size of n relative to p
- How to cut and paste figures in JMP?
 - Selection tool in JMP

- Other questions?
 - Review cross-validation and lasso, in R

Classification

- Response is categorical
 - Predict group membership rather than value
 - Several ways to measure goodness of fit

Confusion matrix

• Label "good" if estimated $P(good) > \xi$ How should you pick the threshold ξ ?

Want both large

- Sensitivity $n_{11}/(n_{11}+n_{12})$ Specificity $n_{22}/(n_{21}+n_{22})$
- Role for economics and calibration
- ROC Curve
 - Graphs sensitivity and specificity over a range of decision boundaries (whether you care about them or not)

Claim

Sensitivity a.k.a. recall Precision = $n_{11}/(n_{11}+n_{21})$

Good

nii

n₂₁

Good

Bad

Actual

Bad

n₁₂

n₂₂

Logistic Regression

- Model
 - Assumes latent factor $\theta = x_1\beta_1 + ... + x_k\beta_k$ for which the log of the odds ratio is θ $\log \frac{P(good)}{I-P(good)} = \theta$

Logistic curve resembles normal CDF

- Estimation uses maximum likelihood
 - Compute by iteratively reweighted LS regression
 - Summary analogous to linear regression
 - -2 log likelihood \approx residual SS

chi-square overall \approx overall F

chi-square estimates $\approx t^2$

Example

- Voter choice
 - Fit a linear regression
 - Calibrate
 - Compare to logistic regression
- Data
 - 4,404 voters in ANES 2012
 - Response is Presidential Vote

 Categorical for logistic
 Limit to Obama vs Romney (just two groups, n=4,188)
 Dummy variable for regression (aka, discriminant analysis)

• Explanatory variables

Simple start: Romney-Obama sum comparison (higher favors Obama) Multiple: add more via stepwise

anes_2012

Level	Count	Prob
Did not vote	1109	0.18746
Missing	403	0.06812
Voted	4404	0.74442
Total	5916	1.00000

anes_2012_voters

Level	Count	Prob				
Obama	2496	0.59599				
Romney	1692	0.40401				
Total	4188	1.00000				
note over-sampling						

Linear Regression

• Highly significant, but problematic

artment of Statistics

*Fancy name: nonparametric single index model.

6

Logistic Regression

• Fitted model describes log of odds of vote

ChiSquare = t^2

Term	Estimate	Std Error	ChiSquare	Prob>ChiSq	
Intercept	-0.229923	0.074323	9.57	0.0020*	save estima
Romney-Obama sum	0.4340748	0.0166403	680.47	<.0001*	probabiliti
For log odds of Obama	/Romney				

Interpretation of slope, intercept?

Department of Statistics

Logistic \approx Calibrated LS

- Compare predictions from the two models
 - Spline fit to dummy variable
 - Logistic predicted probabilities

Calibrating a simple linear regression can reproduce the fit from a logistic regression

Goodness of Fit

- Confusion matrix counts classification errors
 - What threshold ξ should we use? $1/_2$?

Adding Variables

- Substantive model
 - Add party identification to the model. Better fit?

Term	Estimate	Std Error	ChiSquare	Prob>ChiSq	Actual		Pred	ictec
Intercept	2.37277731	0.2084883	129.52	<.0001*	Training	Obama	Romney	
Romney-Obama sum	0.35354487	0.0168809	438.63	<.0001*	Obama	2405	91	
Party.identification	-0.6555776	0.0491522	177.89	<.0001*	Romney	107	1585	

• Profiler helps interpret effect sizes

• Clear view of <u>non</u>linear effects

Note that the interaction between these is not stat significant in logistic, but it is if modeled as linear regr.

More Plots

- Surface plots are also interesting
 - Will be useful in comparison to neural network

Procedure: Save prediction formula Graph>Surface plot

Software is too clever... recognized Obama-Romney Defeat by removing formula & converting tovalues (Cols>Column info...)

Stepwise Logistic

• Logistic calculations

Slower than OLS

Each logistic fit requires an iterative sequence of weighted LS fits.

Add more variables, stepwise

With categorical response, it takes a while to happen! Plus no interactions, missing indicators yet.

• Cheat

Swap in a numerical response, and get instant stepwise dialog

• Try some interactions!

Gender with other factors

Gender interactions alone doubles number of effects Stepwise dialog takes a bit more time!

Best predictors are not surprising!

Stop at rough Bonferroni threshold Useful confirmation of simpler model

Paramete Feeling th

- Feeling.thermometer..Obama
 Feeling.thermometer..Romney
- 3 Obama..like.dislike.scale
- Romney..like.dislike.scale
- 5 Party.identification6 Presidential.job.approval
- 7 (obama.handling.sum-9.42792)*Gender{Female-Male}

Refit Model

- Build logistic model
 - Use OLS to select features

Not ideal, but better than not being able to do it at all! Remove 'unstable' terms

• Stepwise logistic on fewer columns

Model Difference Full Reduced RSquare (U) AICc BIC Observation	-LogLikelihood 2535.9273 289.3171 2825.2444	DF 9 0.8976 598.687 662.034 4188	ChiSquare 5071.855	Prob>ChiS <.0001	5q 1*	1.00 0.90 0.80 0.70 0.70
About errors c mo	½ the of simple odel	Actual Training Obama Romney	Obama Ro 2452 51	Predicted mney 44 1641		Using Presidential.vote='Obama' to be the positive leve AUC 0.99593

Calibrating the Logistic

- Logistic fit may not be calibrated either!
 - Probabilities need not tend to 0/1 at boundary
 - Latent effect not necessarily logistic
 - Hosmer-Lemeshow test

Lasso Alternative

 Convert prior stepwise dialog to 'generalized regression'

Personality:	Generalized
	Generalizeu i

Binomial

Distribution:

d Regression

- Use BIC in JMP for faster calculation
 - generally similar terms

Term	Estimate
Intercept	0.9845193
Romney-Obama sum	0
Party.identification	-44.11835
Feeling.thermometerDemocratic.Party	0
Feeling.thermometerRepublican.Party	0
Media Frequency	0
Media Attention	0
Feeling.thermometerObama	26.127024
Feeling.thermometerRomney	-40.67963
Feeling.thermometerBiden	1.0302577
Feeling.thermometerRyan	-2.470447
Obamalike.dislike.scale	106.3254
Romneylike.dislike.scale	-72.21049
Presidential.job.approval	-38.51804
obama.handling.sum	-2.141782
Financial.situation.past.year	0
Economy.next.year	0
Unemployment.past.year	0
Economic.blameObama	0
Ideology	0
ObamaIdeological.placement	0
reduce.deficit.sum	0
ObamaHealth.insurance.plan.scale	0
Support.for.Obamacare	-1.786785
Offshore.drilling	1.7338066

Which is better?

- Stepwise or BIC version of Lasso
 - What do you mean by better?

If talking squared error, then LS fit will look better Not so clear about which is the better classifier

• Comparison

• Exclude random subset of 1,000 cases

Exclude more to test than to fit (ought to repeat several times) Need enough to be able to judge how well models do

Repeat procedure

Select model using stepwise and lasso Calibrate (need formula for that spline) Save predictions

Fit logistic using same predictors

• Apply both models to the held-back data

Easier to do in R than in JMP, unless you learn to program JMP (it has a language too)

Results of Comparison

- Repeat procedure
 - Stepwise with region and gender interactions

same errors?

brush plots

- Lasso fit over same variables
- Calibration plots, test samples
 - Both appear slightly uncalibrated

Results of Comparison

- Cross-validation of confusion matrix
 - Sensitivity and specificity
 - Very, very similar fits, with no sign of overfitting

	Most Likely Presidential.vote Logit					
Train	esidential.vo te	Count	Obama	Romney		
		Row %				
		Obama	1889	36	1925	
			98.13	1.87		
		Romney	41	1222	1263	
	Pr		3.25	96.75		
			1930	1258	3188	

Most Likely Presidential.vote Lasso Count Obama Romney Presidential.vo Row % e Obama 1925 1891 34 98.23 1.77 Romney 1217 1263 46 3.64 96.36 1937 1251 3188

Most Likely Presidential.vote Lasso

٥ ٥	Count	Obama	Romney		
al.		Row %			
nti	e	Obama	565	6	571
de	Ţ		98.95	1.05	
esi		Romney	14	415	429
Pr			3.26	96.74	
			579	421	1000

Test

	Most Li	kely Presi	dential.vo	ote Logit
2	Count	Obama	Romney	
Presidential. te	Row %			
	Obama	564	7	571
		98.77	1.23	
	Romney	13	416	429
		3.03	96.97	
		577	423	1000

Wharton Department of Statistics

Logit + Stepwise

Lasso + BIC

Take-Aways

- Logistic regression
 - Model gives probablities of group membership
 - Iterative (slower) fitting process
 - Borrow tools from OLS to get faster selection Not ideal, but workable

Goodness of fit

- Confusion matrix, sensitivity, specificity Need to pick the decision rule, threshold ξ
- ROC curve

Do you care about all of the decision boundaries?

- Comparison using cross-validation
 - Painful to hold back enough for a test
 - Need to repeat to avoid variation of C-V

Easier with command-line software like R.

Some questions to ponder...

- What does it mean for a logistic regression to be uncalibrated?
 - Hint: Most often a logistic regression lacks calibration at the left/right boundaries.
- How is it possible for a calibrated linear regression to have smaller squared error but worse classification results?
- Might other interactions might improve either regression model?
- What happens if we apply sampling weights?

Next Time

- Enjoy Ann Arbor area
 - Canoeing on the Huron Whitmore Lake to Delhi
 - Detroit Institute of Art

- Tuesday
 - No more equations!
 - Neural networks combine several logistic regr
 - Ensemble methods, boosting

