
ICPSR Blalock Lectures, 2003 Bootstrap Resampling
Robert Stine Lecture 3

Bootstrap Methods in Regression
Questions

Have you had a chance to try any of this?
Any of the review questions?

Getting class notes from the web
Go to my web page

www-stat.wharton.upenn.edu/~stine/mich
Lecture notes are PDF files (Adobe Acrobat).
Updated daily (usually sometime after class) and
will remain on the web for some time.

Software
“Script” files for R commands.
Try software while you are here.

Yet more Summer Program t-shirts
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Overview
Calibration

Powerful idea of using the bootstrap to check
itself.

Resampling a correlation
Correlation requires special methods

Its sampling distribution depends on the
unknown population correlation.

Bootstrap does as well as special methods.
Simple regression

Model and assumptions
- Leverage, influence, diagnostics
- Animated simple regression
- Smoothing

Resampling in regression
Two methods of resampling

- Residual resampling (fixed X)
- Observation resampling (random X)

Picking a method of resampling
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Inference for a Correlation
Classic bootstrap illustration

Efron’s law school data
LSAT and GPA values for 15 law schools

500 700550 600 650
lsat

How to make an inference for the correlation?
- What is the confidence interval?
- What is the population anyhow?

The sample correlation r = 0.776
New type of complexity

SE of average does not depend on m, but
SE of sample correlation depends on r.
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Classical Inference for the Correlation
Fisher’s z transform

The sample correlation is not normal, but Fisher’s
z-transform gives a statistic that is close to
normal

z = f (r) = 1
2 log1 + r

1 - r
This stat is roughly normal with mean f(r) and

SD =
1

n - 3
Example with the law school data

Fisher’s z transformation gives for the 90%
confidence interval the range

[0.507, 0.907] = [.776-.269, .776+.131]
Fisher’s interval is not of the usual form

[estimate ± 2 SE of estimate]
but instead is very asymmetric.
Why should the interval be asymmetric?
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Bootstrapping the Correlation
How to resample?

Keep the data paired – resample observations
(What happens if you do not keep the pairing?)

Same basic resampling iteration
- Collect B bootstrap replications
- Repeatedly calculate the correlation for a

large number of bootstrap samples
Raw calculations, one last time

Explore choice of # of bootstrap replications
Procedure

- Start with 50
- Add further bootstrap replications
- Compare the results as they accumulate

Observe that
- SE “settles down” quickly but
- Lower limit of the CI is not stable until we

have a large number of replications.
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Correlation Results
Plot the bootstrap distribution

The bootstrap distribution is skewed
- clearly not normal
- has hard upper limit at 1
- foolish to use interval like r ± 2 SE(r)

Note: Fisher’s transformation accommodates this
special kind of asymmetry; the range of Fisher’s z
transform is not bounded.

Comparison of intervals
With 3000 replications:

90% bootstrap interval
  [0.520, 0.943] = [.776 - .220, .776+.167]

Fisher’s interval
  [0.507 , 0.907] = [.776 - .269, .776+.131]

Both are skewed and within [-1,1] limits.
The bootstrap works without knowing Fisher’s
special transformation – or assuming normality.

0 10.2 0.4 0.6 0.8
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Exploring the Bootstrap Distribution
Resampled correlations are not normal

Kernel density estimates
These alternatives to histograms avoid binning
the data, but require you to choose how much
to smooth the data.  You can explore these
options using a slider.

Quantile plots
Shows how close to normality, focusing on the
extremes rather than the center of the data.

-0.099 0.9920.174 0.446 0.719
Data Scale

Quantile plot of CORR_B 
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Simple Regression Model
Assumptions for one-predictor model

Y = b0 + b1 X + e
1. Independent observations
2. Equal variance E (e) = 0, Var(e)=s2

3. Normally distributed error terms
+ X is “fixed” OR perfectly measured, ind of e

Data generating process
The “hot dog” model…

Least squares
Pick the line with the smallest sum of squared
vertical deviations (residuals).
Least squares estimator (OLS) is “best”:

What does “best” mean in this context?
Issues

Linear?  Is a line a good summary?
Really want ave(Y|X)

Outliers? What effects can these have?
Inference for the slope?
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Diagnostics for Simple Regression
Examples

“Typical analysis” Law school data
- Small sample size (n=15)
- Let X=LSAT predict Y=GPA

“Unusual analysis” Voting in Florida
- Moderate sample size (n=67)
- Large outlier

Exploring a scatterplot
Animated sensitivity

Add OLS line to a scatterplot, then change the
“mouse mode” to allow you to interactively
drag points and watch the line shift.

Leave-one-out diagnostics
Fit the regression using the regression
command to learn more about this important
collection of regression diagnostics.

- Leverage (potential effect)
- Influence (changes if removed)
- Standardized residuals.

Linked diagnostic plots.
Fox Regression Diagnostics. Sage green mono.
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Smoothing
Further example of smoothing

Skeletal age as measure of physical maturity.

10 1612 14
AGE 

Is the bend real?
This plot shows a “loess” smooth of the data.

Diagnostic procedure
Smooth curve based on local robust averaging

should track the fitted model.
Use smoothing to detect curvature in residuals.

Bootstrapping a smoother
Visual inspection of fitted curves
Resample observations.

Want to know more?
Modern regression course.
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Resampling in Regression
Two approaches

Generalize approaches to two-sample test
A two-sample test is a simple regression with a
categorical (dummy variable) predictor.

Random X (observation resampling)
Resample observations as with correlation
example or in one approach to the t-test.

Fixed X  (experimental, residual resampling)
Resample residuals as follows

- Fit a model and compute residuals
- Generate BS data by

Y*  = (Fit) + (BS sample of OLS residuals)
Comparison

Resample
Observations         Residuals

Model-dependent No Yes
Fixed design X No Yes
Maintains (X,Y) assoc. Yes No
Differences are most apparent

when something is “peculiar” about the
regression model or data, e.g. a severe outlier.
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Observation vs. Residual Resampling
Florida 2000 US Presidential election results

Data show by county
– number registered to Reform Party.
– number of votes received by Buchanan.

Slope estimate
b = 3.7 SE(b) = 0.41    (t ª 9)

Palm Beach is not so leveraged, but is “influential”
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Observation resampling
Sample counties as observations.

2 84 6
COEF-REG_REFORM_B 

Replicates reminds of collinearity.
The slope and intercept are negatively
correlated in a regression when X-bar>0.

SE*  = 1.15 ... much larger than OLS claims
Residual resampling

Sample residuals of fitted model.
SE*  = 0.37 ... about same as OLS claims.

Why different SE estimates?  Random > Fixed SE
Is X fixed or is X not fixed?

Fixed usually gives a smaller estimate, Var(b|X)
‘≤’ Var(b)
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Resampling with Influential Values
Comparison of resampling methods

Observation resampling
Keeps Palm Beach residual at a leveraged
location, leading to bimodal distribution.

2 7.473.36 4.73 6.1

Density of COEF-REG_REFORM_B 

Residual resampling
“Smears” the Palm Beach residual around,
giving a “normal” BS distribution.

2.24 5.73.11 3.97 4.84

Density of COEF-REG_REFORM_B 

Extremely different impression of the accuracy of
the fitted model.  Which is right?
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Which Method is Right?
Observation resampling

+ Does not assume so much of fitted model
Example with unequal variance.
Example with nonlinearity.

± Estimates unconditional variation of the slope
rather than the conditional variation.

± Does not always agree with classical SE
– Not appropriate in Anova designs, patterned

X’s such as time trends (at least not without
special care!)

– Slower to compute (less important now)
What would happen for “another sample”?

Would Palm Beach again be an outlier?
Would it again have a positive residual?
Seems that we might expect Palm Beach to be an

outlier, and the direction of the residual also
seems plausible.
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Asymptotics (i.e., really big samples)
Asymtotic results

Describe what happens as the sample size gets
larger and larger.

As the sample size grows (with other conditions),
Random resampling and fixed X resampling
methods become similar, assuming the model is
correctly identified.

Relation to classical
Bootstrap SE* ª usual OLS formula for residual
resampling as number of BS replications B –>
•
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Robust Regression
Automatically adjusts for outliers

Comparison to OLS
OLS fit

Variable Slope Std Err t-Ratio   p-value
Constant 1.5325 46.61 0.033    0.97
REG_REFORM 3.6867   0.41 9.019    0.00

R Squared 0.56 Sigma hat 301.9

Robust fit
Robust Estimates (HUBER, c=1.345):
Variable Slope Std Err t-Ratio p-value
 Constant 45.52 34.9 1.302 0.20
 REG_REFORM   2.44   0.3 7.948 0.00

“R Squared” 0.86 Sigma hat 82.53
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Size of outlier
OLS Robust

0 500100 200 300 400
REG_REFORM  

0 500100 200 300 400
REG_REFORM 

Outlier is larger, and more apparent relative to
the scale of the fitted model…
OLS Residual SD ª 300
Robust Residual SD ª 80

OLS fit without Palm Beach
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OLS without Palm Beach
Very similar to robust regression.
Plot looks very different with Palm Beach
removed from the data set.

0 500100 200 300 400
reg_reform

OLS regression (n=66)

Least Squares Estimates for BUCHANAN :
Variable Slope Std Err  t-Ratio   p-value
Constant 50.28 12.98   3.873    0.00
REG_REFORM   2.44   0.12 20.180    0.00

R Squared: 0.86
Sigma hat: 83.3
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Reasons to Bootstrap in Regression
Confidence intervals and SE’s

Unless you are doing something special (or the
data are unusual), the bootstrap typically gives
you very similar SEs and confidence intervals.
So why bootstrap?

You learn more about regression.
Looking at the BS distributions helps you
understand what’s going on in the regression.
You can use methods other than least squares,
methods that are less affected by outliers.

You can ask some more interesting questions.
SE is seldom all that we have interest in.
Inference for a robust regression
Simple questions can be hard to answer:

- Which X’s to put into the equation?
- Where is the maximum of this fitted curve?
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Things to Take Away
Bootstrap resampling in regression

Can be done in two ways, depending on the
problem at hand

- residual resampling (fixed)
- observation resampling (random)

Properties of the bootstrap are related to leave-
one-out diagnostics (leverage, influence)

NEXT TIME...
Special applications in regression.

Resampling in multiple regression.

Other issues in multiple regression
- missing data (just a little to say)
- measurement error (a little more)
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Review Questions
What assumption is hardest to check, yet perhaps
most important in regression?

The assumption is that the observations are
independent of one another.  Unless you have
time series data, there are few graphical ways to
spot the problem.  You’ve got to know from the
substance of the problem.

Do leverage and influence mean the same thing?
No, but they are related.  An observation that is
unusual in “X space” is leveraged. In simple
regression, leveraged observations are at the
extreme left and right edges of the plot.  In
contrast, influence refers to how the regression fit
changes when an observation is removed from
the fit.  Heuristically,

Influence ≈ Leverage ¥  (Stud. Residual)
That is, to be influential requires leverage and a
substantial residual.
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How should you use the various regression
diagnostic plots?

Residuals on fitted:  lack of constant variance
StudRes. on leverage: source of influence
Residual density:  normality

What would happen if we sampled X and Y
separately when bootsrapping the correlation?

The “true” correlation in the BS samples would
be zero.  Since we would be independently
associating  values of X with values of Y, the
resulting correlation would be zero;  X and Y
would by construction be independent.

How does residual resampling (fixed X) differ from
observation resampling (random X)?

Residual resampling requires a “true” model in
order to obtain the residuals which are
resampled. Observation (or random) resampling
does not.  Residual resampling keeps the same
X’s in every bootstrap sample.

Which is larger?
Random resampling usually leads to a larger
estimate of standard error (with enough bootstrap
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replications) since it allows for more sources of
variation (from randomness in X’s)

How does the bootstrap indicate bias?
The average of the BS replicates will differ from
the observed value in the sample. For example,
suppose the average of the bootstrap replicates is
less than the original statistic.  Since the original
statistic plays the role of the population value,
this implies that the original statistic is itself less
than the real population value – and is thus
biased.


