
Sentiment Analysis
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Wharton
  Department of Statistics

Dictionary Methods
• Count the usage of words from specified lists

• Example
• LWIC  Tausczik and Pennebake (2010), 
The Psychological Meaning of Words, 
Journal of Language and Social Psychology 

• Positive and negative emotions 

• Sources
• Essentially make our own later 
• LIWC developed for various languages 
• Google for current locations, languages 
• Software

40

Methods in other 
direction: read summary and  

write article…WSJ
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LIWC Words
• Linguistic Inquiry and Word Count (LIWC)

• Commercial collection of words

41# in category
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Sentiment Analysis
• Basic version

• Identify words that associate with different concepts  
  Positive - Negative 
  Cruel - Kind 
  Red - White wine 

• Over a corpus of documents, count the prevalence of the 
different types of words 

• Use differences in these counts as a measure of the 
“sentiment” of the document 

• Application
• Words used by judge hearing a case
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Word Lists
• Established word lists

• Bing Liu’s negative/positive words from early paper 
• LIWC commercial list  (next slide) 

• Grow your own
• Start with seed words 
• Expand using WordNet to find synonyms, antonyms 

• Issues
• Counting only 
• Count “funny” also counts “not funny” 

Parsing complicates the analysis 

• Words that are “negative” may not be negative in every context
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Example with Wines
• Relate counts of words to points assigned to wines

• Some words clearly not negative are counted as such… 
  example: lemon 

• Use counts or proportions 

• Difference in counts linearly related to points
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est points ≈ 85.5 + 0.6 score

RMSE ≈ 3 
R2 ≈ 14%
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Negative Words less Useful
• Role of positive/negative words

• Asymmetric association… 
• Positive words add more than negative words

45

Multiple regression, however, gives a different impression…
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Combination
• Multiple regression with positive and negative

• A model with these counts basically repeats the two simple 
regressions…  

• These counts are not highly correlated  (r ≈ -0.09) 

• Adding total word count tells a different story
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Why so 
different 

from prior?



Regression 
Methods & Examples

47 wine_regr.R
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Regression Analysis
• Objective

• Find weighted combination of variables that best predicts a 
response 

• Application to text
• What weighted combination of word counts best predicts the 
rating point of a wine? 

• Perspective
• Sentiment analysis assigns fixed weight to selected words 
• Regression assigns weights that are most predictive in the 
context of the observed corpus
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Regression vs Sentiment
• Previous sentiment analysis

• Common positive weight to “positive” words 
• Common negative weight to “negative” words 
• Advantage: no modeling,  can do unsupervised 
• Disadvantage: generic, not adapted to problem 

• Regression model
• Customize the weight for the observed data 
• Advantage: customized!  Better fit, more predictive 
• Disadvantage: Must be superivised. Which words?
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Which words?
• How to pick the word features to use?

• Variable selection for regression
• Theory 

Very much like sentiment analysis, but with custom weights 

• External sorting 
Limit the analysis to the most common word types 

• Stepwise type selection methods 
Need criterion like Bonferroni to avoid overfitting 

• Lasso type penalized methods 
Popular, fast alternative to stepwise methods 
Convex algorithm faster than stepwise search (albeit different search)
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Shrinkage Methods
• Alternative to subset selection

• Difficult to identify and fit all subsets 
Consider how many such models are possible...  

• Solve a simpler problem that ‘shrinks’ estimates 
Careful.  Estimates need to be on common scale to combine 

• Why shrink?  Trade bias to reduce variance 
Shrinkage allows fitting all the variables even if more variables than cases 

• Penalized likelihoods
• Penalize by a measure of the size of the coefficients. 
• Fit has to improve by enough (RSS decrease) 
to compensate for size of coefficients  
 Ridge regression:  min RSS + λ2 b’b 
 Lasso regression:  min RSS + λ1 Σ|bj|  

• Also have a Bayesian interpretation (see ISL)
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λ is a  
tuning parameter


that must be chosen 
by some method


usually  
cross-validation



L1 vs L2 Penalty
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L1 L2

min RSS, Σ|bj|<c min RSS, Σbj2<c
Corners produce selection

Interpret λ as Lagrange multiplier. Figure 6.7, p 222

b1 b1

b2 b2
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Cross-Validation
• Fundamental, commonly used 

• Use part of the data to build a model 
• Use a separate, “hidden” part to test the model 
• Happens often in practice in consulting 

• Question: how to partition data?

• Remedy
• Repeat the division between the two groups  
• K-fold cross-validation partitions data into K parts 
• Fit to K-1 folds, validate on 1 fold (K = 5,10)
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Missing Data
• Always present

• In medical example, only 170 out of 1,200 cases were complete 

• Often informative
• In bankruptcy model, half of predictors indicate presence of missing data 
• Is data ever ‘missing at random’? 

• Handle as part of the modeling process?
• Offer a simple patch that requires few assumptions 

• Main idea
• Done as a data preparation step  
• Add indicator column for missing values 
• Fill the missing value

54



Wharton
  Department of Statistics

Handle Missing by Adding Vars
• Add another variable

• Add indicator column for missing values 
• Fill the missing with average of those seen 

• Simple approach, fewer assumptions
• Expands the domain of the feature search 
• Allows missing cases to behave differently 
• Conservative evaluation of variable 

• Part of the modeling process
• Distinguish missing subsets only if predictive 

• Missing in a categorical variable: not a problem
• Missing define another category
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ONLY applies to 
explanatory variables,  

never the response
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Example

56

Data frame with 
missing values

Filled in data with added 
indicator columns

missing_data.R
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Regression for Points
• Validation

• Set aside 5,000 cases for checking models 

• Initial model, without words
• Note the significant role for the missing indicators
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Regression for Points
• Initial model, with only words(proportion) and lengths

Just 15 words to get the idea, adding lengths really helps
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Regression for Points
• Combined…
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…more…

R files build 
larger models 

Dilemma 
Get better and 
better as keep 

adding more words
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Calibration Plot
• Check out-of-sample fit is correct on average

• Does out of sample fit match claimed fit of model? 

• Check that predictions  
are honest: E(Y|Ŷ) = Ŷ

• Common problem
• Limited range response 
• Any wines more than 100 pts?  
Less than 80 points?
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Checking Claimed Precision
• Does model meet claims of precision

• Are the predictions of the model for the test data as good as 
they are when predicting the training data 

• The training data was used to build the model 

• Overfitting
• Occurs when model capitalizes on random variation in the 
training data 

• Predicts training data better than test data.  For example  
 Average squared prediction error in test > in training 
 Correlation2(predicted, actual) in test < in training (ie R2)
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Lasso Fit
• Which model do you want to keep

• Fishbone plot for model with others and words
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Cross-Validation Picks
• 10 fold cross validation 

• Chooses best value for the tuning parameter 

• Big model!
• Really wants to use them all! 
• 1 SE heuristic picks a simpler model
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Comparisons
• Scatterplot matrix of the predictions and actual

• All in the test sample
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Eye Candy
• Word cloud

• Which words have large coefficients in the lasso model?
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