Neural Networks & Boosting

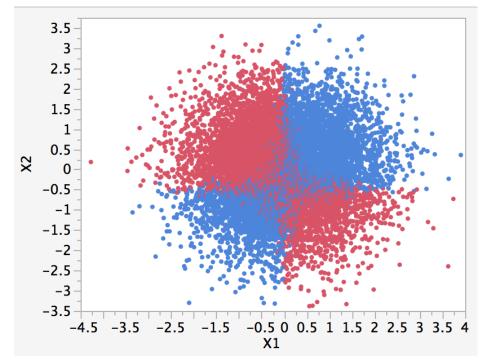
Bob Stine Dept of Statistics, Wharton School University of Pennsylvania

Questions

- How is logistic regression different from OLS?
 - Logistic mean function for probabilities
 - Larger weight to cases with $\hat{y} \approx 0$ or $\hat{y} \approx 1$.
 - Multiplicative structure rather than linear
- What's a good reference?
 - Try Agresti
- Other questions?

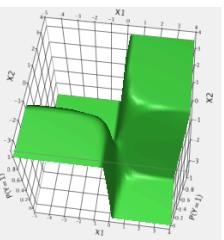
Simulated Example

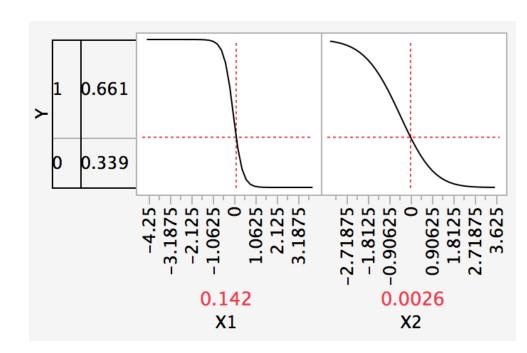
- Simulated data with nonlinear structure
 - Two features X_1 and X_2 are iid N(0, I)
 - Mean $\mu = X_1 + 2 X_1 X_2 = X_1 (1 + 2 X_2)$
 - Add noise, set to 1 if positive and 0 if negative
- Linear logistic
 - AUC=0.68 with R²=0.07
 - Improve it?



Fit of Neural Network

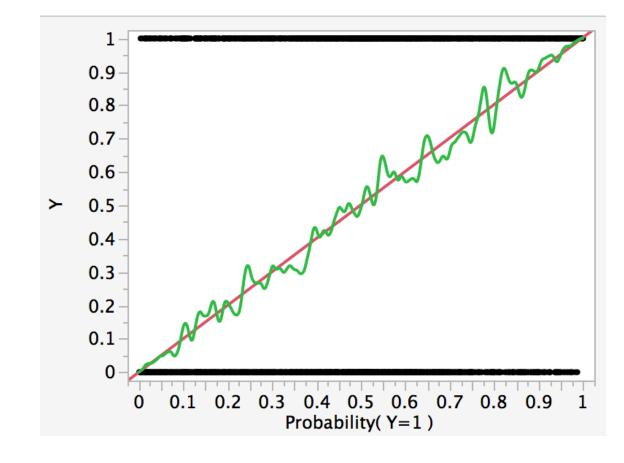
- "Out of the box" default settings
 - Same response, same features X_1 and X_2
 - Accept other settings from JMP
- Network model captures structure
 - AUC=0.96
 - Visuals





Calibration Plot

- Treat response as numerical
 - Same column of 0/1, treated differently
- Well calibrated...



Neural Network

- Combines logistic regression models
 - Latent variables in one or more "hidden layers" $\hat{Y} = G(G_1(Z_1) + ... + G_m(Z_m))$
 - G_j is logistic or similar sigmoidal function
 - Many parameters

Possible over-fitting Gradient ascent from random starting value Optimization is not convex, so may not find best

Context

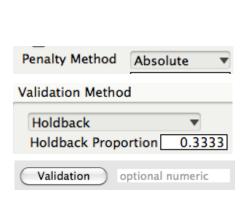
• Neuron analogy

Nonlinear response to stimulus, activation function

- Predated by projection pursuit regression
- Best for low noise, complex mean function

Basic Structure

- Each node/neuron represents response to mixture of all input features
 - $G_1(X_1, X_2, X_3) = G_1(b_{10}+b_{11}X_1+b_{12}X_2+b_{13}X_3)$ $G_2(X_1, X_2, X_3) = G_2(b_{20}+b_{21}X_1+b_{22}X_2+b_{23}X_3)$ Combine "hidden layer" in final node $\hat{\mathbf{Y}} = \mathbf{G}(\mathbf{G}_1, \mathbf{G}_2)$ conomic.blame..Obama
 - Options include choice of functionG, number of nodes and number of layers
- Avoiding over-fitting
 - Regularization (lasso-style penalty)
 - Best fitting model in "validation sample"
 - Three-way cross-validation in IMP Pro



Media Frequency

Ideolog

 G_1

G₂

Presidential.vot

Building Network

- Complexity choice
 - Number of "hidden" nodes
 - Latent variables
- Three hidden nodes by default
 - TanH = rescaled, centered logistic
 - Use hidden nodes as needed
- Fitting options
 - Transform covariates mitigates skewness in predictors
 - Optional penalty as in Lasso (L1)
 - Tours: # random starting points when estimating Picks the best of these in the "validation" sample Easy for the tours to get lost in the jungle of the parameter space!

itting Options		
Transform Co	ovariates	
Penalty Method	Absolute	•
Number of Tours		10

Hidden Layer Structure

Laver

First

Second

Number of nodes of each activation type

Linear Gaussian

another name for logistic

0

0

0

0

Second layer is closer to X's in two layer models.

Activation Sigmoid Identity Radial

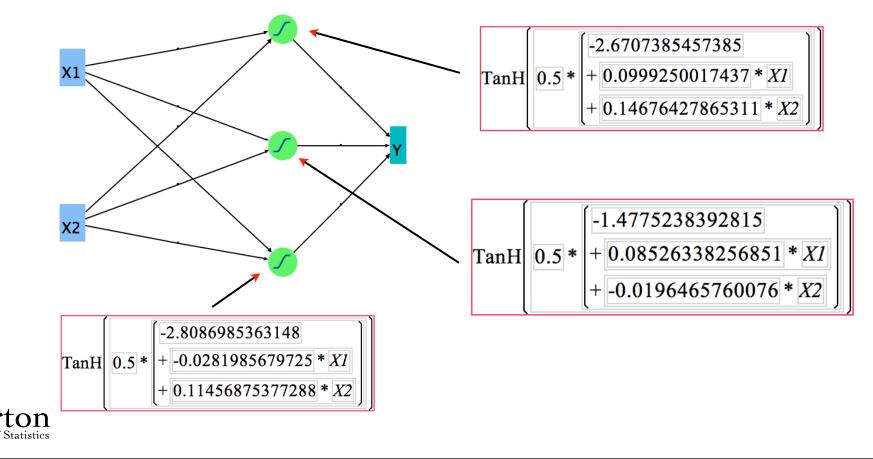
TanH

Cross-Validation in NN

- Cross-validation requires 3-way split
 - Training: Estimate parameters
 - Tuning: Evaluate goodness of fit, tune parms
 - Testing: How well does chosen network do?
- Comparison to validation in regression
 - CV needs 2-way split if use a selection criterion
 - Lasso methods use 3-way split
 - Selection criteria not well established for nets
- 3-way validation: train, tune, test
 - Ought to repeat splitting to reduce variation
 - Automated in some software

Simple Network

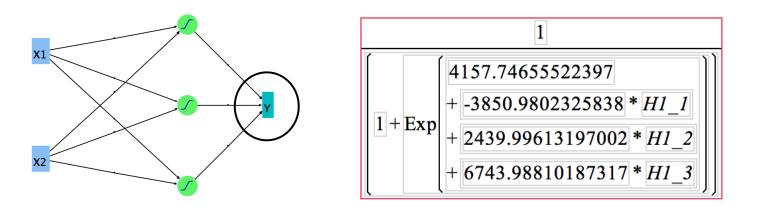
- Fit prior network using validation column
 - Two observed inputs, X_1 and X_2
 - One hidden layer, three nodes, lasso-style penalty
 - Default hidden nodes are logistic curves (tanh)



10

Basic Neural Network

- Response is categorical
 - Combine output of top layer in logistic function
 - Estimated probability



- If response is numerical
 - Handle final score differently
 - Linear function $b_0 + b_1 H_1 + b_2 H_2 + b_3 H_3$

Neural Net Results

- Fit default 3 node network
 - One layer, 3 nodes
 - 2000 for training, 1000 for tuning, 7000 for test
 - Absolute penalty, 5 tours

Results

Training			▼ Va	alida	tion			• 1	Fest						
Y				Y				▼	Y						
Measure	S	Va	ue M	Measi	ures		Value		Meas	sures		Value	2		
Generaliz	zed RSqua	are 0.78201	39 (Gener	alized RS	quare	0.7835747		Gene	ralized RS	Square	0.7874762	2		
Entropy I	RSquare	0.63704	28 E	Entrop	oy RSqua	re	0.6391902		Entro	opy RSqua	re	0.6442211	L		
RMSE		0.28632	17 F	RMSE			0.2838839		RMS			0.2836858	3		
Mean Ab	s Dev	0.16542	89 N	Mean	Abs Dev		0.1640437		Mear	n Abs Dev		0.165101	L		
Misclassi	fication R	late 0	12 N	Miscla	ssificatio	n Rate	0.121		Misc	lassificatio	on Rate	0.121	L		
-LogLike	lihood	503.152	43 -	-LogL	ikelihood	1	249.93194		-Log	Likelihood	b	1726.2497	7		
Sum Fred	1	20	00 5	Sum F	req		1000		Sum	Freq		7000)		
Confu	ision Ma	atrix		Cor	nfusion	Matri	x		▼ Co	onfusion	Matrix	Receiver	Operating Chara	cteristic on	1 Test Data
Actual	Pre	edicted		Actu	al	Predict	ed		Act	ual	Predict	ed 1.00			
Y	0	1		Y	0		1		Y	0		1 0.90			
0	861	145		0	413	7	72		0	2988	51	3			
1	95	899		1	49	46	56		1	334	316	5 0.70			
Confu	ision Ra	ites			nfusion	Rates			▼ Co	onfusion	Rates	0.60 tititititititititititititititititititi			
Actual	Pre	dicted		Actu		Predict			Act	ual	Predicte	d ^{بي} _{0.40}			
Y	0	1		Y	0		1		Y	0	riculet	1 0.30			
-	-	14414		0 0	0.85155	0.1484	45		0	0.85347	0.1465	3 0.20			
	9557 0.9			-	0.09515				1	0.09546		4 0.10			
												0.00	0.20 0.40 1-Spec		.80 1.00

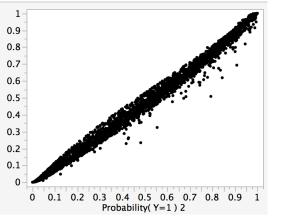
As good as it gets?

- Nice feature of simulated example
 - Know true probability that Y=1
 P(Y=1) = 1 Φ(-signal/noise sd)
- Bayes classifier
 - Classify into group with largest probability
- Remove substantial random variation
 - How well do estimated probabilities approximate Pr(Y=1) rather than classify values?

True Prob(Y=1)

		Most L	ikely Y 2	
	Count	0	1	
	Row %			
	0	2988	513	3501
1		85.35	14.65	
	1	334	3165	3499
		9.55	90.45	
		3322	3678	7000

	Bayes Most Likely Y								
	Count	0	1						
	Row %								
	0	3091	410	3501					
~		88.29	11.71						
	1	419	3080	3499					
		11.97	88.03						
		3510	3490	7000					



13

Attitudes to Gay Marriage

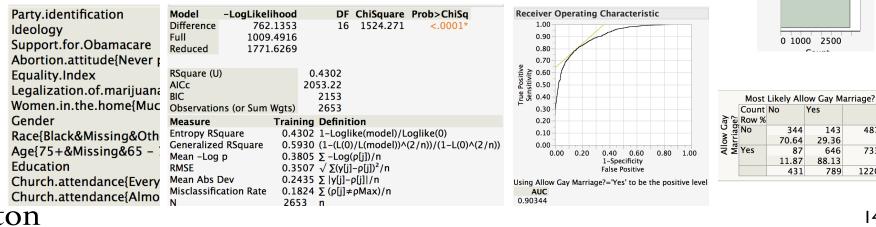
- Response: Favor or Oppose extremes
 - Harder modeling challenge
 - Variables are a variety of issue responses
- Start with logistic regression
 - Set baseline for neural models

Which explanatory variables do you want to try?

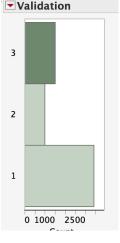
Validation

Department of Statistics

Exclude test data from modeling for logistic



Other examples in bibliography



487

733

1220

Attitudes to Gay Marriage

 Build several neural networks 	NN does not use sample weights
 Compare performace to logistic 	
 Explore several choices for network Different numbers of hidden nodes One or two layers L₁ regularization (ie, lasso type shrinkage) 	
Three-way cross-validation Validation	optional numeric
 Training, tuning (aka, 'validation'), testing 20 "tours" to find best fit 	
 Software facilitates comparison "Model launch" allows fitting different network 	vorks

Results of Several

• Three-way cross-validation reduces n

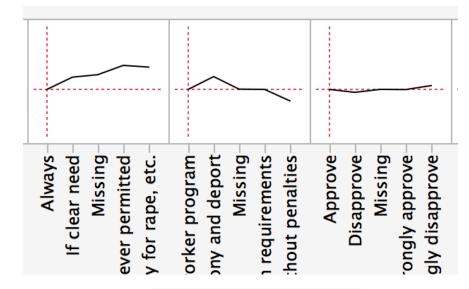
▼Model NTanH(3)							
Training		• •	/alidation		Test		
Allow Gay Marriage?		Allow Gay Marriage?				Allow Gay Marriag	je?
Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq Model NTanH(1)	Value 0.6211914 0.4581092 0.3409437 0.2388433 0.1711122 720.08275 1987		Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.5976086 0.4354169 0.3499172 0.2410794 0.1756757 249.94907 666		Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.5535245 0.3913833 0.364238 0.2503337 0.1959016 499.47171 1220
Training		▼ \	/alidation		• 1	Fest	
Allow Gay Marriag	le?		Allow Gay Marriag	le?		je?	
Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.6052991 0.4421099 0.345097 0.2526547 0.172622 741.34322 1987		Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.5862856 0.4243254 0.3519547 0.2529952		Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.5563231 0.3939925 0.3634832 0.2612669
Model NTanH(2)NT Training		▼ \	/alidation		• 7	ſest	
Allow Gay Marriag	·		Allow Gay Marriag	je?		Allow Gay Marriag	je?
Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.6158523 0.4526959 0.3413808 0.2464796 0.1716155 727.27619 1987		Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.582498 0.4206515 0.3537524 0.2511623 0.1846847 256.48594 666		Measures Generalized RSquare Entropy RSquare RMSE Mean Abs Dev Misclassification Rate -LogLikelihood Sum Freq	Value 0.5577458 0.3953225 0.3628187 0.2572601 0.1901639 496.23894 1220

Which model do you prefer?

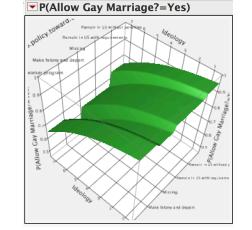
16

Exploring NN Model

- Model with 2 nodes in 2 layers
- Profiling



• Surface profiles



Comparison to LR

Logistic regression

• Use Training and Tuning samples for fit,

	Most	Likely All	ow Gay M	arri	age?
	Count	No	Yes		
ay e?	Row %				
	No	344 70.64	143		487
Allow Marri		70.64	29.36		
Μ	Yes	87	646		733
		11.87	88.13		
		431	789		1220

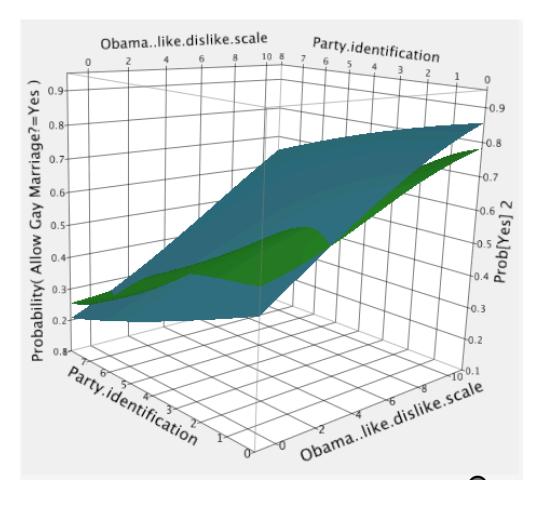
• Neural network using 2 hidden layers

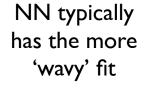
Confusior	n Matrix	
Actual		Predicted
Allow Gay		
Marriage?	No	Yes
No	314	(173)
Yes	78	055

Randomness in optimization implies you don't get the same results each time

Visual Comparison

- Superimposed prediction surfaces
 - Save formulas, use Graph>Surface





Boosting

- General method for improving predictive model
 - Build additive sequence of predictive models (ensemble) Final prediction is accumulated over many models.
 - Start with initial predictive model
 - Compute residuals from current fit
 - Build model for residuals
 - Repeat
- Implication: Use simple model at each step
 - Weak learner: single-layer, 1 or 2 nodes
 - Next response = (current response) (learning rate) x fit
- Weaknesses
 - Loss of 'interpretability', at what gain?

Original method called Adaboost

Boosted Net

Takes a while!

Fit an additive sequ learning rate. Number of Models Learning Rate	 dels scaled b Not too	
Fitting Options		

Transform Covariates						
Penalty Method	Absolute	*				
Number of Tours		5				

Model NTanH(1)NBoost(52)

Fraining	raining		alidation	
Allow Gay Marriage?			Allow Gay Marriag	je?
Measures	Measures Value		Measures	Value
Generalized RSquare	0.6259873		Generalized RSquare	0.6174001
Entropy RSquare	0.4630055		Entropy RSquare	0.4552056
RMSE	0.3354314		RMSE	0.3386178
Mean Abs Dev	0.2438098		Mean Abs Dev	0.2427621
Misclassification Rate	0.1560141		Misclassification Rate	0.1681682
-LogLikelihood	713.57648		-LogLikelihood	241.18833
Sum Freq	1987		Sum Freq	666

Worthwhile?

Test

Allow Gay Marriage?		
Measures	Value	
Generalized RSquare	0.5494252	
Entropy RSquare	0.3875778	
RMSE	0.3651859	
Mean Abs Dev	0.2621704	
Misclassification Rate	0.1901639	
-LogLikelihood	502.59472	
Sum Freq	1220	

Actual	Predicted		
Allow Gay		Tredicted	
Marriage?	No	Yes	
No	341	146	
Yes	86	647	

Discussion

- Resurgence of interest in neural networks
 - Had fallen out of favor

Too hard to fit, too complex, huge collinearities

- Deep networks have produced surprising results: 15% improvements over standard
- Deep network: many layers, 1000's of nodes Context: text mining Papers by Hinton and colleagues on 'deep learning'
- Interpretation requires graphics
 - Too many parameters, nonlinear Would be handy to have way to "sort" features in level of importance
 - Comparison of profiles, surfaces

But can be overwhelmed by larger numbers of predictors

Take-Aways

- Neural network
 - Combines several logistic regressions (latent vars) Allow either numerical or categorical response
 - Complex fitting process with many parameters Not as fast as trees that we'll see next.
 - Requires 3-way cross-validation

Tuning sample is necessary; unfortunately cannot easily automate repeats

- Boosting
 - Refit simple model to residuals
 - Combines sequence of simple models to capture structure rather than rely on one complex model
- Model visualization is essential
- Small n: Hard to beat a simple, accurate model

Some questions to ponder...

- How are neural networks and logistic regression related?
- How can you use repeated CV to convey the stability of predictions?
- To pick the best neural network, we used 3way cross-validation. To get an unbiased estimate of how well this network fits, what do we need?
- How would boosting a linear regression work?

Next Time

- Classification trees
 - Partitioning data into homogeneous subsets

• Thursday is Newberry Lab session

