Sentiment Analysis

wine_sentiment.R

Dictionary Methods

Count the usage of words from specified lists

Example

LWIC Tausczik and Pennebake (2010), The Psychological Meaning of Words, Journal of Language and Social Psychology

Positive and negative emotions

Sources

Essentially make our own later

LIWC developed for various languages

Google for current locations, languages

Software

Methods in other direction: read summary and write article...WSJ

MARKETS

Can You Tell the Difference Between a Robot and a Stock Analyst?

Wall Street tries out research reports written by artificial intelligence

By **STEPHANIE YANG** Updated July 9, 2015 2:33 p.m. ET

LIWC Words

Linguistic Inquiry and Word Count (LIWC)

Commercial collection of words

Psychological Processes					
Social processes	social	Mate, talk, they, child	455		
Family	family	Daughter, husband, aunt	64		
Friends	friend	Buddy, friend, neighbor	37		
Humans	human	Adult, baby, boy	61		
Affective processes	affect	Happy, cried, abandon	915		
Positive emotion	posemo	Love, nice, sweet	406		
Negative emotion	negemo	Hurt, ugly, nasty	499		
Anxiety	anx	Worried, fearful, nervous	91		
Anger	anger	Hate, kill, annoyed	184		
Sadness	sad	Crying, grief, sad	101		

in category

Sentiment Analysis

Basic version

Identify words that associate with different concepts Positive - Negative Cruel - Kind Red - White wine

Over a corpus of documents, count the prevalence of the different types of words

Use differences in these counts as a measure of the "sentiment" of the document

Application

Words used by judge hearing a case

Word Lists

Established word lists

Bing Liu's negative/positive words from early paper

LIWC commercial list (next slide)

Grow your own

Start with seed words

Expand using WordNet to find synonyms, antonyms

Issues

Counting only

Count "funny" also counts "not funny" Parsing complicates the analysis

Words that are "negative" may not be negative in every context

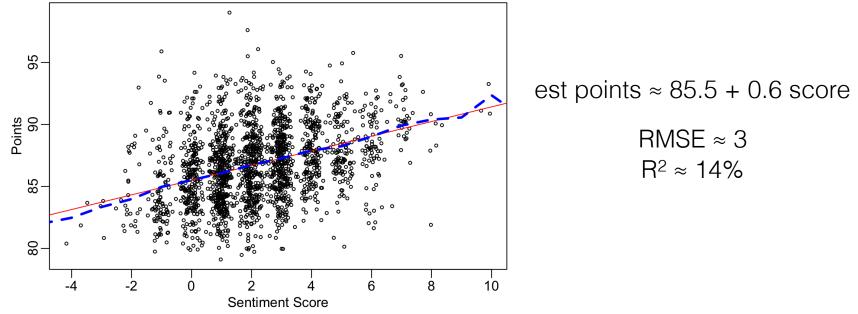
Example with Wines

Relate counts of words to points assigned to wines

Some words clearly not negative are counted as such... example: lemon

Use counts or proportions

Difference in counts linearly related to points

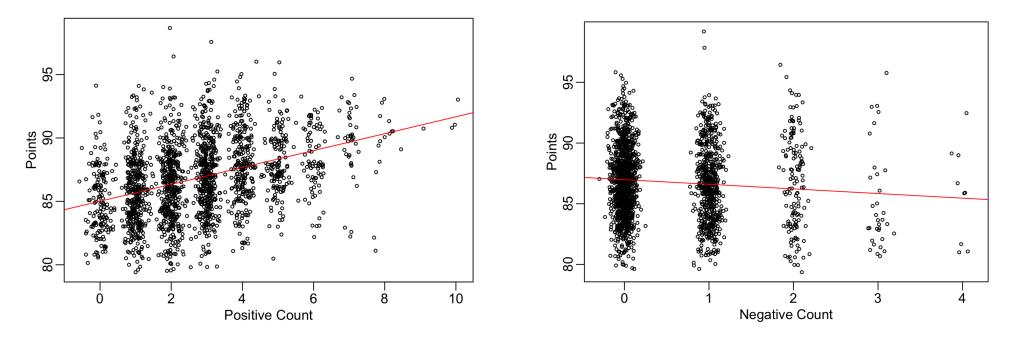


Negative Words less Useful

Role of positive/negative words

Asymmetric association...

Positive words add more than negative words



Multiple regression, however, gives a different impression...

Combination

Multiple regression with positive and negative

A model with these counts basically repeats the two simple regressions...

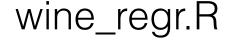
These counts are not highly correlated ($r \approx -0.09$)

Adding total word count tells a different story

	Estimate	Std. Error	t value	
(Intercept)	82.365268	0.065230	1262.70	Why so
posCount	0.410919	0.011640	35.30	different
negCount	-0.577704	0.026823	-21.54	from prior?
totCount	0.109695	0.002103	52.16	

Residual standard error: 2.688 on 20325 degrees of freedom
 (179 observations deleted due to missingness)
Multiple R-squared: 0.2497, Adjusted R-squared: 0.2495
F-statistic: 2254 on 3 and 20325 DF, p-value: < 2.2e-16</pre>

Regression Methods & Examples



Regression Analysis

Objective

Find weighted combination of variables that best predicts a response

Application to text

What weighted combination of word counts best predicts the rating point of a wine?

Perspective

Sentiment analysis assigns fixed weight to selected words

Regression assigns weights that are most predictive in the context of the observed corpus

Regression vs Sentiment

Previous sentiment analysis

- Common positive weight to "positive" words
- Common negative weight to "negative" words
- Advantage: no modeling, can do unsupervised
- Disadvantage: generic, not adapted to problem

Regression model

- Customize the weight for the observed data
- Advantage: customized! Better fit, more predictive
- Disadvantage: Must be superivised. Which words?

Which words?

How to pick the word features to use?

Variable selection for regression

Theory

Very much like sentiment analysis, but with custom weights

External sorting

Limit the analysis to the most common word types

Stepwise type selection methods Need criterion like Bonferroni to avoid overfitting

Lasso type penalized methods

Popular, fast alternative to stepwise methods

Convex algorithm faster than stepwise search (albeit different search)

Shrinkage Methods

Alternative to subset selection

Difficult to identify and fit all subsets Consider how many such models are possible...

Solve a simpler problem that 'shrinks' estimates Careful. Estimates need to be on common scale to combine

Why shrink? Trade bias to reduce variance Shrinkage allows fitting all the variables even if more variables than cases

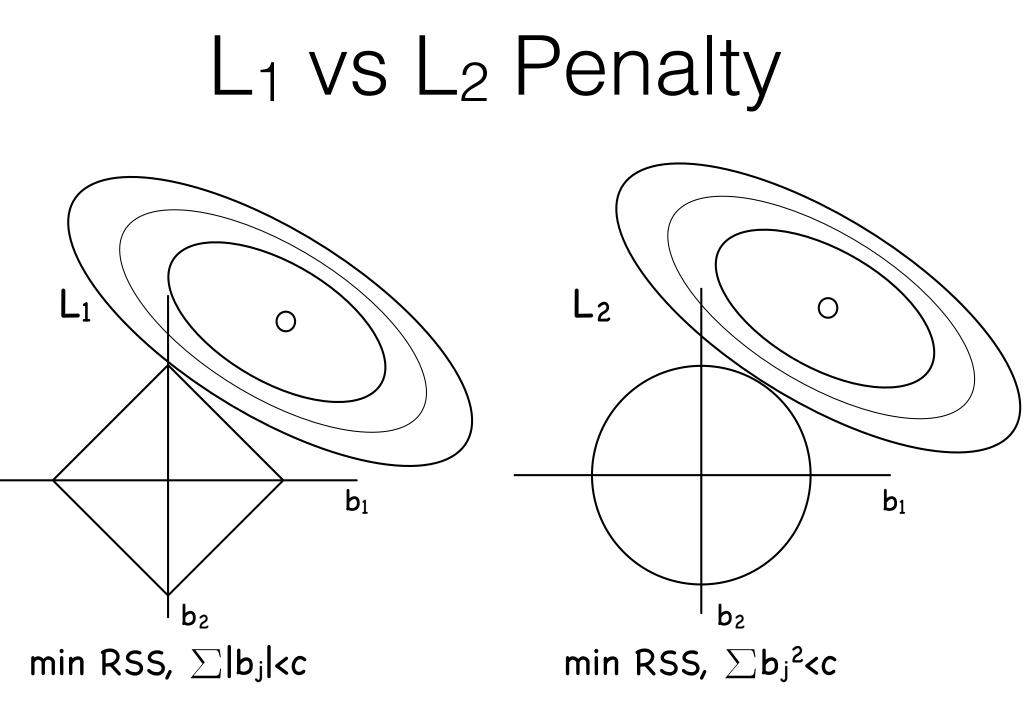
Penalized likelihoods

Penalize by a measure of the size of the coefficients.

Fit has to improve by enough (RSS decrease) to compensate for size of coefficients Ridge regression: min RSS + λ_2 b'b Lasso regression: min RSS + $\lambda_1 \Sigma$ |bj|

λ is a tuning parameter that must be chosen by some method usually cross-validation

Also have a Bayesian interpretation (see ISL)



Corners produce selection

Interpret λ as Lagrange multiplier.

Cross-Validation

Fundamental, commonly used

- Use part of the data to build a model
- Use a separate, "hidden" part to test the model
- Happens often in practice in consulting

Question: how to partition data?

Remedy

Repeat the division between the two groups

K-fold cross-validation partitions data into K parts

Fit to K-1 folds, validate on 1 fold (K = 5,10)

Missing Data

Always present

In medical example, only 170 out of 1,200 cases were complete

Often informative

In bankruptcy model, half of predictors indicate presence of missing data

Is data ever 'missing at random'?

Handle as part of the modeling process?

Offer a simple patch that requires few assumptions

Main idea

Done as a data preparation step

Add indicator column for missing values

Fill the missing value

Handle Missing by Adding Vars

Add another variable

- Add indicator column for missing values
- Fill the missing with average of those seen

Simple approach, fewer assumptions

- Expands the domain of the feature search
- Allows missing cases to behave differently
- Conservative evaluation of variable

Part of the modeling process

Distinguish missing subsets only if predictive

Missing in a categorical variable: not a problem

Missing define another category

ONLY applies to explanatory variables, never the response

Example

Data frame with missing values

Filled in data with added indicator columns

>	ex				
	x1	x 2	x3	lab	fac
1	1	NA	1.4671553	UVW	ABC
2	1	2	-0.8691613	UVW	ABC
3	1	3	0.1174511	UVW	ABC
4	1	NA	-0.3890095	UVW	ABC
5	NA	5	1.2007855	UVW	ABC
6	1	NA	0.3604345	UVW	ABC
7	1	7	0.6692698	UVW	ABC
8	1	8	-1.4056064	UVW	ABC
9	1	9	-1.2858561	UVW	<na></na>
10	1	10	-0.2103984	UVW	<na></na>

>	fill.missing(example.df)						
	x1	x2	x3	lab	fac	Missing.x1	Missing.x2
1	1	6.285714	1.4671553	UVW	ABC	0	1
2	1	2.000000	-0.8691613	UVW	ABC	0	0
3	1	3.000000	0.1174511	UVW	ABC	0	0
4	1	6.285714	-0.3890095	UVW	ABC	0	1
5	1	5.000000	1.2007855	UVW	ABC	1	0
6	1	6.285714	0.3604345	UVW	ABC	0	1
7	1	7.000000	0.6692698	UVW	ABC	0	0
8	1	8.000000	-1.4056064	UVW	ABC	0	0
9	1	9.000000	-1.2858561	UVW	Missing	0	0
10	1	10.000000	-0.2103984	UVW	Missing	0	0

Regression for Points

Validation

Set aside 5,000 cases for checking models

Initial model, without words

Note the significant role for the missing indicators

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	-1.181e+02	1.464e+01	-8.069	7.64e-16	***
alcohol	6.178e-02	1.334e-02	4.631	3.68e-06	***
vintage	9.924e-02	7.304e-03	13.588	< 2e-16	***
price	6.157e-02	1.345e-03	45.783	< 2e-16	***
lengths	1.053e-01	2.086e-03	50.499	< 2e-16	***
Miss.alcohol	-7.718e-01	1.504e-01	-5.133	2.88e-07	***
Miss.vintage	-3.808e-01	6.942e-02	-5.485	4.19e-08	***
Miss.price	4.866e-01	8.154e-02	5.968	2.46e-09	***
Signif. codes	5: 0 (***)	0.001 '**'	0.01 '*	0.05 '.'	0.1 '

Residual standard error: 2.55 on 15321 degrees of freedom Multiple R-squared: 0.3248, Adjusted R-squared: 0.3245 F-statistic: 1053 on 7 and 15321 DF, p-value: < 2.2e-16 , 1

Regression for Points

Initial model, with only words(proportion) and lengths

Just 15 words to get the idea, adding lengths really helps

Coefficients:

coorr reren					
	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	82.363011	0.284349	289.654	< 2e-16	***
lengths	0.119197	0.003084	38.649	< 2e-16	***
comma_	-0.574532	0.616589	-0.932	0.351459	
and	8.992627	0.894380	10.055	< 2e-16	***
period_	1.783183	1.179964	1.511	0.130754	
dash_	1.092387	0.887434	1.231	0.218361	
with	7.568056	1.129717	6.699	2.17e-11	
aromas	-17.119562	2.403255	-7.123	1.10e-12	***
medium	-6.971505	1.967944	-3.543	0.000397	***
finish	6.354623	1.573823	4.038	5.42e-05	
entry	-40.227866	2.332525	-17.246	< 2e-16	***
fruit	-1.413407	1.414402	-0.999	0.317667	
body	-7.603953	2.869107	-2.650	0.008051	**
full	61.308520	1.770266	34.632	< 2e-16	***
bodied	-8.363368	2.171764	-3.851	0.000118	***
this	-26.309107	1.958179	-13.435	< 2e-16	***
leads	-26.526081	2.346595	-11.304	< 2e-16	***
Signif. co	des: 0 '***	' 0.001'**	' 0.01 ''	*' 0.05'.	.'0.1''

Residual standard error: 2.495 on 15312 degrees of freedom Multiple R-squared: 0.3541, Adjusted R-squared: 0.3534 F-statistic: 524.6 on 16 and 15312 DF, p-value: < 2.2e-16

1

Regression for Points

Combined...

Coefficients:						
	Estimate	Std. Error	t value	Pr(>ltl)		
(Intercept)	-42.097798	19.796170	-2.127	0.033472	*	
alcohol	-0.022784	0.012881	-1.769	0.076934		
vintage	0.061950	0.009877	6.272	3.66e-10	***	
price	0.046953	0.001309	35.876	< 2e-16	***	
lengths	0.101698	0.003016	33.715	< 2e-16	***	
Miss.alcohol	-0.737923	0.149054	-4.951	7.47e-07	***	
Miss.vintage	-0.401744	0.067054	-5.991	2.13e-09	***	
Miss.price	0.562938	0.077376	7.275	3.62e-13	***	
comma_	-0.726686	0.594887	-1.222	0.221896		
and	8.915556	0.859716	10.370	< 2e-16	***	
period_	3.065042	1.146935	2.672	0.007540	**	
dash_	2.841002	0.863970	3.288	0.001010	**	
with	7.047177	1.082107	6.512	7.62e-11	***	
aromas	-14.710150	2.353051	-6.252	4.17e-10	***	
medium	-6.627668	1.895310	-3.497	0.000472	***	
finish	4.346500	1.515970	2.867	0.004148	**	

...more...

Residual standard error: 2.386 on 15306 degrees of freedom Multiple R-squared: 0.4095, Adjusted R-squared: 0.4087 F-statistic: 482.6 on 22 and 15306 DF, p-value: < 2.2e-16 R files build larger models

Dilemma Get better and better as keep adding more words

Calibration Plot

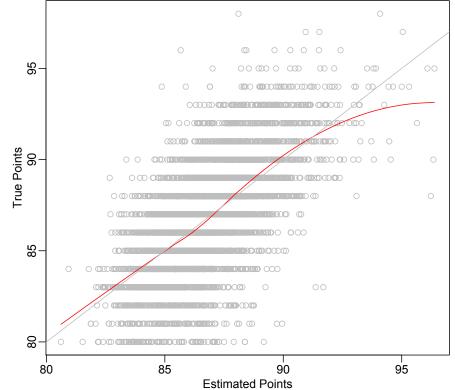
Check out-of-sample fit is correct on average

Does out of sample fit match claimed fit of model?

Check that predictions are honest: $E(Y|\hat{Y}) = \hat{Y}$

Common problem

- Limited range response
- Any wines more than 100 pts? Less than 80 points?



Checking Claimed Precision

Does model meet claims of precision

Are the predictions of the model for the test data as good as they are when predicting the training data

The training data was used to build the model

Overfitting

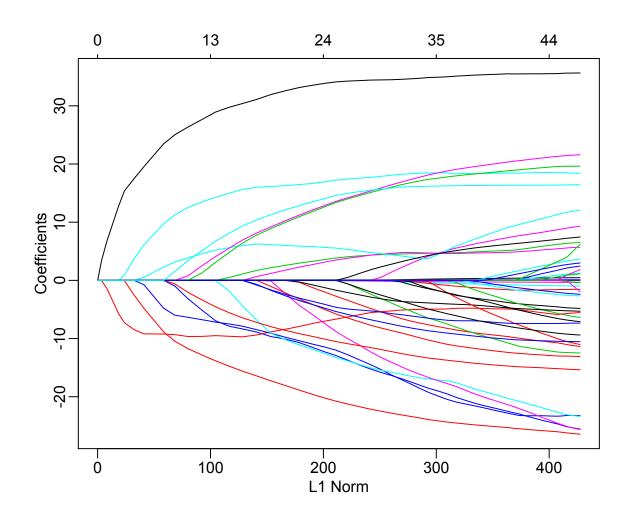
Occurs when model capitalizes on random variation in the training data

Predicts training data better than test data. For example Average squared prediction error in test > in training Correlation²(predicted, actual) in test < in training (ie R²)

Lasso Fit

Which model do you want to keep

Fishbone plot for model with others and words



Cross-Validation Picks

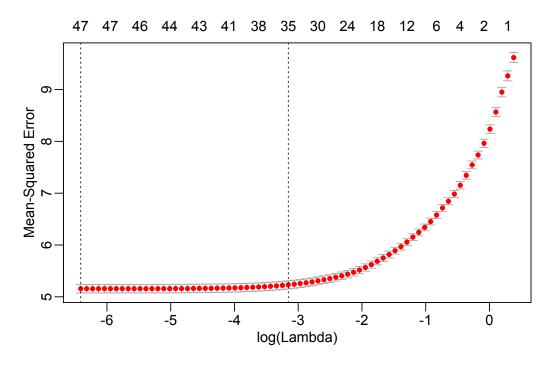
10 fold cross validation

Chooses best value for the tuning parameter

Big model!

Really wants to use them all!

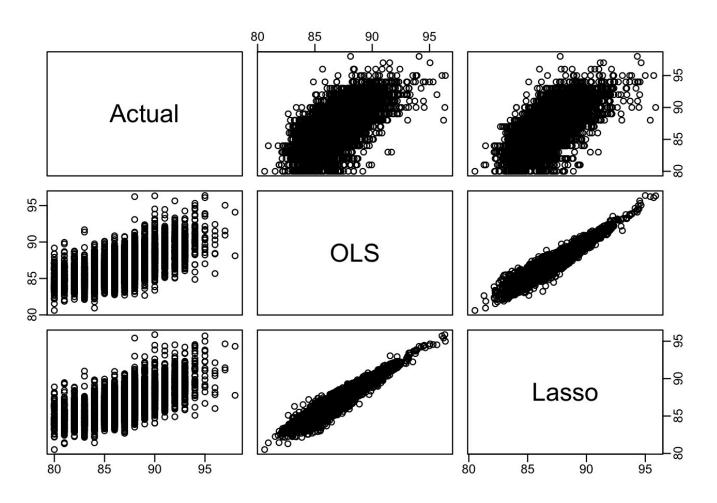
1 SE heuristic picks a simpler model



Comparisons

Scatterplot matrix of the predictions and actual

All in the test sample



Eye Candy

Word cloud

Which words have large coefficients in the lasso model?

